Mudanças entre as edições de "PSD29007-Engtelecom(2019-2) - Prof. Marcos Moecke"

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar
Linha 760: Linha 760:
 
Figura 1 - Propriedades do filtro FIR de fase linear (Tipo 1)
 
Figura 1 - Propriedades do filtro FIR de fase linear (Tipo 1)
 
</center>
 
</center>
<!--
+
 
;Aula 16 e 17 (19 e 24 abr)
+
====ATUAL====
 +
;Aula 17 (26 set)
 
:*Coeficientes da série de Fourier de filtros ideias: LP, HP, BP, BS
 
:*Coeficientes da série de Fourier de filtros ideias: LP, HP, BP, BS
 
::*Passa-baixas (''Low-pass'')
 
::*Passa-baixas (''Low-pass'')
Linha 862: Linha 863:
 
::*[https://ieeexplore.ieee.org.ez130.periodicos.capes.gov.br/stamp/stamp.jsp?arnumber=1163506 Some windows with very good sidelobe behavior] Nuttall, A. IEEE Transactions on Acoustics, Speech, and Signal Processing, February 1981, Vol.29(1), pp.84-91
 
::*[https://ieeexplore.ieee.org.ez130.periodicos.capes.gov.br/stamp/stamp.jsp?arnumber=1163506 Some windows with very good sidelobe behavior] Nuttall, A. IEEE Transactions on Acoustics, Speech, and Signal Processing, February 1981, Vol.29(1), pp.84-91
  
 
+
<!--
 
;Aula 19 a 21 (23 abr a 03 mai):
 
;Aula 19 a 21 (23 abr a 03 mai):
 
*Filtros Digitais: Filtros FIR
 
*Filtros Digitais: Filtros FIR

Edição das 13h40min de 26 de setembro de 2019

Registro on-line das aulas

Unidade 1

Unidade 1
Aula 1 (29 jul)
Aula 2 e 3 (1 e 5 ago)
Aula 4 (8 ago)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Explorar a interface do Matlab.
  • Funções de visualização das variáveis no workspace.
  • Execução de instruções passo a passo.
  • Escrita de script .m
  • Uso da execução das seções de um script.
  • Incremento de valor e execução.
EXEMPLOS:
  • Leia com atenção e execute o exemplo (Moving-Avarage Filter) na página de help da função filter.
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Leia com atenção o help Using FFT, abra o script clicando no botão [Open this Example]. Execute o script seção após seção. Note o uso da fft para determinar a frequência das manchas solares.
  • Para melhorar o desempenho no Matlab recomendo que leiam a pagina do Help, . Também gostaria de lembra-los que a tecla F9 executa o código destacado no Help. Programação com scripts .m.
  • Leia sobre manchas solares para entender o que são os dados do segundo exemplo.
Sinais no dominio do tempo e dominio da frequencia. Uso da função fft
Exemplo de uso da FFT
%% Signal in Time Domain 
% Use Fourier transforms to find the frequency components of a signal buried in noise.
% Specify the parameters of a signal with a sampling frequency of 1 kHz and a signal duration of 1.5 seconds
Fs = 1000;            % Sampling frequency                    
T = 1/Fs;             % Sampling period       
L = 1500;             % Length of signal
t = (0:L-1)*T;        % Time vector

% Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz sinusoid of amplitude 1.
S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

% Corrupt the signal with zero-mean white noise with a variance of 4.
X = S + 2*randn(size(t));

% Plot the noisy signal in the time domain. It is difficult to identify the frequency components by looking at the signal X(t).
subplot(211);
plot(1000*t(1:200),X(1:200))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')

%% Signal in Frequency Domain
% Compute the Fourier transform of the signal.
Y = fft(X);

% Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based on P2 and the even-valued signal length L.
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

% Define the frequency domain f and plot the single-sided amplitude spectrum P1. 
% The amplitudes are not exactly at 0.7 and 1, as expected, because of the added noise. 
% On average, longer signals produce better frequency approximations.
f = Fs*(0:(L/2))/L;
subplot(212);
plot(f,P1)
ylim([0 1.05]) 
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

