PSD29007-Engtelecom(2020-2) - Prof. Marcos Moecke

De MediaWiki do Campus São José
Ir para: navegação, pesquisa

Unidade 1

Unidade 1
Aula 1 (10 nov)
  • APRESENTAÇÃO DA DISCIPLINA
  • Nesta página será atualizado a cada aula o REGISTRO DIÁRIO E AVALIAÇÕES.
  • A PÁGINA DA DISCIPLINA contem os materiais gerais de referência e consulta.
  • Para a realização e entrega das atividades será utilizada a PLATAFORMA MOODLE. Chave para auto inscrição (engtelecom2020-2)
  • Durante a pandemia do COVID19 os encontros síncronos serão realizados através da plataforma Google Meet. Os encontros (havendo a concordância de todos) serão gravados, e ocorrerão nos horários normais das aulas. As aulas terão duração de 1h20 minutos com possibilidade de ainda acrescer 20 minutos previstos para esclarecimento de dúvidas. As gravações ficarão disponíveis por 30 dias no Drive do aluno, mas não poderão ser baixadas por limitação do sistema.
  • Além dos horários de aula síncrona, serão agendados horários de ATENDIMENTO EXTRACLASSE para que os alunos possam tirar dúvidas da disciplina ou das ferramentas de ensino.
  • Para a comunicação entre professor-aluno, além dos avisos do SIGAA, utilizaremos a plataforma SLACK. Sugere-se que os alunos também a utilizem para comunicação entre eles, principalmente nos trabalhos em equipe.
  • Nas aulas de PSD utilizaremos desde o inicio o Matlab e no final o Simulink e HDL Coder. Para facilitar o acesso foi disponibilizada uma VM com essa plataforma para vocês. No inicio vocês podem usar normalmente a nuvem do IFSC, mas quando forem usar o Simulink, a VM tem melhor desempenho, então recomendo que baixem a VM e instalem em seu computador.
  • A página da wiki com as orientações para instalação e uso é Teste de VM para uso pelos alunos no ensino remoto#VM Matlab
Aula 2 a 4 (12, 17, 19 nov)
Aula 5 e 6 (24, 26 nov)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Explorar a interface do Matlab.
  • Funções de visualização das variáveis no workspace.
  • Execução de instruções passo a passo.
  • Escrita de script .m
  • Uso da execução das seções de um script.
  • Incremento de valor e execução.
EXEMPLOS:
  • Leia com atenção e execute o exemplo (Moving-Avarage Filter) na página de help da função filter.
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Leia com atenção o help Using FFT, abra o script clicando no botão [Open this Example]. Execute o script seção após seção. Note o uso da fft para determinar a frequência das manchas solares.
  • Para melhorar o desempenho no Matlab recomendo que leiam a pagina do Help, . Também gostaria de lembra-los que a tecla F9 executa o código destacado no Help. Programação com scripts .m.
  • Leia sobre manchas solares para entender o que são os dados do segundo exemplo.
Sinais no dominio do tempo e dominio da frequencia. Uso da função fft
Exemplo de uso da FFT
%% Signal in Time Domain 
% Use Fourier transforms to find the frequency components of a signal buried in noise.
% Specify the parameters of a signal with a sampling frequency of 1 kHz and a signal duration of 1.5 seconds
Fs = 1000;            % Sampling frequency                    
T = 1/Fs;             % Sampling period       
L = 1500;             % Length of signal
t = (0:L-1)*T;        % Time vector

% Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz sinusoid of amplitude 1.
S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

% Corrupt the signal with zero-mean white noise with a variance of 4.
X = S + 2*randn(size(t));

% Plot the noisy signal in the time domain. It is difficult to identify the frequency components by looking at the signal X(t).
subplot(311);
plot(1000*t(1:200),X(1:200), 'b')
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')
hold on
plot(1000*t(1:200),S(1:200),'r')
hold off

% Signal in Frequency Domain
% Compute the Fourier transform of the signal.
Y = fft(X);

% Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based on P2 and the even-valued signal length L.
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

