DLP29006-Engtelecom (Diário) - Prof. Marcos Moecke

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar

Registro on-line das aulas

Unidade 1 - Introdução a disciplina

  • 4 ENCONTROS
Unidade 1 - Introdução a disciplina
Encontro 1 (8 fev.)
  • APRESENTAÇÃO DA DISCIPLINA
  • Os materiais, prazos, documentação, histórico de trabalhos anteriores estão publicados nesta wiki.
  • A PÁGINA DA DISCIPLINA contem os materiais que não alteram entre semestre.
  • Nesta página está o REGISTRO DIÁRIO E AVALIAÇÕES.
  • Para a realização e entrega das atividades será utilizada a plataforma Moodle.
  • Para a comunicação entre professor-aluno, além dos avisos no SIGAA, utilizaremos o chat institucional. É necessário que forneçam o seu email institucional para serem cadastrados.
  • Para participar das aulas é recomendado que o aluno acesse a Nuvem do IFSC ou instale a VM com softwares Quartus II e Modelsim.
  • Introdução aos dispositivos lógicos programáveis:
  • Conceito, tipos de PLDs
  • SPLD: PAL, PLA e GAL
  • CPLDs
Exemplos de PLDs

Figura 1.1 - Macrobloco do PLD EP300 da ALTERA
Ep310 macrocell.jpg
Fonte: https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html.

Figura 1.2 - Macrocélula dos PLDs Clássicos EP600, EP900, EP1800 da ALTERA (1999)
Macrocell EP900.png
Fonte: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ds/archives/classic.pdf.

Figura 1.3a - Architetura do PLD EP1800 da ALTERA
Ep1800 block diagram.jpg
Fonte: https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html.

Figura 1.3b - Architetura do PLD EP1800 da ALTERA
Ep1800 block diagram2.jpg
Fonte: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ds/archives/classic.pdf.

Figura 1.5 - Pinagem e tipos de encapsulamento do PLD EP1800 da ALTERA
PackagePinOut EP1810.png
Fonte: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ds/archives/classic.pdf.

Figura 1.6 - Architetura do CPLD MAX 5000 da ALTERA
Max 5000 architecture.jpg
Fonte: https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html.
Encontro 2 (9 fev.)
  • Preços
  • Fabricantes de DLPs/FPGAs e familias de DLPs atuais.
  • Ver também:
Leituras complementares para a unidade
  • Historia, processo de produção dos chips.
Curiosidades do mundo digital
Encontro 3 e 4 (14 e 16 fev.)
Encontro 5 (23 fev.)
  • Arquitetura de FPGAs (Xilinx e Altera): CLB, LAB, RAM, DSP, Clock, PLL, I/O
Exemplos de FPGA

Figura 1.7 - Arquitetura simplificada de FPGA da Intel/Altera e Xilinx
ArquiteturaFPGAs.png
Fonte: [1] pag. 423.

Figura 1.8 - Diagrama simplificado da Slice L de um FPGA Xilinx
SliceL FPGAs.png
Fonte: [1] pag. 424.

Figura 1.9 - Diagrama simplificado da ALM de um FPGA Intel/Altera
ALM FPGAs.png
Fonte: [1] pag. 425.

Figura 1.10 - Leiaute de um FPGA Intel/Altera
Leiaute FPGAs.png
Fonte: [1] pag. 426.

Figura 1.11 - Leiaute de um FPGA Xilinx genérico
Leiaute2 FPGAs.jpg
Fonte: https://www.sciencedirect.com/science/article/pii/B9780750678667500032.

Figura 1.12 - Roteamento de sinal em um FPGA
Roteamento FPGAs.jpg
Fonte: https://www.sciencedirect.com/science/article/pii/B9780750678667500032.

