Redes Multimídia (diário 2016-1)

De MediaWiki do Campus São José
Ir para: navegação, pesquisa

Índice

Redes Multimidia: Diário de Aula 2016-1

Professora: Simara Sonaglio
E-mail: simara.sonaglio@ifsc.edu.br
Encontros: 2a feira/09:40, 3a feira/09:40
Atendimento paralelo:

Bibliografia

  • Livros sobre Redes de Computadores (por ordem de preferência):
    • KUROSE, James F. e ROSS, Keith W. Redes de computadores e a Internet, Uma abordagem Top-Down. 5a edição. Editora Addison Wesley SP, 2010.
    • Sérgio Colcher, Antônio Tadeu Azevedo Gomes, e Anderson Oliveira da Silva. VoIP: Voz sobre IP. Campus, 1a edição, 2005.
    • STALLINGS, W. Redes e sistemas de comunicação de dados. Editora Elsevier RJ, 2005.
    • TANENBAUM, Andrew S. Redes de Computadores, tradução da quarta edição. Editora Campus RJ, 2003
    • FOROUZAN, Behrouz. Comunicação de Dados e Redes de Computadores, 3a/4a edicão. Editora Bookman, 2004.


Softwares

Avaliações

Aluno Avaliação 1 Trabalho 1 Trabalho 2 Trabalho 3 Nota Conceito final
Giovanni 8,75 9,50 9,50 9,00 9,19 A
Luiz 6,75 (5,00*+7,00**)/2=6,00 10,0 6,00 7,19 C
Valmir 6,25 9,50 10,00 10,00 8,94 A

*- Avaliação

** - Recuperação extra

Diário das aulas

Aula 1 - 22/03/16: Apresentação da disciplina

Apresentação

Apresentação da disciplina: conteúdo, bibliografia e avaliação, laboratório.

Aula 2 - 28/03/16: Caracterização de midias

Caracterização de midias

Compressão de video

Técnicas usadas para compressão de video:

  • Remoção de redundância espacial - codificação intraquadros (ex: JPEG)
  • Remoção de redundância espacial e temporal - codificação intraquadros e interquadros (H.261, MPEG)


Remoção de redundância temporal: iniciando com um intraquadro (quadro I), quadros sucessivos contém atualizações relativas a quadros anteriores (quadros P) ou a quadros anteriores e posteriores (quadros B). O conjunto de quadros entre quadros I se chama GOP (Group of Pictures):


Gop.png


Exemplos de codecs de video

  • MPEG-2
  • H-264
  • XVID
  • Theora

Atividade

1) Copie esta imagem para seu computador, e recorte uma parte com dimensões 128x128 pixels (use o gimp).

1.1) Qual o tamanho dessa imagem no formato BMP com 24 bpp ?

1.2) Qual o tamanho dessa imagem no formato PNG ? E no formato JPG ?

1.3) Crie uma nova imagem com dimensões 128x128 pixels e que seja toda preta, e determina seu tamanho nos formatos BMP com 24 bpp, PNG e JPG.

1.4) O que se pode concluir quanto à representação digital das imagens ?

Aula 3 - 29/03/16 - Aula reposta

Aula reposta nos dias 12/04 e 18/04

Aula 4 - 04/04/16: Caracterização de midias

Aula 3 no dia 29/03/2016 foi suspensa e deverá ser reposta posteriormente.

Caracterização de midias

Compressão de audio

Técnicas usadas:

  • Remoção de silêncio
  • Uso de psicoacústica
  • Remoção de redundância

Pacotes a instalar

sudo apt-get update sudo apt-get install build-essential sudo apt-get install dkms sudo bash VBoxLinuxAdditions.run sudo apt-get install mencoder libavcodec54 sudo apt-get install lame </syntaxhighlight>

Atividade compressão de áudio

1) Copie este arquivo de audio para seu computador. Escute-o e confira sua qualidade sonora. Veja também o tamanho do arquivo.

2) Codifique esse arquivo com os seguintes codecs:

  • MP3: time lame musica.wav musica.mp3
  • Ogg: time oggenc -o musica.ogg musica.wav
  • Flac: time flac musica.wav -o musica.flac
  • Speex: time speexenc --bitrate 8 musica.wav musica.spx

3) Toque os arquivos de audio codificados, comparando suas qualidades sonoras. Compare também os tamanhos dos arquivos.

Atividade compressão de vídeo

1) Copie este arquivo compactado para seu computador, e em seguida descompacte-o. Note que ele contém um certo número de arquivos de imagem em formato JPG (experimente visualizar alguns deles).

1.1) Crie um video a partir dessas imagens. Esse video estará no formato MPJG (Motion JPG), que nada mais é que as imagens sequencializadas.
cd figs
mencoder mf://\*.jpg -fps 10 -ovc copy -o video.avi

1.2) Veja o tamanho do arquivo de video, e compare-o com o tamanho total das imagens. Em seguida, reproduza-o com vlc ou mplayer.

1.3) Recodifique o seu arquivo de video usando o codec XVID:
mencoder -o video2.avi -ovc xvid -xvidencopts bitrate=1024 -oac copy video.avi
... e observe o tamanho do arquivo de video resultante. Em seguida reproduza-o com vlc ou mplayer. Como você o compara com o video gerado no item 2.2 ?

2) Codifique esse video para outros formatos de compressão:

  • MPEG-2: mencoder -o video3.mpg -of mpeg -ovc lavc -lavcopts vcodec=mpeg2video:vbitrate=1024 -oac copy video.avi
  • H-264:
    mencoder -o video4.mp4 -ovc x264 -x264encopts pass=1:turbo -oac mp3lame video.avi

3) Compare os tamanhos dos arquivos de video resultantes das codificações. Toque-os e veja se há diferença de qualidade de imagem entre eles.

Transmissão de dados multimidia


  • Atrasos devido a transmissão

Rt-traffic.png


  • O tráfego de midia pode variar o uso de banda dependendo da codificação:

Rt-transmission.png

A transmissão de dados multimidia está sujeita a alguns fatores, destacando-se:

  • Banda disponível: cada tipo de transmissão demanda uma certa banda mínima (ver o exemplo dos videos gerados na aula anterior, que demandam em torno de 250 kbps). A banda requerida depende do codec, podendo mesmo ser variável (ver figura abaixo). Se a banda disponível na rede não for suficiente, a reprodução dos dados transmitidos não será possível (quer dizer, a reprodução contínua simultânea ao recebimento dos dados).
    Rt-transmission.png
  • Atrasos fim-a-fim: alguns tipos de transmissão são mais sensíveis a atrasos fim-a-fim, como por exemplo conversações VoIP, porém todas transmissões de dados multimidia apresentam pouca tolerância a variações de atraso. A variação de atraso excessiva causa a perda de sincronismo entre a transmissão e a recepção, impedindo a reprodução contínua dos dados recebidos.

