Mudanças entre as edições de "PSD29007-Engtelecom(2017-1) - Prof. Marcos Moecke"

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar
Linha 600: Linha 600:
 
:*Ver as funções [http://www.mathworks.com/help/signal/ref/fir1.html fir1], [http://www.mathworks.com/help/signal/ref/kaiserord.html kaiserord] do Matlab.
 
:*Ver as funções [http://www.mathworks.com/help/signal/ref/fir1.html fir1], [http://www.mathworks.com/help/signal/ref/kaiserord.html kaiserord] do Matlab.
 
:*Ver pag. 266 a 273 de <ref name="SHENOI2006"/>
 
:*Ver pag. 266 a 273 de <ref name="SHENOI2006"/>
====ATUAL====
 
 
 
;Aula 19 (12 Mai)
 
;Aula 19 (12 Mai)
 
*Filtros Digitais: Filtros FIR
 
*Filtros Digitais: Filtros FIR
Linha 627: Linha 625:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
<!--
+
====ATUAL====
;Aula 26 ():
+
;Aula 21 (19 Mai):
 
*Atraso de grupo em filtros IIR e FIR no Matlab}}
 
*Atraso de grupo em filtros IIR e FIR no Matlab}}
 
:*O '''atraso de  grupo''' de um filtro é a medida da atraso médio do filtro em função da frequência do sinal de entrada. Ele é obtido pela primeira derivada da resposta de fase do filtro. Se a resposta em frequencia é <math>H(e^{j \omega}) </math> , então o atraso de grupo é:
 
:*O '''atraso de  grupo''' de um filtro é a medida da atraso médio do filtro em função da frequência do sinal de entrada. Ele é obtido pela primeira derivada da resposta de fase do filtro. Se a resposta em frequencia é <math>H(e^{j \omega}) </math> , então o atraso de grupo é:
Linha 699: Linha 697:
  
 
<syntaxhighlight lang=matlab>
 
<syntaxhighlight lang=matlab>
%% Calculo do atraso de grupo  
+
%% Calculo do atraso de grupo usando a função grpdelay
% Método 1 - uso da função grpdelay
 
 
[z,p,k] = butter(30,0.2);
 
[z,p,k] = butter(30,0.2);
 
sos = zp2sos(z,p,k);
 
sos = zp2sos(z,p,k);
Linha 706: Linha 703:
 
figure(1)
 
figure(1)
 
plot(w/pi,gd),grid on;
 
plot(w/pi,gd),grid on;
% Método 2 - derivada obtida por aproximação discreta
 
% calculo a cada par de pontos (w2-w1)/delta_w
 
[h,w] = freqz(sos);
 
a = unwrap(angle(h));
 
hold on; plot(w/pi,a,'g');
 
delta_w = pi/length(a);
 
plot(w(1:end-1)/pi+delta_w/2,-(a(2:end)-a(1:end-1))/delta_w,'r');
 
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
* Ler [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=492552 Gustafsson, F. "Determining the initial states in forward-backward filtering." IEEE® Transactions on Signal Processing. Vol. 44, April 1996, pp. 988–992], artigo que propos um técnica de minimizaçao dos transientes de inicio e fim do sistema linear.
 
* Ler [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=492552 Gustafsson, F. "Determining the initial states in forward-backward filtering." IEEE® Transactions on Signal Processing. Vol. 44, April 1996, pp. 988–992], artigo que propos um técnica de minimizaçao dos transientes de inicio e fim do sistema linear.
 
-->
 
  
 