Figura 1.13 - Tecnologias usadas na configuração de FPGAs
FPGA programming.png
Fonte: https://www.sciencedirect.com/topics/computer-science/one-time-programmable.
  • Ler pag. 413 a 431 de [1] ou pag. 495 a 501 de de [2].
  • O que é um Schmitt trigger?
  • O que é a JTAG?
Notícias recentes do mundo dos DLPs

Intel and Altera announced on June 1, 2015, that they had entered into a definitive agreement under which Intel would acquire Altera for $54 per share in an all-cash transaction valued at approximately $16.7 billion. The transaction closed December 28, 2015.

With the recent closing of its acquisition of electronic design automation (EDA) software leader, Mentor Graphics Corporation, Siemens sets out to underscore the significant customer value it envisions for both Electronic Systems and Integrated Circuit (IC) design tools. Mentor is now part of Siemens' product lifecycle management (PLM) software business, making the combined organization the world's leading supplier of industrial software used for product design, simulation, verification, testing and manufacturing. Siemens completes $4.5 billion purchase of Mentor Graphics [2].

AMD (NASDAQ: AMD) today (SANTA CLARA, Calif. 02/14/2022) announced the completion of its acquisition of Xilinx in an all-stock transaction. The acquisition, originally announced on October 27, 2020, creates the industry’s high-performance and adaptive computing leader with significantly expanded scale and the strongest portfolio of leadership computing, graphics and adaptive SoC products.
AMD said it has completed its $49 billion acquisition of Xilinx to create the “industry’s high-performance and adaptive computing leader,” marking the largest chip deal in history. With the acquisition, AMD is expanding beyond its purview of CPUs and GPUs with a large portfolio of reprogrammable chips called field programmable gate arrays, or FPGAs, that it said will significantly expand the company’s opportunities in data centers, embedded computing and telecommunications. Xilinx also has a footprint in other markets, like defense, broadcast and consumer electronics, which will help expand its total addressable market to $135 billion from $80 billion, according to AMD.

|}

Unidade 3 - Tipos de Dados e Operadores em VHDL

  • 8 Encontros
Unidade 3 - Tipos de Dados e Operadores em VHDL

Unidade 4 - Código Concorrente

  • 3 Encontros
Unidade 4 - Código Concorrente

Unidade 5 - Código Sequencial

  • 5 ENCONTROS
Unidade 5 - Código Sequencial

Unidade 6 - Projeto a nível de Sistema

  • 5 Encontros
Unidade 6 - Projeto a nível de Sistema

Unidade 7 - Maquinas de Estado Finitas

  • 2 AULAS
Unidade 7 - Maquinas de Estado Finitas

Unidade 8 - Testbench

  • 2 ENCONTROS
Unidade 8 - Testbench

Avaliações

Nas avaliações A1 e A2 serão realizadas de forma presencial e vocês poderão consultar apenas as folhas entregues:

Dica use também como fonte de consulta os templates do Quartus.
Ao final das avaliações o aluno deverá enviar a avaliação para a plataforma Moodle com os arquivos solicitados.
Data das avaliações
  • A1 - Unidade 1 a Unidade 4: dia 1/11
  • A2 - Unidade 5 a Unidade 7: dia XX/12
  • PF - Projeto Final: dia 13/12
  • R12 - Recuperação A1 e A2 : dia 15/12


Atividade relâmpago (AR)

As atividades relâmpago devem ser entregues no Moodle da disciplina. Elas geram BÔNUS que são adicionados aos conceitos das avaliações A1 e A2.


Atividade extra-classe (AE)

A soma das atividades Extra-classe será correspondente a 20% do conceito final na disciplina. A entrega das mesmas será feita pelo Moodle, e cada dia de atraso irá descontar 0,2 na nota da atividade. Muitas dessas atividades também possuem BÔNUS que são adicionados aos conceitos das avaliações A1 e A2. Para os BÔNUS só serão considerados projetos entregues no prazo.

