PSD-EngTel (página)

De MediaWiki do Campus São José
Revisão de 12h52min de 13 de fevereiro de 2015 por Moecke (discussão | contribs) (→‎Links auxiliares)
Ir para navegação Ir para pesquisar

MURAL DE AVISOS E OPORTUNIDADES DA ÁREA DE TELECOMUNICAÇÕES


Aulas

Aula 1
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 1.2
%% Experimento 1.2
fs = 10; Ts = 1/fs; fase = 0;
time = 0:Ts:(1-Ts);
f1 = 3; f2 = 7;
s_1 = cos(2*pi*f1*time+fase);
s_2 = cos(2*pi*f2*time+fase);
fsa = 1000; Tsa = 1/fsa;
time_aux = 0:Tsa:(1-Tsa);
figure(1);
stem(time,s_1,'ob');
hold on;
plot(time_aux, cos(2*pi*f1*time_aux+fase),'--k');
stem(time,s_2,'+r');
plot(time_aux, cos(2*pi*f2*time_aux+fase),'--m');
hold off;
legend('s_1 discreto','s_1 contínuo','s_2 discreto','s_2 contínuo')

Varie o valor da frequência de amostragem de 6 até 20 Hz e observe:

  1. Em qual frequência deixa de ocorrer recobrimento do sinal 2.
  2. O que ocorre quando a frequência é 6, 7, 14 Hz? Explique
  3. Qual deveria ser a frequência do sinal f_2 para que as amostras tomadas sejam coincidentes como o sinal f_1 para uma frequência de amostragem f_s? Reescreva a equação e verifique no Matlab.
Aula 2
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 2.2
%% Experimento 2.2
% Resposta em frequencia usando a função freqz
N = 1;
num = [1 0 0 0];
den = poly([0.8 0.2])
%den = [1 0.6 -0.16];
% modo 1
%[H,w]=freqz(num,den,[0:pi/100:N*pi-pi/100]);
%plot(w/pi, abs(H));
% modo 2
%[H,w]=freqz(num,den);
%plot(w/pi, abs(H));
% modo 3
%[H,w]=freqz(num, den, 'whole');
%plot(w/pi, abs(H));
% modo 4
freqz(num, den, 'whole');
figure(2);
zplane(num,den);

%% Resposta em frequencia substituindo z -> e^(jw)
syms z
Hf(z) = symfun(z^2/(z-0.2)/(z+0.8),z);
pretty(Hf)
latex(Hf)
N = 1;
w = [0:pi/100:N*pi-pi/100];
plot(w/pi,abs(Hf(exp(1i*w))))
%title(['$' latex(Hf) '$'],'interpreter','latex')
text(0.2,2,['H(z) = ' '$$' latex(Hf) '$$'],'interpreter','latex')
xlabel(['w/' '$$' '\pi' '$$'],'interpreter','latex')
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado
Aula 3
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Filtros Digitais (Experimento 2.3)
  • Filtragem de Sinais (Experimento 3.1)
  • Análise de Sinais (Experimento 3.2)
  • Uso das funções zp2tf, tf2zp, fft, ifft, fftfilt,
  • Ver pag. 141 a 145 e 230 a 235 de [1]

Atividades extra

Experimento 3.2 (Prazo de entrega 20/02/2015)
  1. Escreva um script com funções do Matlab para gerar as representações no domínio do tempo sinais da Figura 3.26 [1]. Use o subplot para inserir todas os sinais em uma única Figure do Matlab.
  2. Escreva um script com funções do Matlab para gerar as representações no domínio da frequência sinais da Figura 3.27 [1]. Use o subplot para inserir todas os sinais em uma única Figure do Matlab.
  3. Faça uma estimação melhor do espectro do sinal, segmentando o sinal x(n) e calculando a média dos espectros obtidos.
  4. É importante utilizar as escalas e legendas corretamente nos gráficos.
  5. Ver as funções do matlab legend, title, xlabel, ylabel.
  6. Escreva um pequeno relatório técnico mostrando os resultados obtidos e documentando o código escrito. Enviar para o meu email em formato pdf.

Recursos necessários

  • O Software Matlab está disponível na maioria dos laboratórios do IFSC-campus São José em instalação local tanto em Windows como Linux. Adicionalmente de qualquer maquina do IFSC, pode-se fazer Acesso ao IFSC-CLOUD.
  • Adicionalmente de qualquer maquina do IFSC, pode-se fazer usar o IFSC-CLOUD para ter acesso a estes softwares.

Links auxiliares

Referências Bibliográficas

  1. 1,0 1,1 1,2 1,3 1,4 DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.


Curso de Engenharia de Telecomunicações