A2 = angle(Y);
A1 = A2(1:L/2+1);

% Define the frequency domain f and plot the single-sided amplitude spectrum P1. 
% The amplitudes are not exactly at 0.7 and 1, as expected, because of the added noise. 
% On average, longer signals produce better frequency approximations.
f = Fs*(0:(L/2))/L;
subplot(3,1,2);
plot(f,P1, 'b')

title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
hold on
% Now, take the Fourier transform of the original, uncorrupted signal and retrieve the exact amplitudes, 0.7 and 1.0.
Y = fft(S);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

plot(f,P1, 'r') 

title('Single-Sided Amplitude Spectrum of S(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
hold off

% Angulo  / fase 
subplot(3,1,3);
plot(f,A1)
%ylim([0 1.05]) 
title('Single-Sided Phase Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('phase(f)')
  • Amostragem de Sinais (Experimento 1.2)
  • Relembrar teorema da amostragem. Efeito da amostragem abaixo da frequência de Nyquist. Aliasing.
  • Notar que as amostras de um sinal (3 Hz) e um sinal (7 Hz) são idênticas quando amostrado com um sinal de 10 Hz.
Experimento 1.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.2
fs = 10; % frequencia (Hz) de amostragem dos sinais
Ts = 1/fs; fase = 0;
time = 0:Ts:(1-Ts);
f1 = 3; % frequencia (Hz) do sinal s_1
f2 = 7; % frequencia (Hz) do sinal s_2
s_1 = cos(2*pi*f1*time+fase);
s_2 = cos(2*pi*f2*time+fase);
fsa = 1000; % frequência auxiliar de amostragem usada apenas para representação dos sinais originais
Tsa = 1/fsa;
time_aux = 0:Tsa:(1-Tsa);
figure(1);
stem(time,s_1,'ob');
hold on;
plot(time_aux, cos(2*pi*f1*time_aux+fase),'--k');
stem(time,s_2,'+r');
plot(time_aux, cos(2*pi*f2*time_aux+fase),'--m');
hold off;
legend('s_1 discreto','s_1 contínuo','s_2 discreto','s_2 contínuo')
DICAS:
  • No help on-line da Mathworks, usando o botão [Try This Example > Try in your browser], permite executar o código no próprio browser sem ter nenhuma instalação do Matlab. Para verificar que o código realmente é executado mude a amplitude do ruído randômico para 0.1 ou 0.5, insira o comando close all antes da primeira linha, e execute todo o código [Run All]
  • No help do Matlab, usando o botão [Open this Example], é possível executar o código seção a seção.
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 2.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 2.2
% Resposta em frequencia usando a função freqz
N = 1;
num = [1 0 0 0];
den = poly([0.8 0.2])
%den = [1 0.6 -0.16];
% modo 1
%[H,w]=freqz(num,den,[0:pi/100:N*pi-pi/100]);
%plot(w/pi, abs(H));
% modo 2
%[H,w]=freqz(num,den);
%plot(w/pi, abs(H));
% modo 3
%[H,w]=freqz(num, den, 'whole');
%plot(w/pi, abs(H));
% modo 4
freqz(num, den, 'whole');
figure(2);
zplane(num,den);

%% Resposta em frequencia substituindo z -> e^(jw)
syms z
Hf(z) = symfun(z^2/(z-0.2)/(z+0.8),z);
pretty(Hf)
latex(Hf)
N = 1;
w = [0:pi/100:N*pi-pi/100];
plot(w/pi,abs(Hf(exp(1i*w))))
%title(['$' latex(Hf) '$'],'interpreter','latex')
text(0.2,2,['H(z) = ' '$$' latex(Hf) '$$'],'interpreter','latex')
xlabel(['w/' '$$' '\pi' '$$'],'interpreter','latex')
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado
Aula 7 (1 dez)
  • A filtragem de sinais digitais pode ser realizada de diferentes formas:
  • convolução (y = conv(x,h)), onde x(n) é o sinal de entrada e h(n) é a resposta ao impulso do filtro (sistema linear invariante no tempo),
  • filtragem no domínio do tempo (y = a1.x(n)+ a2.x(n-1)+ .. ak.x(n-k));
  • no domínio da frequência (y = ifft(fft(x)fft(h))
Variação do Experimento 3.1
%% Variação do Experimento 3.1 do livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Ex3_1.m
% Exemplificando as possiveis formas de realizar a filtragem de um sinal x(n)

