PSD-EngTel (página)

De MediaWiki do Campus São José
Revisão de 00h36min de 28 de abril de 2016 por Moecke (discussão | contribs) (→‎Unidade 2)
Ir para navegação Ir para pesquisar

MURAL DE AVISOS E OPORTUNIDADES DA ÁREA DE TELECOMUNICAÇÕES


Registro on-line das aulas

Unidade 1

Aula 1 (22 Mar)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Resposta de sistemas LTI (Experimento 1.1)
  • Relembrar o conceito de equação de diferenças de um sistema LTI discreto e resposta ao impulso.
  • Resposta ao delta de Kronecker do sistema LTI discreto
onde , e logo
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.1
alpha = 1.15; N = 256;
x = [1 zeros(1,N)];
y = filter(1,[1 -1/alpha],x);
stem(y);
  • Amostragem de Sinais (Experimento 1.2)
  • Relembrar teorema da amostragem. Efeito da amostragem abaixo da frequência de Nyquist. Aliasing.
  • Notar que as amostras de um sinal (3 Hz) e um sinal (7 Hz) são idênticas quando amostrado com um sinal de 10 Hz.
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.2
fs = 10; % frequencia (Hz) de amostragem dos sinais
Ts = 1/fs; fase = 0;
time = 0:Ts:(1-Ts);
f1 = 3; % frequencia (Hz) do sinal s_1
f2 = 7; % frequencia (Hz) do sinal s_2
s_1 = cos(2*pi*f1*time+fase);
s_2 = cos(2*pi*f2*time+fase);
fsa = 1000; % frequência auxiliar de amostragem usada apenas para representação dos sinais originais
Tsa = 1/fsa;
time_aux = 0:Tsa:(1-Tsa);
figure(1);
stem(time,s_1,'ob');
hold on;
plot(time_aux, cos(2*pi*f1*time_aux+fase),'--k');
stem(time,s_2,'+r');
plot(time_aux, cos(2*pi*f2*time_aux+fase),'--m');
hold off;
legend('s_1 discreto','s_1 contínuo','s_2 discreto','s_2 contínuo')
Aula 2 (24 Mar)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 2.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 2.2
% Resposta em frequencia usando a função freqz
N = 1;
num = [1 0 0 0];
den = poly([0.8 0.2])
%den = [1 0.6 -0.16];
% modo 1
%[H,w]=freqz(num,den,[0:pi/100:N*pi-pi/100]);
%plot(w/pi, abs(H));
% modo 2
%[H,w]=freqz(num,den);
%plot(w/pi, abs(H));
% modo 3
%[H,w]=freqz(num, den, 'whole');
%plot(w/pi, abs(H));
% modo 4
freqz(num, den, 'whole');
figure(2);
zplane(num,den);

%% Resposta em frequencia substituindo z -> e^(jw)
syms z
Hf(z) = symfun(z^2/(z-0.2)/(z+0.8),z);
pretty(Hf)
latex(Hf)
N = 1;
w = [0:pi/100:N*pi-pi/100];
plot(w/pi,abs(Hf(exp(1i*w))))
%title(['$' latex(Hf) '$'],'interpreter','latex')
text(0.2,2,['H(z) = ' '$$' latex(Hf) '$$'],'interpreter','latex')
xlabel(['w/' '$$' '\pi' '$$'],'interpreter','latex')
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado
Aula 3 (29 Mar)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Aula 4 (31 Mar)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Análise de Sinais (Experimento 3.2) - Análise de um sistema h[n] correspondente a um filtro passa-faixa, utilizando um sinal de entrada x[n] senoidal (ou um sinal r[n] de ruído branco). Análise da entrada x[n] e saída y[n] usando a fft.
Variação do Experimento 3.2
%% Variação do Experimento 3.2 do livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%
% Análise de sinais no domínio da frequência 
% File Exp3_2.m 

fs = 200;   % frequência de amostragem
f_sinal = 10;  A_sinal = 1;   % freqüência e amplitude do sinal 
T = 1;      % Duração do sinal
k_noise = 0;    % Intensidade do ruído
 
time = 0 : 1/fs : (T-1/fs);
L = length(time);
freq = time * fs/T;
 
sinal = A_sinal*sin(2*pi*f_sinal.*time);
noise = k_noise*randn(1,fs*T);
x = sinal + noise;
X = abs(fft(x))/L;
 
figure(1);
subplot(211);plot(time,x);
subplot(212);plot(freq,X);
  1. Acrescente a Figura 1 um plot com a magnitude em dB do sinal no domínio da frequência - 20*log10(X)
  2. Insira nos gráficos títulos para cada subplot, labels para os eixos X e Y, e posicione o texto "F Hz" para indicar o pico nos gráficos 2 e 3, conforme mostrado na figura abaixo.
DTxDF sinal noise.png

Figura 1 - Análise no domínio da frequência do sinal

  1. Varie o valor de k entre 0 e 2 (com passo de 0.1) e analise o sinal no domínio do tempo e no domínio da frequência.
  2. Utilize k = 0.3 e varia a frequência do sinal entre 0 até 200 Hz (com passo de 10 Hz). Interprete os resultados obtidos.
  • Consulte a documentação do Matlab sobre
     grid, subplot, xlabel, ylabel, xlim, ylim, title, log10, log
    
  • Ver pag. 141 a 145 e 230 a 235 de [1]