==Avaliações==
 
==Avaliações==

Edição das 09h40min de 19 de maio de 2017

Registro on-line das aulas

Unidade 1

Aula 1 (10 Fev)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Resposta de sistemas LTI (Experimento 1.1)
  • Relembrar o conceito de equação de diferenças de um sistema LTI discreto e resposta ao impulso.
  • Resposta ao delta de Kronecker do sistema LTI discreto
onde , e logo
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.1
alpha = 1.15; N = 256;
x = [1 zeros(1,N)];
y = filter(1,[1 -1/alpha],x);
stem(y);
  • Amostragem de Sinais (Experimento 1.2)
  • Relembrar teorema da amostragem. Efeito da amostragem abaixo da frequência de Nyquist. Aliasing.
  • Notar que as amostras de um sinal (3 Hz) e um sinal (7 Hz) são idênticas quando amostrado com um sinal de 10 Hz.
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.2
fs = 10; % frequencia (Hz) de amostragem dos sinais
Ts = 1/fs; fase = 0;
time = 0:Ts:(1-Ts);
f1 = 3; % frequencia (Hz) do sinal s_1
f2 = 7; % frequencia (Hz) do sinal s_2
s_1 = cos(2*pi*f1*time+fase);
s_2 = cos(2*pi*f2*time+fase);
fsa = 1000; % frequência auxiliar de amostragem usada apenas para representação dos sinais originais
Tsa = 1/fsa;
time_aux = 0:Tsa:(1-Tsa);
figure(1);
stem(time,s_1,'ob');
hold on;
plot(time_aux, cos(2*pi*f1*time_aux+fase),'--k');
stem(time,s_2,'+r');
plot(time_aux, cos(2*pi*f2*time_aux+fase),'--m');
hold off;
legend('s_1 discreto','s_1 contínuo','s_2 discreto','s_2 contínuo')
Aula 2 (13 Fev)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 2.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 2.2
% Resposta em frequencia usando a função freqz
N = 1;
num = [1 0 0 0];
den = poly([0.8 0.2])
%den = [1 0.6 -0.16];
% modo 1
%[H,w]=freqz(num,den,[0:pi/100:N*pi-pi/100]);
%plot(w/pi, abs(H));
% modo 2
%[H,w]=freqz(num,den);
%plot(w/pi, abs(H));
% modo 3
%[H,w]=freqz(num, den, 'whole');
%plot(w/pi, abs(H));
% modo 4
freqz(num, den, 'whole');
figure(2);
zplane(num,den);

%% Resposta em frequencia substituindo z -> e^(jw)
syms z
Hf(z) = symfun(z^2/(z-0.2)/(z+0.8),z);
pretty(Hf)
latex(Hf)
N = 1;
w = [0:pi/100:N*pi-pi/100];
plot(w/pi,abs(Hf(exp(1i*w))))
%title(['$' latex(Hf) '$'],'interpreter','latex')
text(0.2,2,['H(z) = ' '$$' latex(Hf) '$$'],'interpreter','latex')
xlabel(['w/' '$$' '\pi' '$$'],'interpreter','latex')
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado
Aula 3 (17 Fev)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Filtragem de Sinais
Variação do Experimento 3.1
%% Variação do Experimento 3.1 do livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Ex3_1.m
% Exemplificando as possiveis formas de realizar a filtragem de um sinal x(n)
 

clc; clear all; close all;
%% Definindo valores iniciais
Nh = 10; Nx = 20;
%Nh = 400; Nx = 10000;
x = ones(1,Nx);
% A resposta ao inpulso de um sistema h(n) 
% no filtro FIR aos coeficientes b(n) = h(n) 
h = [1:Nh]; b = h;
%% Filtrando o sinal e medindo tempos

% Filtragem utilizando a convolução
% NOTE: length(y) = length(x) + length(h) -1
tic;  % iniciar a contagem do tempo
y1 = conv(x,h); 
t(1) = toc; % terminar acontagem e mostrar tempo no console

% filtragem utilizando a equação recursiva
% NOTE: length(y) = length(x)
tic;
y2 = filter(b,1,x);
t(2) = toc;

% filtragem utilizando a equação recursiva
% aumentando o tamanho de x para que length(y3) = length(y1)
x3 = [x zeros(1,length(h)-1)];
tic;
y3 = filter(h,1,x3); 
t(3) = toc;

length_y = length(x) + length(h) - 1;

% filtragem utilizando a FFT
% a y = IFFT(FFT(x)*FFT(h))
tic;
X = fft(x,length_y);
H = fft(h,length_y);
Y4 = X.*H;
y4 = ifft(Y4);
t(4) = toc;

% filtragem utilizando a função fftfilt
% a y = IFFT(FFT(x)*FFT(h))

tic
y5 = fftfilt(h,x3);
t(5) = toc;

disp('Comprimento do vetor de saída length(y)')
disp(['    ' num2str([length(y1) length(y2) length(y3) length(y4) length(y5)])])
disp('Tempo usado na filtragem em micro segundos')
disp(['    ' num2str(t*1e6) ' us'])

%%  Plotando o gráfico
subplot(411);stem(y1);
hold on;
stem(y2,'xr');
stem(y3,'+m');
legend('y1', 'y2', 'y3')
hold off
subplot(412);stem(y1, 'ob');legend('y1')
subplot(413);stem(y2, 'xr'); hold on; stem(zeros(size(y1)),'.w');hold off; legend('y2')
subplot(414);stem(y3, '+m');legend('y3')
  • Análise de Sinais (Experimento 3.2) - Análise de um sistema h[n] correspondente a um filtro passa-faixa, utilizando um sinal de entrada x[n] senoidal (ou um sinal r[n] de ruído branco). Análise da entrada x[n] e saída y[n] usando a fft.
Variação do Experimento 3.2
%% Variação do Experimento 3.2 do livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Ex3_2.m
 
