Uso do calculo simbólico na Matlab

De MediaWiki do Campus São José
Ir para: navegação, pesquisa

Funções importantes para o uso do cálculo simbólico

  • vpa(x) Variable-precision arithmetic: evaluate each element of the symbolic input x to at least d significant digits, where d is the value of the digits function. The default value of digits is 32.
  • digits(d) Change variable precision used: sets the precision used by vpa to d significant decimal digits. The default is 32 digits.
  • ATENÇÃO: o digits por ser uma variável global, uma vez alterada para outro valor, permanecerá com este valor mesmo que outro script seja executado. Isso pode afetar os resultados dos cálculos de outros scripts. Assim sendo recomenda-se que após utilizar um digits diferente do default, se retorno a ele usando digits(32).
  • double(s) Convert symbolic values to MATLAB double precision: converts the symbolic value s to double precision. Converting symbolic values to double precision is useful when a MATLAB® function does not accept symbolic values.
  • x = sym('x') creates symbolic variable x
  • syms x Create symbolic variables and functions: Create symbolic variable x.
  • p = poly2sym(c) Create symbolic polynomial from vector of coefficients: creates the symbolic polynomial expression p from the vector of coefficients c.
  • c = sym2poly(p) Extract vector of all numeric coefficients, including zeros, from symbolic polynomial.
  • S = solve(eqn,var) Equations and systems solver.
  • subs(s,new) Symbolic substitution.
  • g = matlabFunction(f) Convert symbolic expression to function handle or file.
  • simplify(S) Algebraic simplification
  • expand(S) Symbolic expansion of polynomials and elementary functions
  • collect(P) Collects coefficients in P of the powers
  • F = factor(x) Factorization
  • numden(A) Extract numerator and denominator
  • partfrac(expr,var) Partial fraction decomposition
  • latex(S) LaTeX form of symbolic expression
  • text(x,y, latex(S), 'Interpreter', 'latex') Text with Mathematical Expression Using LaTeX: how add text to a graph that includes mathematical expressions using LaTeX

Algumas dicas sobre o cálculo simbólico

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f)
ans =
2*cos(x)*sin(x)

Exemplo aplicado a substituição de variáveis

Definindo uma função de transferência como uma função simbólica

syms s
H(s) = (s^2 + 1)/(3*s^2 + 4*s + 6)
H(s) =
(s^2 + 1)/(3*s^2 + 4*s + 6)

Imprimindo H(s) em formato LaTeX.

latex(H(s))
ans =
\frac{s^2 + 1}{3\, s^2 + 4\, s + 6}

Substituindo a variável s pela f(z) = 2*(z-1)/(z+1);

syms z
Hz(z) = subs(H,2*(z-1)/(z+1))
Hz(z) =
((2*z - 2)^2/(z + 1)^2 + 1)/((3*(2*z - 2)^2)/(z + 1)^2 + (4*(2*z - 2))/(z + 1) + 6)

Obtem-se a expressão:

Agrupando os termos comuns em potências de z

Hz2 = collect(Hz)
Hz2 =
(5*z^2 - 6*z + 5)/(26*z^2 - 12*z + 10)

Obtem-se a expressão:

O numerador e denominador de H(z) podem ser obtidos por:

[N,D] = numden(Hz2)
N =
5*z^2 - 6*z + 5

D =
26*z^2 - 12*z + 10

Por sua vez os pólos de H(z) são obtidos por

pk = roots(sym2poly(D))

e os zeros por:

zk = roots(sym2poly(N))

Exemplo: Geração de uma função de transferência a partir dos pólos e zeros

Considerando que são conhecidos os pólos (pk) e zeros (zk) de uma função de transferência H(s), deseja-se obter a sua expressão simbólica.

Para obter os coeficientes do numerador

zk = [ -1 2 0 +1]  
cN = poly(zk)

Obtendo o polinômio do numerador

syms s;
N(s) = poly2sym(cN,s)
vpa(N(s),4)

Para obter os coeficientes do denumerador

pk = [ -1 -2 -0.3+1j -0.3-1j ]  
cD = poly(pk)

Obtendo o polinômio do numerador

syms s;
D(s) = poly2sym(cD,s)
vpa(D(s),4)

Resultando na função de transferência desejada

digits(4)
H(s) = vpa(N(s))/vpa(D(s));
pretty(H(s))
      4        3        2
     s  - 2.0 s  - 1.0 s  + 2.0 s
-------------------------------------
 4        3         2
s  + 3.6 s  + 4.89 s  + 4.47 s + 2.18


Exemplo: Expansão de uma função de transferência e frações parciais

Considerando o exemplo anterior de H(s).

syms s;
H(s) = (s^4 - 2.0*s^3 - 1.0*s^2 + 2.0*s)/(s^4 + 3.6*s^3 + 4.89*s^2 + 4.47*s + 2.18);
H_fr(s) = partfrac(H(s))
digits(4);
pretty(vpa(H_fr(s)))

Exemplo: Substituindo a variável s por valores

Para fazer a substituição, basta definir os valores que devem ser substituídos. Seguem alguns exemplos:

Substituindo s por 0

H(0)
H_fr(0)

substituindo s pelos valor

w = [0 1 2 4 10 100];
H(w*1j)
ans =
[ 0, 20/1227 - 2860i/1227, - 11800/11009 + 30800i/33027, 196480/760227 + 268880i/253409,
  366755000/425498151 + 227414000i/425498151, 832325926000000/833514949238127 + 
  46654792030000i/833514949238127]

ou obtendo os valores aritméticos com precisão variável

vpa(H(w*1j),8)
ans =
[ 0, 0.0163 - 2.3309i, - 1.0719 + 0.93257i, 0.25845 + 1.0611i, 0.86194 + 0.53447i, 0.99857 + 0.055974i]

ou ainda convertendo os valores simbólicos para valores de dupla precisão do MATLAB

H_w = double(H(w*1j))
format long
H_w =
 Column 1
 0.000000000000000 + 0.000000000000000i
 Column 2
 0.016300000000000 - 2.331000000000000i
 Column 3
-1.072000000000000 + 0.932600000000000i
 Column 4
 0.258400000000000 + 1.061000000000000i
 Column 5
 0.861900000000000 + 0.534500000000000i
 Column 6
 0.998600000000000 + 0.055970000000000i