Unidade 2

Aula 5 (5 Abr)
  • Filtros Analógicos:
  • Aproximação de magnitude de filtros analógicos: do tipo Butterworth.
  • Ver pag. 186 a 204 de [2]
Aula 6 (7 Abr)
  • Filtros Analógicos:
  • Projeto de filtros analógicos passa-baixas: do tipo Butterworth. (continuação)
  • Ver pag. 194 a 204 de [2]
Aula 7 (12 Abr)
  • Filtros Analógicos:
  • Projeto de filtros analógicos passa-baixas: do tipo Butterworth. (continuação)
  • Projeto de filtros analógicos passa-baixas: do tipo Chebyshev I.
  • Ver pag. 204 a 208 de [2]
Aula 8 (14 Abr)
  • Filtros Analógicos:
  • Exemplos de projeto de filtro passa-baixas com frequência de passagem de 16 krad/s com atenuação máxima de 0.3 dB, frequência de rejeição de 20 krad/s com atenuação mínima de 20 dB; e ganho em DC de 3 dB.
%% Projeto de filtro passa-baixas usando funções do Matlab  
%% Especificações do filtro 
Wp =16000; Ws = 20000; Ap = 0.3; As = 20; G0= 3;
% Para analisar o filtro projetado, use fvtool(b,a) para observar plano s, resposta em magnitude, fase e atraso de grupo
 
%% Butterworth
[n,Wn] = buttord(Wp, Ws, Ap, As,'s')
[b,a] = butter(n,Wn, 's');

%% Chebyshev I
n = cheb1ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby1(n,Ap, Wp, 's');

%% Chebyshev II
n = cheb2ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby2(n,As, Ws, 's');

%% Elliptic - Cauer
[n, Wn] = ellipord(Wp, Ws, Ap, As,'s')
[b,a] = ellip(n,Ap,As, Wn, 's');
Aula 9 (19 Abr)
  • Filtros Digitais: Filtros IIR:
  • Transformação de frequência de filtros analógicos
(passa-baixas -> passa-baixas, passa-baixas -> passa-altas, passa-baixas -> passa-faixa, passa-baixas -> rejeita-faixa)
  • Funções para projeto do filtro protótipo analógico passa-baixas: besselap, buttap, cheb1ap, cheb2ap, ellipap
  • Funções de transformação de frequencia: lp2bp, lp2bs, lp2hp, lp2lp
  • Ver pag. 208 a 218 de [2]
Aula 10 (26 Abr)
  • Filtros Digitais: Filtros IIR: transformações do tempo contínuo no tempo discreto
  • Transformação invariante ao impulso (pode ser usada apenas para filtros com forte atenuação em frequência altas, ex: passa-baixas e passa-faixa)
  • Transformação bilinear (pode ser usada para todos tipos de filtro)
  • Ver pag. 219 a 229 de [2]
  • Ver pag. 403 a 415 e 434 a 435 de [1]
Aula 11 (28 Abr)
  • Filtros Digitais: Filtros IIR: Uso do Matlab.
O projeto dos filtros digitais IIR baseados na transformada bilinear no Matlab é realizada em dois passos: (1) Determinação da ordem do filtro; (2) Determinação dos coeficientes do numerador e denominador de .

Unidade 3

Aula 12 (3 Mai)

Avaliações

  • Entrega dos diversos trabalhos ao longo do semestre.
  • Projeto Final. O projeto é avaliado nos quesitos: 1) Implementação do Sistema, 2) Documentação, 3) Avaliação Global do aluno no projeto.

Atividades extra

Neste tópico serão listadas as atividades extras que os alunos da disciplina deverão realizar ao longo do curso. É importante observar o prazo de entrega, pois os conceitos serão reduzidos conforme o atraso na entrega. Para a entrega no prazo os conceitos possíveis são (A, B, C, D). Entrega com até uma semana de atraso (B, C, D). Entrega com até duas semanas de atraso (C ou D). Entrega com mais de duas semanas de atraso (D).

PARA ENTREGAR

JÁ ENCERRADAS

ESTUDOS SEM ENTREGA DE DOCUMENTAÇÃO

AL1 - Variação do Experimento 1.2

No Experimento 1.2 varie o valor da frequência de amostragem de 6 até 20 Hz e observe:

  1. Em qual frequência deixa de ocorrer recobrimento do sinal 2.
  2. O que ocorre quando a frequência é 6, 7, 14 Hz? Explique
  3. Qual deveria ser a frequência do sinal f_2 para que as amostras tomadas sejam coincidentes como o sinal f_1 para uma frequência de amostragem f_s? Reescreva a equação e verifique no Matlab.

Recursos necessários

  • O Software Matlab está disponível na maioria dos laboratórios do IFSC-campus São José em instalação local tanto em Windows como Linux. Adicionalmente de qualquer maquina do IFSC, pode-se fazer Acesso ao IFSC-CLOUD.
  • Adicionalmente de qualquer maquina do IFSC, pode-se fazer usar o IFSC-CLOUD para ter acesso a estes softwares.

Links auxiliares

Alguns artigos para leitura

Artigos bases de alguns dos filtros digitais:

Relatórios simples:

Referências Bibliográficas

  1. 1,0 1,1 1,2 1,3 1,4 DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235
  2. 2,0 2,1 2,2 2,3 2,4 SHENOI, B. A. Introduction to Digital Signal Processing and Filter Design. 1.ed. New Jersey: John Wiley-Interscience, 2006. 440 p. ISBN 978-0471464822


Curso de Engenharia de Telecomunicações