% Now, take the Fourier transform of the original, uncorrupted signal and retrieve the exact amplitudes, 0.7 and 1.0.
Y = fft(S);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

plot(f,P1) 
title('Single-Sided Amplitude Spectrum of S(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
  • Amostragem de Sinais (Experimento 1.2)
  • Relembrar teorema da amostragem. Efeito da amostragem abaixo da frequência de Nyquist. Aliasing.
  • Notar que as amostras de um sinal (3 Hz) e um sinal (7 Hz) são idênticas quando amostrado com um sinal de 10 Hz.
Experimento 1.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.2
fs = 10; % frequencia (Hz) de amostragem dos sinais
Ts = 1/fs; fase = 0;
time = 0:Ts:(1-Ts);
f1 = 3; % frequencia (Hz) do sinal s_1
f2 = 7; % frequencia (Hz) do sinal s_2
s_1 = cos(2*pi*f1*time+fase);
s_2 = cos(2*pi*f2*time+fase);
fsa = 1000; % frequência auxiliar de amostragem usada apenas para representação dos sinais originais
Tsa = 1/fsa;
time_aux = 0:Tsa:(1-Tsa);
figure(1);
stem(time,s_1,'ob');
hold on;
plot(time_aux, cos(2*pi*f1*time_aux+fase),'--k');
stem(time,s_2,'+r');
plot(time_aux, cos(2*pi*f2*time_aux+fase),'--m');
hold off;
legend('s_1 discreto','s_1 contínuo','s_2 discreto','s_2 contínuo')
DICAS:
  • No help on-line da Mathworks, usando o botão [Try This Example > Try in your browser], permite executar o código no próprio browser sem ter nenhuma instalação do Matlab. Para verificar que o código realmente é executado mude a amplitude do ruído randômico para 0.1 ou 0.5, insira o comando close all antes da primeira linha, e execute todo o código [Run All]
  • No help do Matlab, usando o botão [Open this Example], é possível executar o código seção a seção.
Aula 5 (12 ago)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 2.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 2.2
% Resposta em frequencia usando a função freqz
N = 1;
num = [1 0 0 0];
den = poly([0.8 0.2])
%den = [1 0.6 -0.16];
% modo 1
%[H,w]=freqz(num,den,[0:pi/100:N*pi-pi/100]);
%plot(w/pi, abs(H));
% modo 2
%[H,w]=freqz(num,den);
%plot(w/pi, abs(H));
% modo 3
%[H,w]=freqz(num, den, 'whole');
%plot(w/pi, abs(H));
% modo 4
freqz(num, den, 'whole');
figure(2);
zplane(num,den);

%% Resposta em frequencia substituindo z -> e^(jw)
syms z
Hf(z) = symfun(z^2/(z-0.2)/(z+0.8),z);
pretty(Hf)
latex(Hf)
N = 1;
w = [0:pi/100:N*pi-pi/100];
plot(w/pi,abs(Hf(exp(1i*w))))
%title(['$' latex(Hf) '$'],'interpreter','latex')
text(0.2,2,['H(z) = ' '$$' latex(Hf) '$$'],'interpreter','latex')
xlabel(['w/' '$$' '\pi' '$$'],'interpreter','latex')
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado

Aula 1 EAD

Aula 6 (15 ago EAD)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Filtros Digitais
ATIVIDADE 1

Execute no Matlab o código abaixo, e analise os 3 filtros implementados através dos seus zeros e polos. Busque tirar conclusões sobre a influência da posição dos polos e zeros (ver o gráfico do plano z) e correlacione com a resposta de frequência em magnitude (gráfico do freqz).

%% Experimento 2.3 - Filtros Digitais
% Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Exp2_3.m
 
%% 1º filtro
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 ]'; P = [p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 2º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p1 p1' p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 3º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.99*exp(1j*pi/4);
p2 = 0.9*exp(1j*pi/4 - 1j*pi/30);
p3 = 0.9*exp(1j*pi/4 + 1j*pi/30);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p2 p2' p3 p3']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);