% Análise de sinais no domínio da frequência 
fs = 200;   % frequência de amostragem
f_sinal = 10;  A_sinal = 1;   % freqüência e amplitude do sinal 
T = 1;      % Duração do sinal
k_noise = 0.2;    % Intensidade do ruído  
snr = 0;

time = 0 : 1/fs : (T-1/fs);
L = length(time);
freq = time * fs/T;

% Sinal x(n) com amplitude A_sinal e frequencia de f_sinal (Hz) 
x = A_sinal*sin(2*pi*f_sinal.*time);

% Adicionando um ruido com a função randn
noise = k_noise*randn(1,fs*T);
x1 = x + noise;

% Adicionando um ruido com a função awgn
x2 = awgn(x,snr);

% Obtendo o sinal no domínio da frequencia
X = abs(fft(x))/L;
X1 = abs(fft(x1))/L;
X2 = abs(fft(x2))/L;

% Obtendo os plots dos sinais no dominio do tempo e domínio da frequencia
figure(1);
subplot(211);plot(time,x, 'b', time,x1, 'g', time, x2, 'r'); 
legend('x(n)', 'x(n)+rand', 'x(n)awgn', 'Location','south')
xlabel('Tempo (seg)'); ylabel('Magnitude (linear)');
subplot(212);plot(freq, (abs(X)), 'b'); hold on ;plot(freq, (abs(X1)),'g');plot(freq,(abs(X2)),'r'); 
legend('X(f)', 'X(f)+rand', 'X(f)+awgn', 'Location','south'); hold off;
xlabel('Frequencia (Hz)'); ylabel('Magnitude (linear)');
  • Consulte a documentação do Matlab sobre
     fft, ifft, fftshift, randn
    
  • Consulte a documentação do Matlab sobre
     plot, grid, subplot, hold, xlabel, ylabel, title, legend, xlim, ylim, log10, log
    
  • Consulte a documentação do Matlab sobre text, zp2tf, tf2zp, fftfilt, awgn
  • Ver pag. 141 a 145 e 230 a 235 de [1]
Aula 4 - 5 (20 - 24 Fev)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Filtros Digitais
%% Experimento 2.3 - Filtros Digitais
% Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Exp2_3.m
 
%% 1º filtro
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 ]'; P = [p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 2º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p1 p1' p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 3º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.99*exp(1j*pi/4);
p2 = 0.9*exp(1j*pi/4 - 1j*pi/30);
p3 = 0.9*exp(1j*pi/4 + 1j*pi/30);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p2 p2' p3 p3']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
  • Exercício - Sinal DTMF com ruído
  • Verifique se o Matlab está reproduzindo corretamente o som.
%% Carregando o som
clear, close, clc
load handel;

%% Reproduzindo o som 
sound(y,Fs)
 
% Reproduzindo o som 
%soundsc(y,Fs)
 
% Reproduzindo o som 
%player = audioplayer(y, Fs);
%play(player);
  • Usando o Matlab (ou Audacity) para gerar um sinal DTMF correspondente a um número N e adicionar um ruido ao sinal. Opcionalmente utilize um sinal DTMF gravado
  • Utilizar uma frequência de amostragem de 8000Hz de fazer a duração do sinal igual a 2 segundos.
  • Para adicionar o ruído utilize a função y = awgn(x,snr), ou y = x + nivel*randn(n).
  • Observe este sinal no domínio do tempo (DT) e domínio da frequência (DF).
%% Carregando o som
clear, close, clc
[y,Fs] = audioread('DTMF_8kHz.ogg');

%% Reproduzindo o som 
sound(y,Fs)

%% Visualizando o som no DT
time = [0:length(y)-1]'/Fs;
plot(time',y'); xlabel('segundos');
xlim([0 time(end)]), ylim([-1 1]);