Componentes do atraso fim-a-fim

O atraso fim-a-fim, contado portanto desde a origem de um pacote até seu destino, se compõe de um conjunto de tempos despendidos ao longo de sua transmissão. Alguns desses tempos são constantes, porém outros são variáveis.

Atraso Descrição Tipo Expressão
(F: tamanho de um pacote em bytes,
B: taxa de bits do link)
Transmissão Tempo entre o início da saída do 1o bit até a saída do último bit de um pacote pela interface de rede. Depende basicamente da taxa de bits do link onde se dá a transmissão. Variável (depende do tamanho do pacote)
Propagação Tempo entre a saída do 1o bit de um pacote da interface de rede do equipamento transmissor, e sua chegada na interface de rede do equipamento receptor. Depende basicamente da latência do meio de transmissão. Constante
Processamento Tempo entre a recepção de um pacote e a ação a ser feita sobre ele dentro de um equipamento de rede (seja encaminhá-lo por outro link, ou entregá-lo a uma aplicação que o consumirá) Usualmente desprezível
Enfileiramento Tempo de espera de um pacote na fila de saída de uma interface de rede por onde deve ser transmitido. Depende de quantos pacotes (e quantos bytes) estão na sua frente nessa fila. Variável


No exemplo abaixo, os links LAN (link1, link2, link7 e link8) possuem taxa de 1 Gbps, e os links WAN (demais links) possuem taxa de 10 Mbps. As filas dos roteadores podem conter até 100 pacotes de 1500 bytes (tamanho máximo de pacote). Os links WAN possuem latência de 2 ms (a dos links LAN é desprezível). Sendo assim, calcular o atraso mínimo e máximo que cada pacote pode sofrer entre sua saída do servidor de video e sua chegada no reprodutor. Os pacotes de vídeo têm tamanho de 1500 bytes:

Componentes-atraso.png

Atrasos de transmissão nos links WAN:
Atrasos de transmissão nos links LAN:
Atraso de enfileiramento em roteador: melhor caso
(fila vazia)
Atraso de enfileiramento em roteador: pior caso
(fila cheia):

O menor atraso pode ser calculado assim:


... e o maior atraso possível é:

Com isso, uma transmissão de video nessa rede está sujeita a atrasos máximo de cerca de 492 ms por pacote, e variação de atraso de até . Note-se que, nessa rede, a variação de atraso se deve essencialmente a atrasos de enfileiramento nos roteadores. Em outras redes pode haver fatores adicionais para variações de atraso: perdas de pacotes por erros de transmissão ou congestionamento, priorização de pacotes, e até o controle de congestionamento TCP (se esse protocolo for usado para a transmissão).


Exercício

Mesma topologia, os links LAN (link1, link2, link7 e link8) possuem taxa de 100 Mbps, e os links WAN (demais links) possuem taxa de 5 Mbps. As filas dos roteadores podem conter até 90 pacotes de 1500 bytes (tamanho máximo de pacote). Os links WAN possuem latência de 2 ms (a dos links LAN é desprezível). Sendo assim, calcular o atraso mínimo e máximo que cada pacote pode sofrer entre sua saída do servidor de video e sua chegada no reprodutor. Os pacotes de vídeo têm tamanho de 1500 bytes.

Se cada pacote está sujeito a um atraso variável, o reprodutor de video no receptor precisa de algum mecanismo para compensar essas variações e apresentar o video de forma contínua. O mesmo raciocínio vale para transmissões de áudio.

Atividade

Pesquisar mecanismos para tratar variação de atraso e perda de pacotes. Entregar um resumo sobre os mecanismos encontrados.

Aula 5 - 05/04/16: Transmissão de midias

Transmissão de midias

Atividade

Resolver Problemas 10, 11 e 12 da 5ª ed. do Kurose para entregar.

Aula 6 - 11/04/16: Introdução a Voz sobre IP (VoIP)

Introdução ao VoIP


VoIP: transmissão de voz usando protocolos da arquitetura TCP/IP, com o objetivo de estabelecer chamadas semelhantes a chamadas telefônicas. Alguns exemplos de aplicações ou padrões VoIP são:

Fone-call.png

Uma chamada VoIP entre dois telefones IP é feita através da rede de dados.


A realização de chamadas VoIP implica a necessidade de alguns mecanismos:

  • Sinalização: deve haver alguma forma de um usuário iniciar uma chamada para outro usuário, de forma parecida com uma chamada telefônica convencional. A sinalização é responsável por possibilitar que um usuário convide outro para o estabelecimento de uma chamada, e para notificar sobre sua aceitação ou não. Além disso, a sinalização deve participar da definição sobre as características da chamada, tais como o codec de áudio.
  • Transmissão de midia: a voz precisa ser digitalizada com algum codec então transmitida entre os participantes da chamada. O transporte da voz digitalizada implica o uso protocolos capazes de encapsulá-la e de atender ou dar subsídios ao atendimento de seus requisitos de qualidade de serviço (atrasos fim-a-fim e variação de atraso, taxa de perdas).

Em RMU será estudado o modelo SIP para VoIP, o qual se compõe de um conjunto de padrões abertos para tratar dos vários aspectos envolvidos na realização de chamadas. Esse modelo, como diz seu nome, tem como principal elemento o protocolo de sinalização SIP (Session Initiation Protocol).

Aula 7 - 12/04/16: O protocolo SIP

O protocolo SIP

O protocolo SIP

O protocolo SIP segue um modelo P2P (peer-to-peer), em que dois ou mais participantes, chamados de agentes, trocam mensagens com a finalidade de estabelecerem algum tipo de sessão (de voz no nosso caso, mas pode ser de video, mensagem instantânea, ou algum outro tipo de serviço). Assim, cada agente em uma sessão SIP se comporta tanto como cliente (quando envia requisições SIP) quanto servidor (quando responde a requisições SIP). A parte que inicia requisições se chama UAC (User Agent Client), e a que responde requisições é denominada UAS (User Agent Server), estando ambas implementadas nos telefones IP e similares.