ATIVIDADE 2
  • A filtragem de sinais digitais pode ser realizada de diferentes formas:
  • convolução (y = conv(x,h)), onde x(n) é o sinal de entrada e h(n) é a resposta ao impulso do filtro (sistema linear invariante no tempo),
  • filtragem no domínio do tempo (y = a1.x(n)+ a2.x(n-1)+ .. ak.x(n-k));
  • no domínio da frequência (y = ifft(fft(x)fft(h))
Variação do Experimento 3.1
%% Variação do Experimento 3.1 do livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Ex3_1.m
% Exemplificando as possiveis formas de realizar a filtragem de um sinal x(n)

clc; clear all; close all;
%% Definindo valores iniciais
Nh = 10; Nx = 20;
%Nh = 400; Nx = 10000;
x = ones(1,Nx);
% A resposta ao impulso de um sistema h(n) 
% no filtro FIR aos coeficientes b(n) = h(n) 
h = [1:Nh]; b = h;
%% Filtrando o sinal e medindo tempos

% OPÇÃO 1 - Filtragem utilizando a convolução
% NOTE: length(y) = length(x) + length(h) -1

tic;  % iniciar a contagem do tempo
y1 = conv(x,h); 
t(1) = toc; % terminar a contagem e mostrar tempo no console

% OPÇÃO 2 - filtragem utilizando a equação recursiva
% NOTE: length(y) = length(x)

tic;
y2 = filter(b,1,x);
t(2) = toc;

% OPÇÃO 3 - filtragem utilizando a equação recursiva 
% aumentando o tamanho de x para que length(y3) = length(y1)
x3 = [x zeros(1,length(h)-1)];

tic;
y3 = filter(h,1,x3); 
t(3) = toc;

length_y = length(x) + length(h) - 1;

% OPÇÃO 4 - filtragem utilizando a FFT 
% a y = IFFT(FFT(x)*FFT(h))

tic;
X = fft(x,length_y);
H = fft(h,length_y);
Y4 = X.*H;
y4 = ifft(Y4);
t(4) = toc;

% OPÇÃO 5 - filtragem utilizando a função fftfilt
% a y = IFFT(FFT(x)*FFT(h))

tic
y5 = fftfilt(h,x3);
t(5) = toc;

disp('Comprimento do vetor de saída length(y)')
disp(['    ' num2str([length(y1) length(y2) length(y3) length(y4) length(y5)])])
disp('Tempo usado na filtragem em micro segundos')
disp(['    ' num2str(t*1e6) ' us'])

%%  Plotando o gráfico
subplot(411);stem(y1);
hold on;
stem(y2,'xr');
stem(y3,'+m');
legend('y1', 'y2', 'y3')
hold off
subplot(412);stem(y1, 'ob');legend('y1')
subplot(413);stem(y2, 'xr'); hold on; stem(zeros(size(y1)),'.w');hold off; legend('y2')
subplot(414);stem(y3, '+m');legend('y3')
  • Verificar as funções tic e toc
  • Notar a diferença de tempo de processamento entre os processos de filtragem.
  • A situação pode ser muito diferente conforme muda o tamanho do sinal e ordem do filtro (h(n)). Modifique a resposta ao impulso e o sinal de entrada modificando os valores das variáveis de tamanho: Nh = 10, 100, 1000; Nx = 20, 1000, 10000;
  • Em função do sistema operacional e reserva de memória para as variáveis é importante desprezar a primeira medida de tempo. Realize 3 medidas de tempo para cada uma das 5 opções de filtragem, com pelo menos duas combinações de comprimento Nh e Nx. Relate os resultados obtidos no comentário da atividade no Moodle.
Aula 7 (19 ago)
  • Exercício - Sinal DTMF com ruído
  • Verifique se o Matlab está reproduzindo corretamente o som.
%% Carregando o som
clear, close, clc
load handel;

%% Reproduzindo o som 
sound(y,Fs)
 
% Reproduzindo o som 
%soundsc(y,Fs)
 
% Reproduzindo o som 
%player = audioplayer(y, Fs);
%play(player);
  • Usando o Matlab (ou Audacity) para gerar um sinal DTMF correspondente a um número N e adicionar um ruido ao sinal. Opcionalmente utilize um sinal DTMF gravado
  • Utilizar uma frequência de amostragem de 8000Hz de fazer a duração do sinal igual a 2 segundos.
Sinal 1234567890*#
  • Para adicionar o ruído utilize a função y = awgn(x,snr), ou y = x + nivel*randn(n).
  • Observe este sinal no domínio do tempo (DT) e domínio da frequência (DF).
%% Carregando o som
clear, close, clc
[y,Fs] = audioread('DTMF_8kHz.ogg');