AE1 - Palavras-cruzadas INTRODUÇÃO

AE1 - Palavras-cruzadas INTRODUÇÃO

AE2 - Conhecendo os dispositivos lógicos programáveis

AE2 - Conhecendo os dispositivos lógicos programáveis
Objetivos
  • Conhecer o Quartus II e as características dos dispositivos lógicos programáveis
  • Analisar os tempos de propagação em um circuito combinacional
  • Alterar configurações do compilador
  • Fazer a simulação funcional e temporal de um circuito combinacional.
Atividade
  • Ao escolher a família de FPGAS, escolha inicialmente um dispositivo da família Cyclone II, ou Max II. Anote o código desse dispositivo.
  • Capture as telas solicitadas e depois utilize-as no relatório da atividade.
  • Anote o tempo utilizado para cada uma das etapas do processo de compilação.
  • Anote o número de elementos lógicos utilizados e o número de pinos utilizados, bem com o percentual em relação ao número total do dispositivo.
  • Anote algum erro (Error) ou alertas (Warnings) que o Quartus II indicar no painel de mensagens [Messages]
  • Ao final salve o projeto em um arquivo QAR (sugestão PJ1.QAR)
  • PASSO 2: Repita a atividade descrita em Conhecendo os dispositivos lógicos programáveis, trocando a família e dispositivo a ser usado na implementação. Escolha nesta vez um dispositivos da família Cyclone IV E ou Stratix II GX. Anote o código desse dispositivo.
  • Observe as mudanças que ocorrem tanto no tipo de Elemento Lógico disponível, no Chip Planner, no Pin Planner, e no circuito dos pinos de I/O. Note que estes FPGAs também apresenta novos componentes, tais como: Memória, Multiplicadores, DSP, PLL, DLL, etc. Verifique se consegue encontra-los no leiaute mostrado no Chip Planner, e documente aqueles que encontrar.
  • Compare os resultados obtidos nos procedimentos do PASSO 1 e PASSO 2.
  • Ao escolher a família de FPGAS, escolha um dispositivo FPGA da família Cyclone IV E. Anote o código desse dispositivo.
  • Capture as telas mostradas no roteiro e depois utilize-as no relatório da atividade.
  • Anote o máximo tempo de propagação entre entrada e saída.
  • Anote o número de elementos lógicos utilizados e o número de pinos utilizados, bem com o percentual em relação ao número total do dispositivo.
  • Experimente modificar as configurações do compilador, conforme mostrado em Configurando o compilador. Se desejar mude a semente inicial trocando o valor de [Seed: 1]
  • Experimente inserir diferentes restrições de atraso máximo para o compilador, e analise o resultado obtido.
  • Anote algum erro (Error) ou alertas (Warnings) que o Quartus II indicar no painel de mensagens [Messages]
  • Ao final salve o projeto em um arquivo QAR (sugestão PJ2.QAR)
  • PASSO 4: Realize a simulação funcional e também a temporal de um dos projetos CI74161 ou do cálculo da distância de Hamming

ATENÇÃO: Se está com problemas com a simulação funcional, veja esta página Quartus Prime QSIM problems

  • Capture as telas que mostram o circuito funcionando e depois utilize-as no relatório da atividade.
Entregas
  1. Envie um arquivo QAR contendo todos os arquivos necessário para compilar cada um dos projetos.
  2. Envie um relatório em PDF, incluindo as imagens capturadas (inclua um título para cada figura) e escreva para cada imagem um texto comentando o que representa. O relatório também deve ter a identificação (autor, título, data) uma breve introdução e uma conclusão. A descrição dos procedimentos feita na página wiki não precisa incluída no relatório.
  3. Use preferencialmente o Overleaf para gerar o relatório. Mas o uso de MS-Word, Libreoffice e Google Docs também é permitida.
  4. A entrega será feita através do Moodle da disciplina. Observe o prazo de entrega.
  1. 1,0 1,1 1,2 1,3 1,4 PEDRONI, Volnei A. Eletrônica digital moderna e VHDL; 1ª ed. Rio de Janeiro:Elsevier, 2010. 619p. . ISBN 9788535234657
  2. PEDRONI, Volnei A. Circuit Design and Simulation with VHDL; 2ª ed. Massachusetts-EUA:MIT, 2010. 608 p. ISBN 9780262014335