Uma sessão SIP envolve a interação entre duas entidades lógicas, que no caso de chamadas VoIP são por vezes chamadas simplesmente de usuários. A diferença entre entidade lógica e agente é que a primeira é o usuário (recurso) que inicia ou recebe chamadas, e o segundo é a aplicação que contém os mecanismos para efetuar e receber chamadas - pense que a entidade seria uma pessoa, e o agente o aparelho telefônico em uma chamada telefônica convencional. Cada entidade é identificada por uma URI (Uniform Resource Indicator) SIP, semelhante a um número de telefone. Além de identificar uma entidade lógica, a informação em uma URI SIP indica a forma com que essa entidade deve ser contatada via SIP. Exemplos de URI SIP seguem abaixo:

# Uma URI simples, tipicamente usada em mensagens INVITE (que iniciam sessões SIP)
sip:1234@biloxi.example.com

# Uma URI mais elaborada, tipicamente usada em alguns cabeçalhos SIP (ex: Contact ou Refer-to)
sip:joseph.fourier@transform.org:5060;transport=udp;user=ip;method=INVITE;ttl=1;
maddr=240.101.102.103?Subject=FFT

As comunicações SIP seguem uma hierarquia, cujos níveis são:

  • Mensagens: mensagens de texto individuais trocadas entre agentes.
  • Transação: sequência de mensagens entre dois agentes iniciando com uma requisição e terminando com uma resposta final.
  • Diálogo: uma relação entre dois agentes que persiste por algum tempo, e identificada por um Call-ID.
  • Chamada: composta por todos os diálogos originados por um agente.

Sip-relation.gif
'Mensagens, transações, diálogos e chamadas

Mensagens SIP

O protocolo SIP tem uma estrutura simplificada com mensagens de pedido e resposta, assemelhando-se ao protocolo HTTP. Essas mensagens possuem a seguinte estrutura:

Linha inicial
Cabeçalho1: valor do cabeçalho 1
Cabeçalho2: valor do cabeçalho 2
...
CabeçalhoN: valor do cabeçalho N
<linha em branco>
corpo da mensagem (opcional)

A diferença básica entre pedidos e respostas SIP está na linha inicial: pedidos contém um método SIP e seus parâmetros, e respostas possuem um código de status junto com um curto texto informativo. Abaixo são mostradas duas mensagens SIP: um pedido e sua respectiva resposta. Nesse exemplo, ambas mensagens não possuem um corpo de mensagem (lembre que isso é opcional):


Sip-example1.png


Pedido:

REGISTER sips:ss2.biloxi.example.com SIP/2.0
Via: SIP/2.0/TLS client.biloxi.example.com:5061;branch=z9hG4bKnashds7
Max-Forwards: 70
From: Bob <sips:bob@biloxi.example.com>;tag=a73kszlfl
To: Bob <sips:bob@biloxi.example.com>
Call-ID: 1j9FpLxk3uxtm8tn@biloxi.example.com
CSeq: 1 REGISTER
Contact: <sips:bob@client.biloxi.example.com>
Content-Length: 0

Resposta:

SIP/2.0 200 OK
Via: SIP/2.0/TLS client.biloxi.example.com:5061;branch=z9hG4bKnashd92
 ;received=192.0.2.201
From: Bob <sips:bob@biloxi.example.com>;tag=ja743ks76zlflH
To: Bob <sips:bob@biloxi.example.com>;tag=37GkEhwl6
Call-ID: 1j9FpLxk3uxtm8tn@biloxi.example.com
CSeq: 2 REGISTER
Contact: <sips:bob@client.biloxi.example.com>;expires=3600
Content-Length: 0

O pedido exemplificado foi uma mensagem do tipo REGISTER, que é um tipo de método SIP. Um método pode ser entendido como um comando enviado de um participante a outro. A resposta contém o status 200 OK, que significa que o pedido foi atendido com sucesso. Por fim, ambas mensagens contiveram um conjunto de cabeçalhos necessários para caracterizá-las, dentre eles Via, From, To, Call-Id, CSeq, Contact e Content-Length. As tabelas a seguir descrevem resumidamente os principais métodos e cabeçalhos SIP.

Método SIP Descrição
REGISTER Usado por um agente para notificar a rede SIP (outros agentes) sobre sua URI de contato
INVITE Usado para estabelecer sessões entre dois agentes
ACK Confirma respostas finais a requisições INVITE
BYE Termina uma sessão previamente estabelecida
CANCEL Encerra tentativas de chamadas
OPTIONS Consulta um agente sobre suas capacidades

Tabela de métodos SIP (não exaustiva ... apenas os principais métodos)


Cabeçalho SIP Descrição Obrigatoriedade Uso
Via Registra a rota seguida por uma requisição, sendo usado para que respostas sigam o caminho inverso Requisição e resposta Requisição e resposta
To Identifica o destinatário de uma requisição Requisição e resposta Requisição e resposta
From Identifica o originador da requisição Requisição e resposta Requisição e resposta
Call-Id Identifica univocamente uma chamada entre um UAC e um UAS. Requisição e resposta Requisição e resposta
CSeq Numera as requisições de uma mesma chamada de um mesmo UAC Requisição Requisição e resposta
Contact Identifica o originador da requisição ou o recurso requisitado Requisição e resposta
Max-Forwards Máximo número de saltos que a requisição pode atravessar Requisição Requisição
Content-Length Informa a quantidade de bytes do corpo da mensagem Requisição e resposta
Date Informa a data e horário de uma requisição ou resposta Requisição e resposta
Supported Lista uma ou mais opções suportadas por um UAC ou UAS Requisição e resposta
User-Agent Informa sobre o agente (o programa) originador de uma requisição
Allow Informa os métodos SIP aceitos pelo UAS Resposta
Content-type Informa o tipo de conteúdo contido no corpo da mensagem
WWW-Authenticate Informa que o UAC deve se autenticar para o UAS (e como isso deve ser feito) Resposta
Authorization Contém as credenciais para autenticar o UAC para o UAS Requisição

Tabela de cabeçalhos SIP (não exaustiva ... apenas os principais cabeçalhos)

Diagramas de chamadas

Alguns tipos de chamadas VoIP com SIP são recorrentes, estando representadas nas subseções a seguir.

Registro de agente SIP em um proxy SIP

Esta chamada ocorre entre um agente SIP e um servidor de registro SIP (SIP Registar), que está implementado tipicamente em um proxy SIP, um gateway de media, ou um PBX IP (este último incorpora as funções dos dois primeiros com as de um PBX). O registro do agente SIP tem por finalidade fazer com que o servidor de registro SIP conheça a localização do agente (endereço IP e port usado pelo UAS).

Fone 1                      Proxy SIP ou PBX IP
     |                             |
     |          REGISTER           |
     |---------------------------->|
     |      401 Unauthorized       |
     |<----------------------------|
     |          REGISTER           |
     |---------------------------->|
     |            200 OK           |
     |<----------------------------|
     |                             |

Chamada direta entre dois agentes SIP

Uma chamada direta entre dois agentes envolve uma transação INVITE, em que um agente convida o outro a estabelecer uma sessão SIP com um determinado tipo de media (ex: audio). A chamada é finalizada quando um dos agentes inicia uma transação BYE.