%% Reproduzindo o som 
sound(y,Fs)

%% Visualizando o som no DT
time = [0:length(y)-1]'/Fs;
plot(time',y'); xlabel('segundos');
xlim([0 time(end)]), ylim([-1 1]);

%% Visualizando o som no DF
Nfreq = length(y);
freq = linspace(0,2*pi,Nfreq)'*Fs/pi/2;
Y = fft(y,Nfreq)/Nfreq;
plot(freq,abs(Y)); xlabel('Hertz');
xlim([0 Fs/2]);
  • Utilizar no Audacity um sinal DTMF ("1234567890") com fa= 8kHz
  • Visualizar no domínio do tempo e frequência.
  • Realizar a filtragem passa-baixas com fc = 1066 Hz, (selecionar a maior atenuação permitida)
  • Realizar a filtragem passa-faixa com f0 = 770 Hz e B = 70Hz (selecionar a maior ordem permitida)
  • Repetir o procedimento anterior para um sinal de ruído branco.
  • Consulte a documentação do Matlab sobre
     fft, ifft, fftshift, randn
    
  • Consulte a documentação do Matlab sobre
     plot, grid, subplot, hold, xlabel, ylabel, title, legend, xlim, ylim, log10, log
    
  • Consulte a documentação do Matlab sobre text, zp2tf, tf2zp, fftfilt, awgn
  • Ver pag. 141 a 145 e 230 a 235 de [1]

Unidade 2

Unidade 2
Aula 8 (22 ago)
  • Filtros Analógicos:
  • Função de transferência
  • Resposta em frequência: para obter a resposta em frequência é necessário avaliar
  • O projeto de filtros analógicos é realizado em 2 etapas:
  1. projeto de um filtro passa baixas (LP) protótipo normalizado com frequência de passagem
  2. transformação em frequência para o tipo de filtro (LP, HP, BP ou BS)
  • Análise básica de filtros analógicos com Matlab.
Dado um sistema linear invariante no tempo, representado pela função de transferência , obter a resposta de frequência do sistema (Magnitude e Fase).
b = [1 1];
a = [1 1 5];
[z1,p1,k]=tf2zp(b,a)
z2 = roots(b);
p2 = roots(a);
zplane(b,a);
%%
freqs(b,a);
%%
syms s  w
H(s) = (s+1)/(s^2 + s + 5);
pretty(H(1j*w))
latex(H(1j*w))
%%
ws = logspace(-2, 1, 1000);
h = H(1j*ws);
subplot(211)
semilogx(ws,abs(h)); grid on;
subplot(212)
semilogx(ws,angle(h)/pi*180); grid on;
  • Projeto de filtros analógicos do tipo Butterworth
  • A aproximação de magnitude de filtros analógicos pode ser realizado usando as aproximações de Butterworth, Chebyshev (tipo 1 ou 2) e Cauer.

TiposFiltrosHs.png

Proposta de exercício
  • Use os polinômios de Butterworth com ordens de 1 a 10 mostrados na tabela abaixo para obter os filtros .
n Fatores Polinomiais de
1
2
3
4
5
6
7
8
9
10
  • Escolha uma ordem n (entre 5 e 10)
  • Plote a resposta em frequência em escala log da amplitude (em dB) e da fase (em rad/pi).
  • Qual é o ganho do filtro na banda passante?
  • Qual é a frequência de corte (-3dB) do filtro.
  • Qual é o salto de de fase que ocorre em algumas frequências?
  • Qual é o fator de atenuação em dB/decada após a frequência de corte?
  • Faça o diagrama de polos e zeros desse filtro.
  • Procure observar o que ocorre com a posição dos polos do filtro.
  • Calcule o valor do módulo dos pólos.


Aula 9, 10 (16, 26 ago)
  • Projeto de filtros analógicos passa baixas (low pass - LP) do tipo Butterworth, considerando: é a frequência de passagem, é a atenuação em dB na frequência de passagem, é a frequência de stopband, é a atenuação em dB na frequência de stopband.