clc; clear all; close all;
%% Definindo valores iniciais
Nh = 10; Nx = 20;
%Nh = 400; Nx = 10000;
x = ones(1,Nx);
% A resposta ao impulso de um sistema h(n) 
% no filtro FIR aos coeficientes b(n) = h(n) 
h = [1:Nh]; b = h;
%% Filtrando o sinal e medindo tempos

% OPÇÃO 1 - Filtragem utilizando a convolução
% NOTE: length(y) = length(x) + length(h) -1

tic;  % iniciar a contagem do tempo
y1 = conv(x,h); 
t(1) = toc; % terminar a contagem e mostrar tempo no console

% OPÇÃO 2 - filtragem utilizando a equação recursiva
% NOTE: length(y) = length(x)

tic;
y2 = filter(b,1,x);
t(2) = toc;

% OPÇÃO 3 - filtragem utilizando a equação recursiva 
% aumentando o tamanho de x para que length(y3) = length(y1)
x3 = [x zeros(1,length(h)-1)];

tic;
y3 = filter(h,1,x3); 
t(3) = toc;

length_y = length(x) + length(h) - 1;

% OPÇÃO 4 - filtragem utilizando a FFT 
% a y = IFFT(FFT(x)*FFT(h))

tic;
X = fft(x,length_y);
H = fft(h,length_y);
Y4 = X.*H;
y4 = ifft(Y4);
t(4) = toc;

% OPÇÃO 5 - filtragem utilizando a função fftfilt
% a y = IFFT(FFT(x)*FFT(h))

tic
y5 = fftfilt(h,x3);
t(5) = toc;

disp('Comprimento do vetor de saída length(y)')
disp(['    ' num2str([length(y1) length(y2) length(y3) length(y4) length(y5)])])
disp('Tempo usado na filtragem em micro segundos')
disp(['    ' num2str(t*1e6) ' us'])

%%  Plotando o gráfico
subplot(411);stem(y1);
hold on;
stem(y2,'xr');
stem(y3,'+m');
legend('y1', 'y2', 'y3')
hold off
subplot(412);stem(y1, 'ob');legend('y1')
subplot(413);stem(y2, 'xr'); hold on; stem(zeros(size(y1)),'.w');hold off; legend('y2')
subplot(414);stem(y3, '+m');legend('y3')
  • Verificar as funções tic e toc
  • Notar a diferença de tempo de processamento entre os processos de filtragem.
  • A situação pode ser muito diferente conforme muda o tamanho do sinal e ordem do filtro (h(n)). Modifique a resposta ao impulso e o sinal de entrada modificando os valores das variáveis de tamanho: Nh = 10, 100, 1000; Nx = 20, 1000, 10000;
  • Em função do sistema operacional e reserva de memória para as variáveis é importante desprezar a primeira medida de tempo. Realize 3 medidas de tempo para cada uma das 5 opções de filtragem, com pelo menos duas combinações de comprimento Nh e Nx.
  • Verifique o tempo de processamento usando a instrução profile
profile on
  • Após ativar o profiler, execute o programa e veja o tempo total do script e de cada função chamada.
profile viewer  

Execute no Matlab o código abaixo, e analise os 3 filtros implementados através dos seus zeros e polos. Busque tirar conclusões sobre a influência da posição dos polos e zeros (ver o gráfico do plano z) e correlacione com a resposta de frequência em magnitude (gráfico do freqz).