%% Visualizando o som no DF
Nfreq = length(y);
freq = linspace(0,2*pi,Nfreq)'*Fs/pi/2;
Y = fft(y,Nfreq)/Nfreq;
plot(freq,abs(Y)); xlabel('Hertz');
xlim([0 Fs/2]);
  • Filtrar o sinal resultante mantendo apenas a frequência da linha (ou coluna)
  • Mostrar os sinais no domínio do tempo e da frequência.
x1,X1 - soma das duas senoides.
x2,X1 - soma de x1 com o ruído branco (gaussiano)
y,Y - sinal filtrado.
  • Para a filtragem:
  • faça a filtragem no domínio do tempo, usando a função filter posicionando o polo sobre a frequência que deseja passar, e coloque um zero sobre a frequência que deseja rejeitar.
  • faça a filtragem no domínio da frequência, convertendo o sinal x1 para DF usando X1 = fft(x1), Y = X1.*H, y = ifft(Y), onde H é um vetor de zeros e uns que indica as frequências que devem passar e quais devem ser rejeitadas.
VER (Experimento 3.1, Experimento 3.2, Experimento 2.3)
Aula (3 Mar)
  • 1ª defesas de TCC do Curso de Engenharia de Telecomunicações.
  • Alunos assistiram a defesa no auditório das 10:00 as 12:35

Unidade 2

Aula 6 (6 Mar)
  • Filtros Analógicos:
  • Função de transferência
  • Resposta em frequência: para obter a resposta em frequência é necessário avaliar
  • O projeto de filtros analógicos é realizado em 2 etapas:
  1. projeto de um filtro passa baixas (LP) protótipo normalizado com frequência de passagem
  2. transformação em frequência para o tipo de filtro (LP, HP, BP ou BS)
Aula 7 e 8 (10 e 13 Mar)
  • Projeto de filtros analógicos do tipo Butterworth
  • A aproximação de magnitude de filtros analógicos pode ser realizado usando as aproximações de Butterworth, Chebyshev (tipo 1 ou 2) e Cauer.
  • Projeto de filtros analógicos do tipo Butterworth, considerando: é a frequência de passagem do filtro LP, é a atenuação em dB na frequência de passagem, é a frequência de stopband do filtro, é a atenuação em dB na frequência de stopband, , , são as frequências de passagem e stopband do filtro protótipo.
  • É necessário determinar a ordem do filtro:
  • Em seguida obter os polos do filtro:
  • Em seguida é necessário obter a função de transferência:
, onde
  • No caso de um filtro LP é necessário ainda obter a função de transferência do filtro especificado
  • Ver pag. 186 a 204 de [2]
Aula 9 (17 Mar)
  • Projeto de filtros analógicos do tipo Chebyshev I.
  • Determine a ordem mínima necessária:
  • Em seguida obter os polos do filtro:
, onde
  • Ver pag. 204 a 208 de [2]
Aula 10 (20 Mar)
  • Filtros Analógicos:
  • Exemplos de projeto de filtro passa-baixas com frequência de passagem de 16000 rad/s com atenuação máxima de 0.3 dB, frequência de rejeição de 20000 rad/s com atenuação mínima de 20 dB; e ganho em DC de 3 dB.
%% Projeto de filtro passa-baixas usando funções do Matlab  
%% Especificações do filtro 
Wp =16000; Ws = 20000; Ap = 0.3; As = 20; G0= 3;
% Para analisar o filtro projetado, use fvtool(b,a) para observar plano s, resposta em magnitude, fase e atraso de grupo
 
%% Butterworth
[n,Wn] = buttord(Wp, Ws, Ap, As,'s')
[b,a] = butter(n,Wn, 's');

%% Chebyshev I
n = cheb1ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby1(n,Ap, Wp, 's');

%% Chebyshev II
n = cheb2ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby2(n,As, Ws, 's');

%% Elliptic - Cauer
[n, Wn] = ellipord(Wp, Ws, Ap, As,'s')
[b,a] = ellip(n,Ap,As, Wn, 's');
  • Transformação de frequência de filtros analógicos
(passa-baixas -> passa-baixas, passa-baixas -> passa-altas, passa-baixas -> passa-faixa, passa-baixas -> rejeita-faixa)
  • Funções para projeto do filtro protótipo analógico passa-baixas: besselap, buttap, cheb1ap, cheb2ap, ellipap
  • Funções de transformação de frequencia: lp2bp, lp2bs, lp2hp, lp2lp
  • Ver pag. 208 a 218 de [2]
Aula 11 (27 Mar)
  • Filtros Digitais: Filtros IIR: transformações do tempo contínuo no tempo discreto
  • Transformação invariante ao impulso (pode ser usada apenas para filtros com forte atenuação em frequência altas, ex: passa-baixas e passa-faixa)
  • Transformação bilinear (pode ser usada para todos tipos de filtro)
  • Ver pag. 219 a 229 de [2]
  • Ver pag. 403 a 415 e 434 a 435 de [1]
Aula 12 a 14 (31 Mar , 2 e 7 Abr)
  • Filtros Digitais: Filtros IIR: Uso do Matlab.
O projeto dos filtros digitais IIR baseados na transformada bilinear no Matlab é realizada em dois passos: (1) Determinação da ordem do filtro; (2) Determinação dos coeficientes do numerador e denominador de .