 Fone 1                    Fone 2
     |                        |
     |       INVITE           |
     |----------------------->|
     |    180 Ringing         |
     |<-----------------------|
     |                        |
     |       200 OK           |
     |<-----------------------|
     |         ACK            |
     |----------------------->|
     |      RTP Media         |
     |<======================>|
     |                        |
     |         BYE            |
     |<-----------------------|
     |       200 OK           |
     |----------------------->|
     |                        |

Chamada entre dois agentes SIP com intermediação de um Proxy SIP

A principal diferença entre este tipo de chamada e o anterior é o uso de um (ou mais) proxy SIP entre os dois agentes. O proxy SIP tem por finalidade ajudar na realização das chamadas, uma vez que usualmente incorpora a função de servidor de registro. Um proxy SIP encaminha chamadas para o agente chamado, ou para outro proxy mais próximo do destino, podendo aplicar regras de controle de acesso quanto a quem pode realizar chamadas para quem.

Fone 1      Proxy SIP ou PBX IP     Fone 2  
             (directmedia=yes)          
     |                |                |                
     |   INVITE       |                |                
     |--------------->|   INVITE       |                
     |  100 Trying    |--------------->|    
     |<---------------|   100 Trying   |
     |                |<---------------|                
     |                |                |     
     |                |  180 Ringing   |
     |  180 Ringing   |<---------------|                
     |<---------------|                |    
     |                |    200 Ok      |
     |     200 Ok     |<---------------|                
     |<---------------|                |                
     |     ACK        |                |                
     |--------------->|    ACK         |                
     |                |--------------->|    
     |                |                |
     |         RTP Media               |
     |<===============================>|
     |                |                |
     |                |    BYE         |
     |     BYE        |<---------------|                
     |<---------------|                |                
     |     200 Ok     |                |                
     |--------------->|     200 Ok     |                
     |                |--------------->|    
     |                |                |
     |                |                |

Chamada entre dois agentes SIP com intermediação de um gateway de media

Este caso é parecido com o anterior, que usa um proxy SIP. A diferença está na intermediação do fluxo de media, que é feita pelo gateway de media. Isso possibilita que dois agentes estabeleçam uma chamada mesmo usando codecs diferentes, pois o gateway de media fará a tradução entre codecs.

Fone 1            PBX IP              Fone 2
              (directmedia=no)        
     |                |                |
     |   INVITE       |                |
     |--------------->|   INVITE       |
     |  100 Trying    |--------------->| 
     |<---------------|  100 Trying    |
     |                |<---------------| 
     |                |   180 Ringing  |
     |   180 Ringing  |<---------------|                
     |<---------------|                |      
     |                |    200 Ok      |
     |     200 Ok     |<---------------|
     |<---------------|                |
     |     ACK        |                |
     |--------------->|    ACK         |
     |                |--------------->|
     |    RTP Media   |   RTP Media    |
     |<==============>|<==============>|
     |     BYE        |                |
     |--------------->|    BYE         |
     |                |--------------->|
     |                |    200 Ok      |
     |     200 Ok     |<---------------|
     |<---------------|                |
     |                |                |

Chamada entre dois agentes SIP com intermediação de um gateway de media e uso de re-INVITE

O uso de re-invite possibilita que o fluxo de media seja estabelecido diretamente entre os agentes SIP, caso usem o mesmo codec. Assim, evita-se a carga de processamento envolvida na intermediação pelo gateway de media. Isso é feito com o envio pelo gateway de media (representado abaixo por um PBX IP) de um novo INVITE para cada agente SIP, após a sessão SIP estar estabelecida. Esse novo INVITE contém uma descrição de media (mensagem SDP embutida no corpo da mensagem INVITE) com a localização do outro agente SIP - isso é, seu endereço IP, port UDP para a stream RTP e codec a ser usado.

Fone 1            PBX IP              Fone 2
              (directmedia=yes)        
     |                |                |
     |   INVITE       |                |
     |--------------->|   INVITE       |
     |  100 Trying    |--------------->| 
     |<---------------|  100 Trying    |
     |                |<---------------| 
     |                |  180 Ringing   |
     |  180 Ringing   |<---------------|                
     |<---------------|                |      
     |                |    200 Ok      |
     |     200 Ok     |<---------------|
     |<---------------|                |
     |     ACK        |                |
     |--------------->|    ACK         |
     |    INVITE      |--------------->|
     |<---------------|   INVITE       |
     |    200 OK      |--------------->|
     |--------------->|    200 OK      |
     |    ACK         |<---------------|
     |--------------->|    ACK         |
     |                |<---------------| 
     |                                 |
     |              RTP Media          |
     |<===============================>|
     |     BYE        |                |
     |--------------->|    BYE         |
     |                |--------------->|
     |                |    200 Ok      |
     |     200 Ok     |<---------------|
     |<---------------|                |
     |                |                |

Aula 8 - 18/04/16: O protocolo SIP - continuação

SDP

SDP – Session Description Protocol

Para garantir o processo de negociação das mídias a serem trocadas numa sessão, o SIP encapsula outro protocolo, comumente o SDP.

O SDP, definido inicialmente em no RFC 2327 (HANDLEY e JACOBSON, 2011), teve como propósito original descrever sessões multicast estabelecidas sobre o backbone multicast da Internet, o MBONE e, portanto, vários de seus campos tem uso limitado (ou nenhum uso) para as sessões unicast estabelecidas atualmente com o SIP, mas foram mantidos na nova definição do protocolo, RFC 4566 (HANDLEY, JACOBSON e PERKINS, 2011), para garantir a compatibilidade.

De acordo com (JOHNSTON, 2009), as principais informações carregadas numa mensagem SDP sobre a sessão de mídia são: endereço IP (IPv4 ou IPv6) ou nome de host, perfil RTP (tipicamente “RTP/AVP”), número da porta que será usada para troca de fluxo de mídia, tipo de mídia a ser trocada (vídeo, áudio, texto e etc.) e esquema de codificação de mídia.

FONTE: Teleco.

Aula 9 - 19/04/16: O protocolo SIP - continuação

Atividades realizadas

  1. Registro de ramais criados no Asterisk da máquina Professor;
  2. Testes de chamadas entre ramais;
  3. Análise de tráfego de com o Wireshark;
  4. Análise de tráfego de áudio com a opção Reinvite habilitada/desabilitada.