MascaraFiltroLP.png

  • Escalando as frequências em relação a , teremos que , e são as frequências de passagem e stopband do filtro protótipo , que tem ganho unitário e frequência de passagem 1.
  • Se considerarmos o caso particular em que na frequência de passagem o ganho (em escala linear) deve ser , que corresponde a um ganho (em escala log) , ou atenuação .
  • Considere que , teremos
  • Para projetar o filtro é necessário:
1) determinar a ordem do filtro:
2) obter os polos do filtro:
3) obter a função de transferência:
, onde
  • No caso de um filtro LP é necessário ainda obter a função de transferência do filtro especificado fazendo a transformação de frequência


Para qualquer
  • Teremos
  • Para projetar o filtro é necessário:
1) determinar a ordem do filtro:
2) obter os polos do filtro:
3) obter a função de transferência:
, onde e .
NOTA: o valor também pode ser obtido a partir de , pois corresponde ao último termo do polinômio .
  • No caso de um filtro LP é necessário ainda obter a função de transferência do filtro especificado fazendo a transformação de frequência


Aula 11 e 12 (29 ago e 2 set)
  • Projeto de filtros analógicos do tipo Chebyshev I.
  • Polinômios de Chebyshev:

Os polinômios de Chebyshev de primeira ordem são definidos pela relação recursiva:

Os primeiros cinco polinômios de Chebyshev de primeira ordem são:

  • Determine a ordem mínima necessária considerando: é a frequência de passagem do filtro LP, é a atenuação em dB na frequência de passagem, é a frequência de stopband do filtro, é a atenuação em dB na frequência de stopband, , , são as frequências de passagem e stopband do filtro protótipo.
  • Em seguida obter os polos do filtro:
, onde
  • Para obter a função de transferência:
, onde
onde
se n é par
se n é impar
é o último termo do denominador D(p)
  • Projeto de filtros analógicos do tipo Butterworth, Chebyshev I e II e Cauer (eliptico) usando funções do Matlab.
%% Projeto de filtro passa-baixas usando funções do Matlab  
%% Especificações do filtro 
Wp =16000; Ws = 20000; Ap = 0.3; As = 20; G0= 3;
% Para analisar o filtro projetado, use fvtool(b,a) para observar plano s, resposta em magnitude, fase e atraso de grupo

%% Butterworth
[n,Wn] = buttord(Wp, Ws, Ap, As,'s')
[b,a] = butter(n,Wn, 's');

%% Chebyshev I
n = cheb1ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby1(n,Ap, Wp, 's');

%% Chebyshev II
n = cheb2ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby2(n,As, Ws, 's');

%% Elliptic - Cauer
[n, Wn] = ellipord(Wp, Ws, Ap, As,'s')
[b,a] = ellip(n,Ap,As, Wn, 's');
  • Ver pag. 204 a 208 de [2]