Unidade 3

Aula 14 (10 Abr)
  • Filtros Digitais: Filtros FIR
  • Filtros de fase linear: simétricos e antisimétricos (Tipo 1, 2, 3 e 4)
  • Filtros de fase linear: propriedades (respostas em frequencia possíveis, distribuição dos zeros em simetria quadrantal)
  • Ver pag. 249 a 256 de [2]
  • Ver FIR Filter Design
Aula 15 (17 Abr)
  • Projeto de FILTRO IIR
  • Atividade a distância, com laboratório liberado para uso dos alunos para a realização da AE2.
Aula 16 (24 Abr)
  • Filtros Digitais: Filtros FIR:
  • Coeficientes da série de Fourier de filtros ideias: LP, HP, BP, BS
  • Passa-baixas (Low-pass)
  • Passa-altas (High-pass)
  • Passa-faixa (Band-pass)
  • Rejeita-banda (Band-stop)
  • Uso de funções de janelamento temporal no projeto de filtros digitais.
  • Tipos de janelas temporais usadas no projeto de filtros digitais.
  • Retangular
  • Bartlett
  • Hanning
  • Hamming
  • Blackman
  • em todas as janelas quando
onde é para par e para impar
L = 64; 
wvtool(rectwin(L), triang(L), bartlett(L), hann(L), hamming(L), blackman(L), blackmanharris(L), nuttallwin(L));

Tabela 5.1

Janela
Retangular 13.3 20.33 0.92/M
Triangular 26.6 27.41
Bartlett 26.5 27.48
Hann 31.5 44.03 3.11/M
Bartlett-Hanning 35.9 40.77
Hamming 42.5 54.08 3.32/M
Bohman 46.0 51.84 7.01/M
Parzen 53.1 56.89
Backman 58.1 75.25 5.56/M
Flat Top 88.0 106.3
Backman-Harris 92.1 108.8
Nutfall 93.8 109.7
  • Dados acima obtidos para um filtro passa baixas de ordem N = 64 com
  • Ver pag. 256 a 265 de [2]
Aula 16 (28 Abr)
  • Adesão a Greve Geral
Aula 17 (5 Mai)
  • Filtros Digitais: Filtros FIR
  • Projeto de filtro FIR utilizando janelas temporais fixas.
  • Exemplo de projeto
Projetar um filtro passa baixas usando uma janela temporal fixa.
wp = 0.2*pi; Ap = 0.2 dB; Gp = 0 dB
ws = 0.3*pi; As = 60 dB;
Use como uma estimativa inicial os valores da Tabela 5.1 pag. 268
  • PASSO 1 - Escolher o tipo de janela de acordo com a atenuação do lóbulo lateral Asl e As.
  • PASSO 2 - Estimar a ordem N1 do filtro considerando os parâmetros Dw
  • PASSO 3 - Calcule os coeficientes clp do filtro LP , calcule os valores da janela w e obtenha a resposta ao impulso do filtro h = clp * w.
  • PASSO 4 - Verifique o valor real de Dwr = wAs-wAp, e faça a correção da ordem do filtro em função do desvio constatado. N2 = N*Dwr/Dw.
  • PASSO 5 - Corrija o valor de projeto dos coeficientes Clp do filtro ideal, a janela e a resposta ao impulso.
  • Repita o PASSO 3 até 5, até obter um filtro que atenda as especificações de Dw.
  • PASSO 6 - Desloque a frequência de corte wc de modo a obter o valor correto de wp. wc2 = wp + (wp-wAp).
  • Projeto de filtro FIR.
  • Projete os dois filtros projetados anteriormente como IIR, utilizando 3 janelas diferentes. Compare os filtros obtidos com os filtros IIR.
Aula 18 (8 Mai)
  • Filtros Digitais: Filtros FIR
  • Projeto de filtro FIR utilizando janelas temporais
L = 64; 
r = 60;    % Chebyshev e Tukey
alpha = 3; % Gauss
betha = 8; % Kaiser
nbar = 10; % Taylor
wvtool(kaiser(L,betha), chebwin(L,r), gausswin(L,alpha),tukeywin(L,r), taylorwin(L,nbar,-r));

Para a janela de Kaiser, a estimação do fator e da ordem do filtro são obtidos por:

onde é a atenuação do lóbulo lateral e é a largura da banda de transição em rad/amostra.