Aula 10 - 25/04/16: O protocolo RTP

RTP

O transporte de midia com protocolo RTP


O protocolo RTP (Real-Time Protocol) foi desenvolvido para possibilitar o transporte de datagramas de tempo-real contendo voz, video, ou outro tipo de dados, sobre IP. Tanto H.323 quanto o modelo SIP usam RTP para o transporte de media, tornando-o o padrão mais comum para comunicações desse tipo na Internet. Apesar desse protocolo não prover qualidade de serviço (i.e. ele não possui mecanismos para atender tais tipos de requisitos), ele torna possível a detecção de alguns dos problemas introduzidos por uma rede IP, tais como:

  • Perda de pacotes
  • Atraso fim-a-fim variável
  • Chegada de pacotes fora de ordem


Esses problemas não são novidade ... nós já os discutimos nas aulas sobre transmissão de dados multimidia. O que há de novo é um protocolo que dá subsídios para as técnicas que buscam atender requisitos de qualidade de serviço. Esses subsídios são informações providas pelo RTP para ajudar a identificar os problemas citados acima, as quais são:

  • Identificação do tipo do conteúdo que está sendo carregado (codec): isso informa ao receptor como ele deve decodificar o conteúdo transportado (ver esta tabela de identificadores de codec usados pelo RTP)
  • Numeração de sequência: essa informação possibilita identificar pacotes perdidos ou fora de ordem.
  • Marcação de tempo (timestamp): com isso é possível efetuar o cálculo de variação de atraso e implementar algum mecanismo de sincronização com a fonte (ex: atraso de reprodução).


Essas informações fazem parte da PDU RTP, como se pode ver a seguir:

Localização do RTP na camada de transporte Cabeçalho RTP
Rtp1.png Rtp-header.png

RTCP

Além do RTP, o protocolo auxiliar RTCP (Real-Time Control Protocol, também definido na RFC 3550) foi definido para o monitoramento da entrega dos pacotes (recepção da stream). Com esse protocolo, os participantes de uma sessão de media podem fazer o intercâmbio de relatórios e estatísticas. Cada tipo de relatório é transportado por um tipo de pacote RTCP. O uso de relatórios possibilita o feedback sobre a qualidade da comunicação, incluindo informações como:

  • Número de pacotes enviados e recebidos
  • Número de pacotes perdidos
  • Jitter (variação de atraso)

Os cinco tipos de relatórios são:

  • Relatório do transmissor (Sender Report - SR)
  • Relatório do receptor (Receiver Report - RR)
  • Descrição da fonte (Source Description - SDES)
  • Bye
  • Específico da aplicação (Application Specific - APP)

Como o tráfego RTCP é puramente overhead, o protocolo foi projetado para que seu consumo da capacidade da rede seja constante, não importa quantos participantes da sessão de media existam. A ideia é que quanto mais participantes houver, menos frequentemente os relatórios RTCP são enviados. Por exemplo, se em uma conferência houver somente dois participantes, os relatórios podem ser enviados a cada 5 segundos. Se houver quatro participantes, os relatórios são enviados a cada 10 segundos. Com isso o consumo de banda para relatórios se mantém constante e previsível.

Lista de exercícios

(Arquivo:Lista2.pdf)

Aula 11 - 26/04/16: Exercícios

Aula 12 - 02/05/16: Prova

Aula 13 - 03/05/16: Asterisk - Apresentação


Asterisk: uma solução completa de PABX baseado em software, permitindo ligar o mundo IP ao mundo da rede pública de telefonia comutada.

Características Básicas: faz tudo que um PABX pequeno e simples faz e pouco mais

  • ˆ Transferência, música de espera, siga-me, etc.
  • Conferência, correio de voz, URA, fila de chamadas, monitoramento de chamadas, integração com o Jabber (Google talk)

Características Avançadas: o que seria interessante para grandes empresas

  • Uso de banco de dados (MySQL), integração com o LDAP, DUNDi, DNS SRV, geração de bilhetagem


Asterisk-ex1.png
Exemplo de cenário de uso do Asterisk


Aula 14 - 09/05/16: Asterisk - Canais SIP e plano de discagem

Canais SIP e plano de discagem

Plano de discagem

O plano de discagem define como cada chamada deve ser processada. As instruções de processamento residem no arquivo de configuração extensions.conf. O fluxo de processamento de chamadas pode ser visto resumidamente abaixo:

Asterisk-fluxo.png


Um exemplo de plano de discagem simples pode ser visto abaixo:

[alunos]; o nome deste contexto

# Chamadas para o número 101 são feitas via SIP para o canal "maria"
exten=>101,1,Dial(SIP/maria)
same=>n,Hangup()

# Chamadas para "teste" serão atendidas com um som de beep, seguido 
# da reprodução do arquivo de som "hello-world", em seguida outro beep e
# enfim se encerra a chamada.
exten=>199,1,Playback(beep)
same=>n,Wait(1)
same=>n,Playback(hello-world)
same=>n,Wait(1)
same=>n,Playback(beep)
same=>n,Hangup

A estrutura do plano de discagem é composta por extensões (um termo específico do Asterisk). Cada extensão identifica um número (ou usuário) que pode ser chamado, e como essa chamada deve ser processada. A sintaxe pode ser vista abaixo:

exten=>identificador,prioridade,aplicação
  • identificador: o número ou usuário chamado
  • prioridade: a prioridade da extensão. Isso determina a ordem de execução das extensões que tratam do mesmo identificador.
  • aplicação: uma ação a ser realizada quando a extensão for processada. Por exemplo, a aplicação Dial determina que deve ser encaminhada a outro canal.

Como o processamento de uma chamada usualmente envolve uma sequência de extensões, existe uma sintaxe opcional para simplificar a declaração:

exten=>identificador,prioridade,aplicação
same=>prioridade,aplicação
  • same: declara uma nova extensão com mesmo identificador da extensão imediatamente anterior

Por fim, a prioridade (que define a ordem com que as extensões são processadas) declarada com o valor n equivale à prioridade da extensão imediatamente anterior incrementada em uma unidade:

exten=>101,1,Dial(SIP/101)
same=>n,Hangup; a prioridade aqui terá o valor 2

Canais SIP

Cada telefone SIP deve ter seu identificador cadastrado no Asterisk. O identificador pode tanto ser um número, análogo a um ramal, ou uma string alfanumérica. No terminologia do Asterisk, cada telefone SIP é chamado de canal SIP, e deve estar declarado em /etc/asterisk/sip.conf:

; Canal 2000 (um exemplo)
[2000]
username=2000 ; o nome do usuário para fins de autenticação
secret=kabrum
type=friend ; pode efetuar e receber chamadas
host=dynamic ; pode conectar-se a partir de qualquer endereço IP
context=alunos ; o contexto padrão do João. O arquivo extensions.conf o definirá
disallow=all
allow=gsm ; habilita este codec para o João. Os vários codecs serão vistos em se
guida,
          ; já que cada um deles tem suas particularidades.
allow=alaw ; outro codec
allow=ulaw ; mais um codec
qualify=yes; mostra a qualidade, em ms, da conexão entre UAC e UAS.