Aula 13 e 14 (5 e 9 set)
  • Filtros Analógicos:
  • Transformações de frequência de filtros analógicos
  • passa-baixas () -> passa-baixas ()
  • Cálculo do protótipo com
  • Substituição de variáveis
  • passa-baixas () -> passa-altas ()
  • Cálculo do protótipo com
  • Substituição de variáveis
  • passa-baixas () -> passa-faixa ( e )
  • Cálculo do protótipo com
  • Substituição de variáveis
onde e
  • passa-baixas () -> rejeita-faixa ( e )
  • Cálculo do protótipo com
  • Substituição de variáveis
onde e
  • Ver pag. 208 a 218 de [2]
  • Exemplos de Filtros Analógicos:
  • Exemplo 1: Filtro passa-baixas ( = 941Hz, = 1209 Hz, = 1 dB, = 20 dB)
  • Exemplo 2: Filtro passa-altas ( = 1209 Hz, = 941Hz, = 1 dB, = 20 dB)
  • Exemplo 3: Filtro passa-faixa ( = 811 Hz, = 895,5 Hz = 770 Hz, = 1209 Hz, = 1 dB, = 30 dB)
  • Exemplo 4: Filtro rejeita-faixa ( = 53 Hz, = 58 Hz, = 62 Hz = 67 Hz, = 2 dB, = 25 dB)
NOTA:
  • No calculo do filtro lembre-se de usar as frequências angulares para , , , .
  • onde () é a frequência de passagem em Hz (rad/s), () é a frequência de rejeição em Hz (rad/s), () é a frequência central em Hz (rad/s), () é a largura de banda em Hz (rad/s).
  • Confira os projetos dos filtros plotando as respostas em frequência dos filtros protótipo H(p) e filtro final H(s) de cada um dos exemplos.
Aula 15 (16 set)
  • Filtros Digitais: Filtros IIR: transformações do tempo contínuo no tempo discreto
  • Obter a especificação do filtro em angulo entre 0 e 1, onde 1 corresponde a metade da frequência de amostragem
  • Obter o valor desse angulo predistorcido para compensar a distorção na frequência causada pela transformação bilinear , onde
  • passa-baixas () -> passa-baixas ()
  • Substituição de variáveis
  • Cálculo do protótipo com
  • passa-baixas () -> passa-altas ()
  • Substituição de variáveis
  • Cálculo do protótipo com
  • passa-baixas () -> passa-faixa ( e )
  • Substituição de variáveis
  • Cálculo do protótipo com
onde e
  • passa-baixas () -> rejeita-faixa ( e )
  • Substituição de variáveis
  • Cálculo do protótipo com
onde e
  • Realizar os projetos dos exemplos anteriores, considerando uma frequência de amostragem de 8 kHz.
  • Ver pag. 219 a 229 de [2]
  • Ver pag. 403 a 415 e 434 a 435 de [1]
Aula 16 (19 set)
O projeto dos filtros digitais IIR baseados na transformada bilinear no Matlab é realizada em dois passos: (1) Determinação da ordem do filtro; (2) Determinação dos coeficientes do numerador e denominador de .
fa = 200;
fN = fa/2;
wo = 60/fN;  bw = 10/fN;
[b,a] = iirnotch(wo,bw);
fvtool(b,a);
syms z;
N(z) = poly2sym(b,z);
D(z) = poly2sym(a,z);
H(z) = N(z)/D(z);
pretty(vpa(H(z),3))
fa = 8000;
fN = fa/2;
wo = 941/fN;  bw = 100/fN;
[b,a] = iirpeak(wo,bw);
fvtool(b,a);
syms z;
N(z) = poly2sym(b,z);
D(z) = poly2sym(a,z);
H(z) = N(z)/D(z);
pretty(vpa(H(z),3))
fa = 8000; fN = fa/2;
fo = 1000;  bw = 20/fN;
[b,a] = iircomb(fa/fo,bw,'peak');  % ou use a flag 'notch'
fvtool(b,a);
syms z;
N(z) = poly2sym(b,z);
D(z) = poly2sym(a,z);
H(z) = N(z)/D(z);
pretty(vpa(H(z),3))

Unidade 3

Unidade 3 - Filtros FIR
Aula 16 (23 set)
  • Filtros Digitais: Filtros FIR
  • Filtros de fase linear: simétricos e antisimétricos (Tipo 1, 2, 3 e 4)
  • Filtros de fase linear: propriedades (respostas em frequência possíveis, distribuição dos zeros em simetria quadrantal)
  • Observar as propriedades dos FIR tipo 1, 2, 3 e 4. Observe a resposta de frequência, fase, atraso de grupo, coeficientes e diagrama de polos e zeros dos filtros abaixo.
N = 10;
bi = 2*(rand(1,N)-0.5)
%% Tipo I - LP, HP, BS, BP
b = [bi (2*rand(1,1)-0.5) flip(bi)];
...
%% Tipo II - LP, BP
% tem um zero em -1 
b = [bi  flip(bi)];
...

%% Tipo III - BP
% tem um zero em 1  e -1 
b = [bi  0 -flip(bi)];
...

%% Tipo IV - BP, HP
% tem um zero em 1   
b = [bi  -flip(bi)];
...