Utilizando o Matlab é possível estimar esses valores utilizando a função kaiserord. Exemplo da obtenção de um filtro passa baixa com , , atenuação de 40 dB na "stopband"

fsamp = 8000;
fcuts = [1000 1500];
mags = [1 0];
devs = [0.01 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);

Com os parâmetros é possível projetar o filtro usando a função fir1, que utiliza o método da janela para o projeto do filtro.

h_fir = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
[Hw,w] =freqz(h_fir);
plot(w*fsamp/2/pi,20*log10(abs(Hw)))
title(['Kaiser filter N = ' num2str(n)])
%fvtool(h_fir,1)
Aula 19 (12 Mai)
  • Filtros Digitais: Filtros FIR
  • Uso das funções window e fir1 do Matlab para projeto de filtro FIR

%% Exemplo de Filtro wp1 = 0.1 \pi; ws1 = 0.2 \pi; ws2 = 0.6 \pi; wp2 = 0.8 \pi; Ap = 1 dB; Ar = 40 dB; </syntaxhighlight>

Aula 20 (15 Mai)
  • Uso do [1] Fdatool para projeto de filtro IIR, FIR equiripple e FIR com janela.
%% Exemplo de Filtro 
fp = 3000 Hz;
fr = 4000 Hz;
fs = 20000 Hz;
Ap = 1 dB;
Ar = 40 dB;

ATUAL

Aula 21 (19 Mai)
  • Atraso de grupo em filtros IIR e FIR no Matlab}}
  • O atraso de grupo de um filtro é a medida da atraso médio do filtro em função da frequência do sinal de entrada. Ele é obtido pela primeira derivada da resposta de fase do filtro. Se a resposta em frequencia é , então o atraso de grupo é:
onde é a fase de .
  • Um filtro sem distorção de fase (Não causal) pode ser obtido ao passar uma sequencia x(n) por um filtro H1, tomando a saída do filtro revertida e passando novamente pelo mesmo filtro H1. A saída do último filtro revertida corresponde ao sinal x(n) filtro com fase zero. O filtro obtido desta forma tem as seguintes características:
  • A Distorção de fase nula
  • A função de transferência do filtro é igual a magnitude ao quadrada da função de transferência original do filtro H1.
  • A ordem do filtro é o dobro da ordem do filtro H1.
%% Carregando um sinal de ECG com ruído com duração de 4 segundos.
load noisyecg.mat
x = noisyECG_withTrend;
fa = 500;  %% 2000 amostras em 4 segundos => 500 amostras por segundo.
t = [0:length(x)-1]*1/fa;
plot(t,x);

%% Projetando um filtro passa-baixa tipo IIR  butter com f_passagem = 0.15 rad/s
d = designfilt('lowpassiir', ...
    'PassbandFrequency',0.15,'StopbandFrequency',0.2, ...
    'PassbandRipple',1,'StopbandAttenuation',60, ...
    'DesignMethod','butter');
freqz(d)

%% Filtro de x revertido x e somando com x filtrado. OFF LINE
y = flip(filter(d,flip(filter(d,x))));
y1 = filter(d,x);

figure(2);
subplot(2,1,1)
plot(t, [y y1])
title('Filtered Waveforms')
legend('Zero-phase Filtering','Conventional Filtering')

subplot(2,1,2)
plot(t, [x y])
title('Original Waveform')
legend('noisy ecg ','fitered ecg')
  • Verifique também o resultado da filtragem usando um filtro IIR (ellip, cheby1 ou cheby2) e filtros FIR (equiripple e de janela)
%% Projetando um filtro passa-baixa tipo FIR  equiripple com f_passagem = 0.15 rad/s
d = designfilt('lowpassfir', ...
    'PassbandFrequency',0.15,'StopbandFrequency',0.2, ...
    'PassbandRipple',1,'StopbandAttenuation',60, ...
    'DesignMethod','equiripple');

y = flip(filter(d,flip(filter(d,x))));
  • Note que nos filtros FIR de fase linear o procedimento mais simples é adiantar o sinal de acordo com o atraso de grupo (metade da ordem do filtro), devendo-se tomar cuidado para arredondar a meia amostra nos filtros de ordem impar.
y1 = filter(d,x);
gd = grpdelay(d);
gd1 = ceil(gd(1));
y = [y1(gd1:end); zeros(gd1-1, 1)];

O cálculo do atraso de grupo pode ser realizado utilizando a função grpdelay ou diretamente pela definição da derivada do ângulo em relação a frequência:

%% Calculo do atraso de grupo usando a função grpdelay
[z,p,k] = butter(30,0.2);
sos = zp2sos(z,p,k);
[gd,w]=grpdelay(sos,128);
figure(1)
plot(w/pi,gd),grid on;

Avaliações

  • Entrega dos diversos trabalhos ao longo do semestre.
  • Projeto Final. O projeto é avaliado nos quesitos: 1) Implementação do Sistema, 2) Documentação, 3) Avaliação Global do aluno no projeto.