Variação do Experimento 2.3
%% Experimento 2.3 - Filtros Digitais
% Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Exp2_3.m
 
%% 1º filtro
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 ]'; P = [p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 2º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p1 p1' p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 3º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.99*exp(1j*pi/4);
p2 = 0.9*exp(1j*pi/4 - 1j*pi/30);
p3 = 0.9*exp(1j*pi/4 + 1j*pi/30);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p2 p2' p3 p3']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);

Unidade 2 - Filtros IIR

Unidade 2 - Filtros IIR
Aula 8 (3 dez)
Conceitos Gerais sobre Filtros Analógicos
  • Função de transferência
  • Resposta em frequência: para obter a resposta em frequência é necessário avaliar
  • O projeto de filtros analógicos é realizado em 2 etapas:
  1. projeto de um filtro passa baixas (LP) protótipo normalizado com frequência de passagem
  2. transformação em frequência para o tipo de filtro (LP, HP, BP ou BS)

Na sequência será mostrado como inicialmente projetar o filtro LP protótipo, e depois as transformações em frequência.

  • No entanto, antes de projetar filtros, vejamos a análise básica de filtros analógicos utilizando o Matlab.
Dado um sistema linear invariante no tempo, representado pela função de transferência , obter a resposta de frequência do sistema (Magnitude e Fase).
%%Definição do filtro

% Definindo os coeficientes do filtro
b = [1 1];       % Numerador 
a = [1 1 5];     % Denominador

% Calculando os zeros (raízes do numerador) e pólos (raízes do denominador)
% Método 1 - usando a função tf2zp
[z1,p1,k]=tf2zp(b,a) 
% Método 2 - obtendo as raízes
z2 = roots(b);
p2 = roots(a);
zplane(b,a);

%% Obtendo a resposta em frequência 
% substitituindo a variável complexa s por jw usando a função freqz
freqs(b,a);

% Usando cálculo simbólico e plotando o gráfico com semilogx
syms s  w
H(s) = (s+1)/(s^2 + s + 5);
pretty(H(1j*w))
latex(H(1j*w))
%%
ws = logspace(-2, 1, 1000);
h = H(1j*ws);
subplot(211)
plot(ws,abs(h)); grid on;
%semilogx(ws,abs(h)); grid on;
subplot(212)
plot(ws,angle(h)/pi*180); grid on;
%semilogx(ws,angle(h)/pi*180); grid on;
  • Para aproximação de magnitude de filtros analógicos o projeto pode usar as aproximações de Butterworth, Chebyshev (tipo 1 ou 2) ou Cauer, mostradas na figura abaixo.

TiposFiltrosHs.png

Aula 9 e 10 (8 e 10 dez)
Projeto de filtros analógicos do tipo Butterworth

Os projetos de filtro Butterworth com função de transferência utilizam os polinômios de Butterworth mostrados na tabela a seguir:

n Fatores Polinomiais de
1
2
3
4
5
6
7
8
9
10
Proposta de exercício
  • Use os polinômios de Butterworth com ordens de 1 a 10 mostrados na tabela abaixo para obter os filtros .
  • Escolha uma ordem n (entre 5 e 10)
  • Plote a resposta em frequência em escala log da amplitude (em dB) e da fase (em rad/pi).
  • Qual é o ganho do filtro na banda passante?
  • Qual é a frequência de corte (-3dB) do filtro.
  • Qual é o salto de de fase que ocorre em algumas frequências?
  • Qual é o fator de atenuação em dB/decada após a frequência de corte?
  • Faça o diagrama de polos e zeros desse filtro.
  • Procure observar o que ocorre com a posição dos polos do filtro.
  • Calcule o valor do módulo dos pólos.
Projeto de filtros analógicos LP protótipo
  • Projeto de filtros analógicos passa baixas (low pass - LP) do tipo Butterworth, considerando: é a frequência de passagem, é a atenuação em dB na frequência de passagem, é a frequência de stopband, é a atenuação em dB na frequência de stopband.