; Canal joao (outro exemplo)
[joao]
username=joao ; o nome do usuário para fins de autenticação
secret=blabla
type=friend ; pode efetuar e receber chamadas
host=dynamic ; pode conectar-se a partir de qualquer endereço IP
context=alunos ; o contexto padrão do João. O arquivo extensions.conf o definirá
disallow=all
allow=gsm ; habilita este codec para o João. Os vários codecs serão vistos em se
guida,
          ; já que cada um deles tem suas particularidades.
allow=alaw ; outro codec
allow=ulaw ; mais um codec
qualify=yes; mostra a qualidade, em ms, da conexão entre UAC e UAS.

Como se pode notar, a declaração de um canal SIP envolve muitos parâmetros que envolvem autenticação, controle de acesso, localização na rede, codecs e possivelmente outras capacidades. Como os valores de alguns parâmetros podem ser iguais para vários canais, o Asterisk possibilita a declaração de perfis (templates):

; Perfil alunos
[alunos](!);  a sequência "(!)" define isto como um perfil
type=friend ; pode efetuar e receber chamadas
host=dynamic ; pode conectar-se a partir de qualquer endereço IP
context=alunos ; o contexto padrão do João. O arquivo extensions.conf o definirá
disallow=all
allow=gsm ; habilita este codec para o João. Os vários codecs serão vistos em se
guida,
          ; já que cada um deles tem suas particularidades.
allow=alaw ; outro codec
allow=ulaw ; mais um codec
qualify=yes; mostra a qualidade, em ms, da conexão entre UAC e UAS.

; Canal 2000
[2000](alunos); a sequência "(alunos)" copia as definições do perfil "alunos"
username=2000 ; o nome do usuário para fins de autenticação
secret=kabrum

; Canal joao
[joao](alunos)
username=joao ; o nome do usuário para fins de autenticação
secret=blabla

Atividades

  1. Instalar o Asterisk na máquina virtual sudo apt-get install asterisk</syntaxhighlight>
  2. Criar os contextos alunos, professores e coordenaçãoo e contas SIP pertencentes a estes contextos;
  3. Criar um plano de discagem de forma que as contas SIP do contexto alunos só possam atingir outras contas SIP deste contexto. O mesmo deve ser feito para o contexto professores. Já as contas SIP do contexto coordenação poderão atingir, além das contas SIP deste contexto, as contas dos contextos alunos e professores;
  4. Testes de chamadas entre ramais;
  5. Criar um contexto comum a todos os demais contextos e nele criar os próximos dois itens;
  6. Criar um número no plano de discagem que seja atendido por uma gravação;
  7. Criar um número no plano de discagem que permita fazer uma gravação.
sip.conf
[100]
type=friend
secret=100
host=dynamic
canreinvite=no
context=alunos
disallow=all
allow=gsm
allow=alaw
allow=ulaw

[101]
type=friend
secret=101
host=dynamic
context=alunos
canreinvite=no
disallow=all
allow=gsm
allow=alaw
allow=ulaw

[102]
type=friend
secret=102
host=dynamic
context=professores
canreinvite=no
disallow=all
allow=gsm
allow=alaw
allow=ulaw

[103]
type=friend
secret=103
host=dynamic
context=professores
canreinvite=no
disallow=all
allow=gsm
allow=alaw
allow=ulaw

[104]
type=friend
secret=104
host=dynamic
context=coordenacao
canreinvite=no
disallow=all
allow=gsm
allow=alaw
allow=ulaw

[105]
type=friend
secret=105
host=dynamic
context=coordenacao
canreinvite=no
disallow=all
allow=gsm
allow=alaw
allow=ulaw
extensions.conf
[alunos]
exten=>100,1,Dial(SIP/100,30)
exten=>100,2,Hangup

exten=>101,1,Dial(SIP/101,30)
exten=>101,n,Hangup

include=>geral

[professores]
exten=>102,1,Dial(SIP/102,30)
same=>n,Hangup

exten=>103,1,Dial(SIP/103,30)
exten=>103,n,Hangup

include=>geral

[coordenacao]
exten=>104,1,Dial(SIP/104,30)
same=>n,Hangup

exten=>105,1,Dial(SIP/105,30)
exten=>105,n,Hangup

include=>alunos
include=>professores
include=>geral

[geral]
exten=999,1,answer()
exten=999,n,record(/var/lib/asterisk/sounds/teste:wav) ; Digite '#' para parar de ;gravar
exten=999,n,playback(/var/lib/asterisk/sounds/teste)
exten=999,n,hangup

Aula 15 - 10/05/16: Asterisk - Continuação Aula 14

Aula 16 - 16/05/16: Asterisk - URA

URA

Uma URA implementa um menu audível para auto-atendimento. Sua construção é feita toda no plano de discagem, como se pode ver no exemplo abaixo:

[default]
exten => 666,1,Goto(ura,s,1) 

[ura]
exten => s,1,Answer
exten => s,2,NoOp(Ligação entrou na URA)
exten => s,n,Background(/var/lib/asterisk/sounds/benvindo)
exten => s,n,NoOp(Digite a opção/1-suporte/2-comercial/3-financeiro)
exten => s,n,WaitExten(6); caso nada tenha sido digitado durante a mensagem "benvindo", espera mais 6 segundos no máximo

exten => 1,1,NoOp(Chamada foi para Suporte)
same => n,Dial(SIP/2402,60)
same => n, Hangup

exten => 2,1,NoOp(Chamada foi para Comercial)
same => n,Dial(SIP/2801,60)
same => n, Hangup

exten => 3,1,NoOp(Chamada foi para Financeiro)
same => n,Dial(SIP/2000,60)
same => n, Hangup

exten => i,1,NoOp(Extensão inválida)
same => n,Play(beep)
same => n,GoTo(s,3); volta para o menu

exten => t,1,NoOp(Tempo esgotado)
same => n,Dial(SIP/3401,60)
same => n,Hangup

A URA é composta por mensagens de voz, que instruem o usuário sobre o que ele pode fazer (isto é, apresentam as opções), e músicas, que o entreteem (!?) enquanto aguarda uma operação ser realizada. Assim, para criar uma URA minimamente funcional são necessários esses arquivos de voz. Para gravá-los, pode-se criar uma extensão especial que atenda por 999. Ao chamar essa extensão, pode-se pronunciar a mensagem de voz assim que o Asterisk atender. Para encerrar a mensagem, deve-se digitar #. O arquivo de voz resultante estará no diretório /var/lib/asterisk/sounds, ou em qualquer outro diretório especificado na aplicação record.