Atividades extra

Neste tópico serão listadas as atividades extras que os alunos da disciplina deverão realizar ao longo do curso.

AE1 - Revisão de Sinais e Sistemas (prazo 03/Mar/2017 as 23h59)
  • No Experimento 1.2
  1. Varie o valor da frequência de amostragem de 6 até 20 Hz e observe:
  2. Em qual frequência deixa de ocorrer recobrimento do sinal 2.
  3. O que ocorre quando a frequência é 6, 7, 14 Hz? Explique
  4. Qual deveria ser a frequência do sinal f_2 para que as amostras tomadas sejam coincidentes como o sinal f_1 para uma frequência de amostragem f_s? Reescreva a equação e verifique no Matlab.
  • No Experimento 2.2
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado
  • No Experimento 3.1
  1. Utilizando Nh = 10 e Nx = 20, execute a filtragem pelo menos 3 vezes em seguida e anote os tempos.
  2. Anote o tamanho dos sinais de saída y, e analise os plots.
  3. Aumente o tamanho do filtro (Nh) e o tamanho do sinal de entrada (Nx) e execute a filtragem pelo menos 3 vezes em seguida e anote os tempos.
  4. Anote o tamanho dos sinais de saída y.
  5. Explique os resultados obtidos.
  • No Experimento 3.2
  1. Acrescente um subplot para mostrar o sinal no domínio da frequência com a magnitude em dB 20*log10(abs(X)).
  2. Limite a escala da magnitude entre -100 e 1 dB usando ylim.
  3. Insira em todos os plots e subplot, títulos, legendas e labels para os eixos X e Y,
  4. Posicione o texto "F Hz" para indicar o pico nos gráficos 2 e 3, conforme mostrado na figura abaixo.
DTxDF sinal noise.png

Figura 1 - Análise no domínio da frequência do sinal

  1. Varie o valor de k entre 0 e 2 (com passo de 0.1) e analise o sinal no domínio do tempo e no domínio da frequência.
  2. Varie o valor de snr entre 100 e 1 e analise o sinal no domínio do tempo e no domínio da frequência.
  3. Utilize k = 0.3 e snr = 40 e varia a frequência do sinal entre 0 até 200 Hz (com passo de 10 Hz). Interprete os resultados obtidos.
  • Utilizando o espectro de frequência (Exp3.2) repita as medições feitas com o processo de amostragem (Exp1.2)
  1. Qual conclusão que você chega em relação a amostragem de sinais utilizando para a frequência de amostragem valores acima e abaixo do dobro da frequencia de Nyquist.
  2. Para analisar o espectro talvez seja conveniente mudar a amplitude dos sinais de entrada.
  • Faça um relatório (em pdf) incluindo as principais figuras obtidas e as respostas e conclusões para o email "moecke at ifsc.edu.br" com o Assunto: PSD29007 - AE1 - Revisão de Sinais e Sistemas.

ATUAL

AE2 - Projeto de Filtros Digitais IIR (Prazo de entrega 24/04/2017 as 02:00:00 (madrugada))

Esta avaliação visa verificar se você conhece a metodologia de projeto de filtros digitais IIR: (a) projeto de um filtro protótipo analógico passa-baixas H(p); (b) transformação em frequência do filtro H(p) -> H(s), obtendo o filtro LP, HP, BP, BS, conforme o tipo de filtro desejado; (c) transformação do filtro analógico em filtro digital H(s) -> H(z) utilizando a transformação "Bilinear" ou pela transformação "Invariante ao Impulso". Nesta avaliação é solicitado que cada equipe realize o projeto de dois filtros.