MascaraFiltroLP.png

  • Escalando as frequências em relação a , teremos que , e são as frequências de passagem e stopband do filtro protótipo , que tem ganho unitário e frequência de passagem 1.
Casos em que o ganho na banda de passagem é
  • Considerando o caso de filtro Butterworth com frequência de passagem e frequência de stopband (rejeição) de , com ganho unitário em
  • Se considerarmos o caso particular em que na frequência de passagem o ganho (em escala linear) deve ser , que corresponde a um ganho (em escala log) , ou atenuação .
  • Obtemos o fator , ou , para temos que . Esse fator no caso dos filtros com essa atenuação acaba desaparecendo das equação de projeto. Para atenuações diferentes de 3 dB, ele ajusta a magnitude dos pólos, e afeta a ordem do filtro.
  • Os passos para projetar um filtro analógico Hs(s) são:
0) fazer a normalização da frequência e do ganho.
, e para o caso de filtros LP.
, .
1) determinar a ordem do filtro utilizando a equação:
2) e em seguida obter os polos do filtro:
3) Com os pólos botem-se o denominador da função de transferência do filtro.
4) E assim obtém-se a função de transferência do filtro protótipo
5) Para obter a função de transferência do filtro analógico LP é necessário fazer uma transformação de frequência
6) Se o ganho na frequência não for unitário G0, é ainda necessário ajustar o ganho do filtro do fator de ganho. Considerando que o valor do Ganho G0 seja dado em dB, teremos que , ou seja
Exemplo Filtro LP Butterworth

Projete um filtro Butterworth LP com ganho em , frequência de passagem com ganho no mínimo de , frequência de rejeição de , na qual o ganho deve ser inferior a dB.

  • Dados de , passa-baixas (lowpass-LP)
  • Especificações de , passa-baixas (lowpass-LP) protótipo
  • Determinação de
  • Determinação de substituindo e corrigindo o ganho em
  • Obtida a função de transferência obtenha a resposta em frequência, substituindo
  • Obtenha a resposta em frequência, para
  • Plote o gráfico de e , indicando a máscara de especificação do filtro.
Aula 11 (15 dez)
Casos em que o ganho na banda de passagem é um valor qualquer
  • Teremos , ou
  • Para projetar o filtro é necessário:
1) determinar a ordem do filtro:
2) obter os polos do filtro:
3) obter a função de transferência:
, onde e .
NOTA: o valor também pode ser obtido a partir de , pois corresponde ao último termo do polinômio .
4) No caso de um filtro LP é necessário ainda obter a função de transferência do filtro especificado fazendo a transformação de frequência
Exemplo Filtro LP Butterworth

Projete um filtro Butterworth LP com ganho em , frequência de passagem com atenuação máxima de , frequência de rejeição de com atenuação mínima de .

  • Dados de , passa-baixas (lowpass-LP)
  • Especificações de , passa-baixas (lowpass-LP) protótipo
  • Determinação de
  • Determinação de substituindo e corrigindo o ganho em
  • Obtida a função de transferência obtenha a resposta em frequência, substituindo
  • Obtenha a resposta em frequência, para
  • Plote o gráfico de e , indicando a máscara de especificação do filtro.
Aula 12 (17 dez)
Polinômios Chebyshev de primeira ordem

Para o projeto dos filtros do tipo Chebyshev, são utilizados os polinômios de Chebyshev de primeira ordem, os quais são definidos pela equação trigonométrica:

Os dois primeiros polinômios são facilmente calculados como:

O cálculo dos demais termos pode ser feita pela relação recursiva:

Portanto o polinômio de grau 2 pode ser obtido por

Assim os primeiros nove polinômios de Chebyshev de primeira ordem podem ser obtidos:

Esses polinômios mostram um comportamento oscilatório entre .


Figura 2.1 - Os primeiros cinco polinômios de Chebyshev de primeira ordem no domínio
ChebyshevGraph.png
FONTE: Polinômios de Tchebychev, Wikipedia.
  • Esses polinômios de Chebyshev permitem aproximar a resposta de magnitude ideal de um filtro a medida que a ordem é aumentada. Na banda de passagem o polinômio mantem uma oscilação entre os valores de mínimos e máximos. Depois da frequência de passagem, a resposta de magnitude decai monotonicamente a medida que a frequência aumenta. Por isso os filtros baseados nos polinômios de Chebyshev são também conhecidos como aproximação minimax ou equiriple. Para obter a magnitude quadrada de um protótipo, a função da magnitude possui o polinômio de Chebyshev elevado ao quadrado no denominador:
  • O gráfico a seguir mostra a magnitude em função de e

Figura 2.2 - Resposta de magnitude de filtro protótipo Chebyshev
LPCheby proto.png
FONTE: Próprio autor.