FIR tipo1.png
Figura 1 - Propriedades do filtro FIR de fase linear (Tipo 1)

ATUAL

Aula 17 (26 set)
  • Coeficientes da série de Fourier de filtros ideias: LP, HP, BP, BS
  • Passa-baixas (Low-pass)
  • Passa-altas (High-pass)
  • Passa-faixa (Band-pass)
  • Rejeita-banda (Band-stop)
  • Janela retangular, fenômeno de Gibbs
  • Uso de funções de janelamento temporal no projeto de filtros digitais.
  • Tipos de janelas temporais usadas no projeto de filtros digitais.
  • Retangular
  • Bartlett
  • Hanning
  • Hamming
  • Blackman
  • em todas as janelas quando
onde é para par e para impar
ver também apodization function
L = 64; 
wvtool(rectwin(L), triang(L), bartlett(L), hann(L), hamming(L), blackman(L), blackmanharris(L), nuttallwin(L));
Tabela 5.1
Janela
Retangular 13.3 20.33 0.92/M
Triangular 26.6 27.41
Bartlett 26.5 27.48
Hann 31.5 44.03 3.11/M
Bartlett-Hanning 35.9 40.77
Hamming 42.5 54.08 3.32/M
Bohman 46.0 51.84 7.01/M
Parzen 53.1 56.89
Blackman 58.1 75.25 5.56/M
Flat Top 88.0 106.3
Blackman-Harris 92.1 108.8
Nutfall 93.8 109.7
  • Dados acima obtidos para um filtro passa baixas de ordem N = 64 com
  • Projeto de filtro FIR utilizando janelas temporais fixas.
  • Exemplo de projeto
Projetar um filtro passa baixas usando uma janela temporal fixa (verificar a janela que atende a especificação)
wp = 0.2*pi; Ap = 0.2 dB; Gp = 0 dB
ws = 0.3*pi; As = 60 dB;
  • Informar qual o tipo de janela, a ordem obtida, e o valor de wc do projeto final
  • Exemplo de projeto
Projetar um filtro LP usando uma janela temporal fixa (hamming, bartlett-hanning, hanning).
wp = 0.4*pi; Ap = 1 dB; Gp = 0 dB
ws = 0.6*pi; As = 40 dB;
  • Comparar os 3 tipos de janela, a ordem obtida, e o valor de wc em cada projeto.
Use como uma estimativa inicial os valores da Tabela 5.1 pag. 268.
  • PASSO 1 - Escolher o tipo de janela de acordo com a atenuação do lóbulo lateral Asl e As.
  • PASSO 2 - Estimar a ordem N1 do filtro considerando os parâmetros Dw
  • PASSO 3 - Calcule os coeficientes clp do filtro LP , calcule os valores da janela w e obtenha a resposta ao impulso do filtro h = clp * w.
  • PASSO 4 - Ajuste o ganho do filtro para que a resposta na banda de passagem fique abaixo da especificação maxima.
  • PASSO 5 - Verifique o valor real de Dwr = wAs-wAp, e faça a correção da ordem do filtro em função do desvio constatado. N2 = N*Dwr/Dw.
  • PASSO 6 - Corrija o valor de projeto dos coeficientes Clp do filtro ideal, a janela e a resposta ao impulso.
  • Repita o PASSO 3 até 6, até obter um filtro que atenda as especificações de Dw.
  • PASSO 7 - Desloque a frequência de corte wc de modo a obter o valor correto de wp. wc2 = wp + (wp-wAp).
  • Projeto de filtro FIR.
  • Projete os dois filtros projetados anteriormente como IIR, utilizando 3 janelas diferentes. Compare os filtros obtidos com os filtros IIR.
N = <ordem>
h_fir = fir1(N,Wn,hamming(N+1));
[Hw,w] =freqz(h_fir);
plot(w/pi,20*log10(abs(Hw)))
title(['hamming N = ' num2str(N)])
%fvtool(h_fir,1)
  • Ver pag. 256 a 265 de [2]
  • Ver artigos:

Avaliações

  • Entrega dos diversas Atividades Extraclasse ao longo do semestre.
  • Provas escritas A1 e A2
  • Entrega do Projeto Final. O projeto é avaliado nos quesitos:
1) Implementação do Sistema,
2) Documentação,
3) Avaliação Global do aluno no projeto.
  • Entrega dos Atividades Extraclasse ao longo do semestre AE1 a AE(N). A entrega, detalhes e prazos de cada AE serão indicados na plataforma Moodle


Referências Bibliográficas

  1. 1,0 1,1 1,2 1,3 DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235
  2. 2,0 2,1 2,2 2,3 2,4 2,5 SHENOI, B. A. Introduction to Digital Signal Processing and Filter Design. 1.ed. New Jersey: John Wiley-Interscience, 2006. 440 p. ISBN 978-0471464822


Curso de Engenharia de Telecomunicações