Equipe Filtro 1 Filtro 2
Equipe 1 LP - (f1 = 30 kHz; f2 = 50 kHz, fa = 200 kHz, Gp = 10 dB, Ap = 1 dB, As = 50 dB) BS - (f1 = 30 kHz; f2 = 32 kHz, f3 = 33 kHz; f4 = 35 kHz, fa = 100 kHz)
Equipe 2 HP - (f1 = 30 kHz; f2 = 50 kHz, fa = 300 kHz, Gp = 2 dB, Ap = 0.2 dB, As = 40 dB) BP - (f1 = 30 kHz; f2 = 32 kHz, f3 = 33 kHz; f4 = 35 kHz, fa = 200 kHz)
Equipe 3 HP - (f1 = 10 kHz; f2 = 14 kHz, fa = 50 kHz, Gp = -10 dB, Ap = 1 dB, As = 45 dB) BS - (f1 = 10 kHz; f2 = 20 kHz, f3 = 30 kHz; f4 = 50 kHz, fa = 200 kHz)
Equipe 4 LP - (f1 = 10 kHz; f2 = 14 kHz, fa = 44 kHz, Gp = 5 dB, Ap = 2 dB, As = 60 dB) BP - (f1 = 30 kHz; f2 = 100 kHz, f3 = 200 kHz; f4 = 220 kHz, fa = 500 kHz)
Equipe 5 HP - (f1 = 50 MHz; f2 = 120 MHz, fa = 500 MHz, Gp = 12 dB, Ap = 0.1 dB, As = 80 dB) BS - (f1 = 50 kHz; f2 = 100 kHz, f3 = 180 kHz; f4 = 220 kHz, fa = 500 kHz)
Equipe 6 LP - (f1 = 120 kHz; f2 = 200 kHz, fa = 500 kHz, Gp = -5 dB, Ap = 0.3 dB, As = 50 dB) BS - (f1 = 60 kHz; f2 = 100 kHz, f3 = 150 kHz; f4 = 220 kHz, fa = 1 MHz)
Equipe 7 HP - (f1 = 120 kHz; f2 = 160 kHz, fa = 400 kHz, Gp = 1 dB, Ap = 0.5 dB, As = 60 dB) BP - (f1 = 6 kHz; f2 = 8.2 kHz, f3 = 14 kHz; f4 = 20 kHz, fa = 200 kHz
onde:
LP (Low Pass)- Passa Baixa, HP (High Pass)- Passa Altas, BP (Band Pass)- Passa Faixa, BS (Band Stop)- Rejeita Faixa
- são as "N" frequência de especificação do filtro dadas em Hertz (kHz ou MHz); f_a é a frequência de amostragem dos sinais e do sistema.
- frequência de passagem; - frequência de rejeição, - Atenuação máxima na banda de passagem (dB), - Atenuação mínima na banda de rejeição (dB), - Ganho médio na banda de passagem (dB).
No 1º filtro os valores das frequência de passagem e rejeição são: para LP , , para HP , . Os valores de ganhos e atenuações estão indicados na tabela.
No 2º filtro os valores das frequência de passagem e rejeição são: para BP e , e , para BS e , e . No segundo filtro os valores de ganhos e atenuações são de Gp = 0 dB, Ap = 1 dB, As = 40 dB.
  • Um dos filtros deve ser realizado utilizando a aproximação de Butterworth ou Chebyshev tipo 1 (devendo ser todos os calculados efetuados a partir das equações), enquanto o outro filtro deve ser feito utilizando a aproximação de Chebyshev tipo 2 ou Euler (podendo ser calculada a função H(p) a partir das funções do Matlab.
  • Para ambos filtros deve indicada a ordem do filtro, o valor de polos e zeros, e as equações de H(p), H(s), H(z).
  • Deve ser apresentado de forma gráfica a resposta em frequência dos filtros (ganho em dB e fase) dos filtros (a) protótipo H(p), (b) Filtro analógico H(s) e Filtro digital H(z). Para mostrar que os filtros atendem a especificação.
  • No caso do filtro H(z) também deve ser mostrado o atraso de grupo (ver função grpdelay do Matlab)
  • Apresente o diagrama dos pólos e zeros dos filtros H(p), H(s) e H(z)
  • Utilize a mesma escala em dB para os 3 gráficos de cada filtro. Nas abcissas utilize uma escala em Hz (kHz ou MHz). Utilize uma mascara com cor diferenciada para indicar claramente a especificação do filtro, e crie um segundo gráfico mostrando claramente a banda de passagem conforme ilustrado nas figuras abaixo:

Resposta em frequência - Ganho em dB Detalhe da banda de passagem da resposta em frequência - Ganho em dB

  • Escreva um relatório técnico em PDF mostrando os resultados obtidos e comentando os resultados obtidos. Não é necessário apresentar a teoria utilizado para o projeto, mas todos os cálculos e metodologia utilizada devem estar documentados.
  • O "Publish" pode ser utilizado, mas o arquivo entregue deve ser PDF.
  • Envie o relatório em pdf e os arquivos ".m" utilizados na plataforma Moodle.

Referências Bibliográficas

  1. 1,0 1,1 1,2 1,3 DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 SHENOI, B. A. Introduction to Digital Signal Processing and Filter Design. 1.ed. New Jersey: John Wiley-Interscience, 2006. 440 p. ISBN 978-0471464822


Curso de Engenharia de Telecomunicações