exten=999,1,answer()
exten=999,n,record(/var/lib/asterisk/sounds/${EXTEN}.wav,5,t)
exten=999,n,playback(/var/lib/asterisk/sounds/${EXTEN})
exten=999,n,hangup()

Ou:

 
exten=>998,1,Answer
same=>n,Wait(1)
same=>n,Playback(beep)
same=>n,Record(/tmp/novo:wav)
same=>n,Playback(beep)
same=>n,Playback(/tmp/novo)
same=>n,Hangup

A implantação de uma URA (e de muitas outras funções típicas de PBX) em um PBX Asterisk, é necessário conhecer os recursos que ele oferece. Dentre esses recursos, há aplicações, variáveis, e características (features). Hoje serão vistos alguns desses recursos, que usaremos para implantar uma URA.

Funções usando o plano de discagem

Para implantar funcionalidades conhecidas ou novas no Asterisk usando o plano de discagem, devem-se conhecer alguns recursos avançados. Aqui são apresentados três deles: extensões especiais, aplicações, padrões de extensões e variáveis.

Extensões especiais

Além das extensões criadas pelo usuário, o Asterisk apresenta algumas extensões especiais, tais como:

  • s (start): tem por objetivo tratar qualquer chamada que entre em um contexto e que não tenha um destino específico.
  • i (invalid): tem por objetivo tratar entradas inv ́lidas em um menu interativo
  • t (timeout): Em um menu interativo intercepta a chamada caso o usuário não forneça uma entrada dentro de um período de tempo estipulado.

Aula 17 - 17/05/16: Asterisk - Desvio condicional

[Material de apoio]

Usando Gotoif

Exemplo 1

exten => 800,1,NoOp(testando contador) exten => 800,n,Set(cont=1) exten => 800,n(teste),Dial(SIP/101,10) exten => 800,n,Dial(SIP/100,10) exten => 800,n,NoOp(contador + 1 ) exten => 800,n,Set(cont=$[${cont}+1]) exten => 800,n,Gotoif($["${cont}"<"3"]?teste:sair) exten => 800,n(sair),Hangup </syntaxhighlight>

Exemplo 2

exten=>101,1,Dial(SIP/101,10) exten=>101,n,Gotoif($["${DIALSTATUS}"="NOANSWER"]?natendeu:segue) exten=>101,n(natendeu),Dial(SIP/100) exten=>101,n(segue),Hangup </syntaxhighlight>

Aula 18 - 23/05/16: Sábado letivo - aula reposta

Aula 19 - 23/05/16: Asterisk - Continuação de Desvio condicional

Aula 20 - 24/05/16: Asterisk - Tronco SIP

Tronco Sip

Interligação entre PABX IP

A interligação entre PBX Asterisk pode ser feita via rede de dados usando os protocolos SIP ou IAX2. No primeiro caso, o encaminhamento de uma chamada entre dois PBX funciona como uma chamada SIP usual, e isso significa que a sinalização é feita com SIP e o áudio flui em separado com RTP. No segundo caso, o protocolo IAX2 (Inter-Asterisk eXchange) encapsula tanto a sinalização quanto os fluxos de áudio, o que simplifica o estabelecimento do tronco.

Modelo-pbx-asterisk.png


Inicialmente criaremos a infraestrutura para chamadas VoIP, a qual aumentaremos gradualmente para podermos reproduzir o modelo aqui descrito.

Tronco SIP

Em um entroncamento SIP (SIP trunking), um PBX pode encaminhar chamadas através de um tronco SIP. Essas chamadas podem ser originadas de diferentes formas, tais como telefones IP ou convencionais. Entre os PBX do entroncamento, as chamadas são sinalizadas com SIP e transmitidas com RTP e algum codec.

Sip-trunk.png

A ativação de um entroncamento SIP entre dois PBX Asterisk pode ser feita seguindo o exemplo abaixo:

PBX sip.conf extensions.conf
Central1
[central1]
type=friend
;defaultuser=central2; usuário criado na filial
username=central2
host=192.168.25.101 ;ip da filial
secret=123
context=geral
 [troncoSIP]
 ; Ligando para a outra central e, na sequência, o "ramal" de destino
 exten => _4XX,1,Dial(SIP/Central1/${EXTEN})
 same=>n,Hangup
Central2
[central2]
type=friend
;defaultuser=central1; usuário criado na matriz
username=central1
host=192.168.25.102 ;ip da matriz
secret=123
context=geral
 [troncoSIP]
 ;
 ; Ligando para a outra central e, na sequência, o "ramal" de destino
 exten => _2XX,1,Dial(SIP/Central2/${EXTEN})
 same=>n,Hangup

Atividade: estabelecendo chamadas entre diferentes PBX Asterisk

Nesta atividade, vamos realizar chamadas entre softphones registrados em diferentes PBX Asterisk. Para isso, precisaremos estruturar o laboratório de forma que cada PBX Asterisk possua um tronco SIP com um PBX vizinho.

Aula 21 - 30/05/16: Asterisk - Início do trabalho

Cada aluno será responsável por um Asterisk. Cada central IP deverá atender os seguintes pontos:


  1. As contas SIP de cada central deverão ser criadas nas faixas 1XX para a Central 1, 2XX para a Central 2 e 3XX para a Central 3;
  2. Para ligação interna a cada central, os usuários deverão discar 11XX, 22XX e 33XX. Por exemplo, ao discar 1100 a chamada deve ser encaminhada para a conta 100, ao discar para 1101 a chamada deve ser encaminhada para 101 e assim por diante;
  3. Cada central deverá ter um contexto chamado INTERNO, o qual será usado para que as chamadas internas a cada central sejam completadas;
  4. Todo o áudio das chamadas deverá passar por dentro da central;
  5. Todos os ramais devem se comunicar, inclusive devem ser capazes de ligar para a URA da mesma central;
  6. Cada ramal interno deverá ter um desvio se não atende para algum outro ramal da mesma central;
  7. Cada central deverá ter um número (ex: 1199) que será atendido por uma URA. Esta URA deverá atender aos seguintes pontos:
    1. Possuir mensagens de boas vindas e apresentação de opções de atendimento;
    2. Possuir ao menos duas opções de atendimento;
    3. Ao menos uma destas opções deve se atendida por um grupo de ramais que irá ringar todos os ramais ao mesmo tempo;
    4. Caso o usuário digite uma opção válida inválida, a chamada deverá retornar ao menu da URA por mais duas vezes. Após isso a chamada será finalizada;
    5. Caso o usuário não digite nenhuma número, a chamada deverá retornar ao menu da URA por mais duas vezes. Após isso a chamada será finalizada;
  8. Cada central deverá ter um tronco SIP para as demais centrais. Este tronco SIP deve utilizar o contexto EXTERNO;
  9. Um ramal de uma central deve ser capaz de ligar para qualquer numeração em outra central.