Projeto de filtro protótipo LP do tipo Chebyshev I
  • Determine a ordem mínima necessária considerando: é a frequência de passagem do filtro LP, é a atenuação em dB na frequência de passagem, é a frequência de stopband do filtro, é a atenuação em dB na frequência de stopband, , são as frequências de passagem e stopband do filtro protótipo.
onde ou .
  • Obtenha os polos do filtro:
,
onde e



  • Para obter a função de transferência:
, onde
onde
é o último termo do denominador


, onde


Aula 13 (22 dez)
Projeto de Filtros Analógicos do tipo LP, HP, BP, BS

Para o projeto de filtros analógicos é necessário fazer as transformações de frequência indicadas abaixo, as quais devem ser consideradas no momento da determinação dos parâmetros do filtro protótipo LP.

  • Transformações de frequência de filtros analógicos
  • passa-baixas () -> passa-baixas ()
  • Cálculo do protótipo com
  • Substituição de variáveis
  • passa-baixas () -> passa-altas ()
  • Cálculo do protótipo com
  • Substituição de variáveis
  • passa-baixas () -> passa-faixa ( e )
  • Cálculo do protótipo com
  • Substituição de variáveis
onde e
  • passa-baixas () -> rejeita-faixa ( e )
  • Cálculo do protótipo com
  • Substituição de variáveis
onde e
Exemplo Filtro HP Chebyshev I

Projete um filtro Chebyshev I HP com ganho em , frequência de rejeição com atenuação mínima em relação ao topo de , frequência de passagem de com atenuação máxima em relação ao topo de .

  • Dados de , passa-altas (highpass-HP)
  • Especificações de , passa-baixas (lowpass-LP) protótipo
  • Determinação de
  • Determinação de HP substituindo e corrigindo o ganho em
  • Obtida a função de transferência obtenha a resposta em frequência, substituindo
  • Obtenha a resposta em frequência, para
  • Plote o gráfico de e , indicando a máscara de especificação do filtro.
Recesso de Natal, Ano Novo e férias
  • Retorno as aulas em 02/02/2021

PRÓXIMA

Aula 14 (2 fev)
  • [n,Wn] = buttord(Wp,Ws,Rp,Rs,'s') Encontra a menor ordem n é a frequência de corte Wn para um filtro Butterworth analógico, com ripple na banda passante (bandpass) menor que Rp dB e atenuação na banda de rejeição (stopband) pelo menos de Rs dB. As frequências angulares Wp e Ws são dadas em rad/s. Se Wp e Ws são escalares, o filtro será um LP ou HP. Se Wp e Ws forem vetores, o filtro será um BP ou BS.
  • [b,a] = butter(n,Wn,ftype,'s') Projeta o filtro Butterworth analógico LP, HP, BP ou BS com frequência angular de corte Wn, dependendo do valor de ftype e do número de elementos de Wn.
%% Projeto de filtro passa-alta (HP) usando funções do Matlab 
Wp = 150;        % rad/s
Ws = 40;         % rad/s
Rp = 3;          % dB
Rs = 60;         % dB
[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s')
[b,a] = butter(n,Wn,'high','s');
[h,w] = freqs(b,a,logspace(1,3,1000));
semilogx(w,20*log10(abs(h)));grid on;
hold on; plot([Wp Wn Ws],[-Rp -3 -Rs],'x'); hold off;
title(sprintf('Filtro HP Butterworth, n = %d',n))

