Transformadas de Fourier

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar

1 Transformada de Fourier no tempo contínuo (TFTC)

A equação de análise
É uma transformação de um domínio de uma variável real x(t) de tempo continuo em uma variável complexa X(Ω) de frequência contínua.
 DTDF.
x:.
X(Ω){x(t)} =defx(t) ejΩtdt
A equação de síntese
É uma transformação de um domínio de uma variável complexa X(Ω) de frequência contínua em uma variável real x(t) de tempo continuo.
 DFDT.
X:.
x(t)1{X(Ω)} =def12πX(jΩ) ejΩtdΩ

2 Transformada de Fourier no tempo discreto (DFTD)

  • O sinal x(n) é discreto no tempo, e o sinal X(Ω) é contínuo e periódico em 2π.
A equação de análise
É uma transformação de um domínio de uma variável real x(n) de tempo discreto em uma variável complexa X(ω) frequência contínua periódica.
 DTDF.
x:.
X(ejω){x(n)} =defn=x(n) ejωn
A equação de síntese
É uma transformação de um domínio de uma variável complexa X(ω) de frequência contínua periódica em uma variável real x(n) continua.
 DFDT.
X:.
x(n)1{X(ejω)} =def12πX(ejω) ejωndω

3 Transformada de Discreta de Fourier (DFT)

  • O sinal x(n) é discreto no tempo, e o sinal X(k) é discreto e periódico em 2π.
A equação de análise
É uma transformação de um domínio de uma variável real x(n) de tempo discreto em uma variável complexa X(k) frequência discreta periódica.
 DTDF.
x:.
X(ejω){x(n)} =defn=x(n) ejωn
A equação de síntese
É uma transformação de um domínio de uma variável complexa X(ω) de frequência contínua periódica em uma variável real x(n) continua.
 DFDT.
X:.
x(n)1{X(ejω)} =def12πX(ejω) ejωndω