%% Projeto de filtro passa-faixa (BP) usando funções do Matlab 
Wp = [100 200];  % rad/s
Ws = [50 250];   % rad/s
Rp = 3;          % dB
Rs = 40;         % dB
[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s');
[b,a] = butter(n,Wn,'s');
freqs(b,a,logspace(1,3,1000))
title(sprintf('Filtro BP Butterworth, n = %d',n))
  • [n,Wp] = cheb1ord(Wp,Ws,Rp,Rs,'s') designs a lowpass, highpass, bandpass, or bandstop analog Chebyshev Type I filter with cutoff angular frequencies Wp.
  • [b,a] = cheby1(n,Rp,Wp,ftype,'s') designs a lowpass, highpass, bandpass, or bandstop analog Chebyshev Type I filter with passband edge angular frequency Wp and Rp decibels of passband ripple.
  • [n,Ws] = cheb2ord(Wp,Ws,Rp,Rs,'s') designs a lowpass, highpass, bandpass, or bandstop analog Chebyshev Type II filter with cutoff angular frequencies Ws.
  • [b,a] = cheby2(n,Rs,Ws,ftype,'s') designs a lowpass, highpass, bandpass, or bandstop analog Chebyshev Type II filter with stopband edge angular frequency Ws and Rs decibels of stopband attenuation.
  • [n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff frequencies Wn for an analog elliptic filter. Specify the frequencies Wp and Ws in radians per second. The passband or the stopband can be infinite.
  • [b,a] = ellip(n,Rp,Rs,Wp,ftype, 's') designs a lowpass, highpass, bandpass, or bandstop analog elliptic filter with passband edge angular frequency Wp, Rp decibels of passband ripple, and Rs decibels of stopband attenuation.
  • Note: The resulting bandpass and bandstop designs are of order 2n.
  • Note: See Limitations [1] for information about numerical issues that affect forming the transfer function.
  • Projeto de filtros analógicos do tipo Butterworth, Chebyshev I e II e Cauer (eliptico) usando funções do Matlab.
%% Projeto de filtro passa-baixas usando funções do Matlab  
%% Especificações do filtro 
Wp =16000; Ws = 20000; Ap = 0.3; As = 20; G0= 3;
% Para analisar o filtro projetado, use fvtool(b,a) para observar plano s, resposta em magnitude, fase e atraso de grupo

%% Butterworth
[n,Wn] = buttord(Wp, Ws, Ap, As,'s')
[b,a] = butter(n,Wn, 's');

%% Chebyshev I
n = cheb1ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby1(n,Ap, Wp, 's');

%% Chebyshev II
n = cheb2ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby2(n,As, Ws, 's');

%% Elliptic - Cauer
[n, Wn] = ellipord(Wp, Ws, Ap, As,'s')
[b,a] = ellip(n,Ap,As, Wn, 's');
  • Ver pag. 204 a 208 de [2]
  • Exemplos de Filtros Analógicos:
  • Exemplo 1: Filtro passa-baixas ( = 941Hz, = 1209 Hz, = 1 dB, = 20 dB)
  • Exemplo 2: Filtro passa-altas ( = 1209 Hz, = 941Hz, = 1 dB, = 20 dB)
  • Exemplo 3: Filtro passa-faixa ( = 770 Hz, = 811 Hz, = 895,5 Hz, = 1209 Hz, = 1 dB, = 30 dB, = 5 dB).
  • Exemplo 4: Filtro rejeita-faixa ( = 53 Hz, = 58 Hz, = 62 Hz = 67 Hz, = 2 dB, = 25 dB)
NOTA:
  • No calculo do filtro lembre-se de usar as frequências angulares para , , , .
  • onde () é a frequência de passagem em Hz (rad/s), () é a frequência de rejeição em Hz (rad/s), () é a frequência central em Hz (rad/s), () é a largura de banda em Hz (rad/s).
  • Confira os projetos dos filtros plotando as respostas em frequência dos filtros protótipo H(p) e filtro final H(s) de cada um dos exemplos.

Referências Bibliográficas

  1. 1,0 1,1 DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235
  2. 2,0 2,1 2,2 SHENOI, B. A. Introduction to Digital Signal Processing and Filter Design. 1.ed. New Jersey: John Wiley-Interscience, 2006. 440 p. ISBN 978-0471464822