Avaliação:

  1. Será feita uma demostração de funcionamento das centrais no dia 06/06/16. Esta demonstração de funcionamento representará 70% da nota;
  2. No mesmo dia deverá ser entregue um documento em formato PDF contendo toda a configuração feita na central e devidas explicações a respeito destas configurações. Este documento representará 30% da nota.

Úteis para o trabalho

Ringando ramais simultaneamente

exten=>100,1,Dial(SIP/100&SIP/101&SIP/102) exten=>100,n,Hungup </syntaxhighlight>

Aula 22 - 31/05/16: Asterisk - Continuação do trabalho

Aula 23 - 06/06/16: Asterisk - Apresentação do trabalho

Aula 24 - 07/06/16: Firewall

Firewall

Uma introdução ao iptables

O filtro IP do Linux se chama NetFilter, e suas regras são configuradas por meio do utilitário iptables (ver também seu manual). Com iptables se podem adicionar ou remover regras do Netfilter, além de consultar estatísticas sobre essas regras (ex: contadores dos pacotes e bytes que selecionaram cada regra). As regras são agrupadas em conjuntos denominados chains ("cadeias"), as quais estão relacionadas com o contexto que cada pacote está sendo analisado. Existem três chains predefinidas:

  • INPUT: contém as regras a serem aplicadas aos pacotes destinados ao próprio firewall.
  • OUTPUT: contém as regras a serem aplicadas aos pacotes transmitidos pelo próprio firewall.
  • FORWARD: contém as regras a serem aplicadas aos pacotes em trânsito pelo firewall (isto é, pacotes recebidos de uma interface e sendo encaminhados através de outra interface).

Iptables-fluxo-filter.png


Assim, usando-se o iptables podem ser adicionadas regras a cada uma dessas chains, dependendo do policiamento de tráfego a ser implantado no firewall.


Iptables-chains.png


Uma regra deve especificar basicamente três coisas:

  • Chain: em que chain deve ser adicionada.
  • Seletor: informações a serem usadas para selecionar os pacotes a que ela deve ser aplicada.
  • Alvo (target): ação a ser executada sobre o pacote que ativar a regra.

Por exemplo, a regra abaixo permite o encaminhamento de todos os segmentos TCP destinados a porta 80:


Iptables-intro.png


Desta forma, a escrita das regras depende de conhecer as opções para definição de seletores, e os possíveis alvos. Algumas opções de uso comum para composição de seletores são listadas abaixo, sendo que o que está entre colchetes ([]) é opcional. Um seletor pode ser composto por uma combinação dessas opções. Para mais detalhes leia o manual.

Opção Descrição Exemplo
-s IP[/Mascara] endereço IP de origem -s 200.135.37.64/26
-d IP[/Mascara] endereço IP de destino -d 8.8.8.8
-p Protocolo protocolo de transporte (tcp ou udp) -p tcp
--dport numero Port de destino --dport 80
--sport numero Port de origem --sport 53
--syn Se flag SYN está acesa (somente TCP)
--tcp-flags Flags1 Flags2 Se somente as flags listadas em Flags1 estão acesas dentre as Flags2 --tcp-flags SYN,ACK,RST,FIN SYN
-i interface Se pacote foi recebido pela interface -i eth0
-o interface Se pacote vai sair pela interface -o eth1
-m state --state ESTADO Identifica o estado do fluxo, o qual pode ser:
NEW: início de um fluxo
ESTABLISHED: parte de um fluxo estabelecido
RELATED: inicia um novo fluxo, porém relacionado com um fluxo existente
-m state --state NEW,RELATED


Os alvos definem o que fazer com um pacote selecionado por uma regra. As ações possíveis estão listadas abaixo:


Alvo Descrição Exemplo
ACCEPT aceita o pacote -j ACCEPT
DROP descarta o pacocte -j DROP
REJECT rejeita o pacote, devolvendo um código de erro ICMP para seu remetente -j REJECT
LOG registra o pacote no log do sistema -j LOG
uma_chain passa o pacote para ser processado pela chain uma_chain -j rede_interna


Salvando e restaurando regras do iptables

Uma vez obtido um conjunto de regras que funcione como desejado, deve-se poder salvá-lo para que possa ser reativado sempre que desejado (ex: no boot). Existem dois utilitários que auxiliam nessa tarefa, sendo eles:

  • iptables-save: escreve as regras atuais na saída padrão, que normalmente é redirecionada para um arquivo:
    iptables-save > minhas_regras
    
  • iptables-restore: instala as regras lidas da entrada padrão, normalmente redirecionada de um arquivo:
    iptables-restore < minhas_regras
    

Atividade

Cada aluno deve implantar a seguinte rede virtual em seu computador utilizando a máquina virtual 1-Grafico para ser o Pc e a máquina 1-Servidor para ser o Firewall:


Lab-firewall-intro.png


Inicie as máquinas virtuais, certificando-se de que suas interfaces de rede estejam em modo bridge. Configure os endereços IP de suas interfaces e também suas rotas default.

DICA

É útil ativar o NAT na interface externa do firewall (eth0 na nossa rede de teste):

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Comando para tornar uma máquina Linux roteador:

echo 1 > /proc/sys/net/ipv4/ip_forward

Cenário 1: Uma rede pequena sem servidores

Em uma rede pequena e que não oferece serviços, todos os fluxos se originam internamente. Assim, o firewall deve impor que somente fluxos internos possam passar. Com base nisso, configure seu firewall das seguintes formas:

  1. Caso 1: os computadores internos podem acessar qualquer serviço externo.
    • Com filtro stateless:
      #!/bin/bash
      
      # Limpa as regras existentes
      iptables -F
      
      # As regras são inseridas na chain FORWARD, pois tratam de pacotes em trânsito pelo firewall
      
      # Por default, bloqueia tudo
      iptables -P FORWARD DROP
      
      # Libera todos pacotes TCP que entrarem pela interface eth1
      iptables -A FORWARD -i eth1 -p tcp -j ACCEPT
      
      # Libera pacotes UDP destinados a porta 53 (DNS), contanto que tenham entrado pela interface eth1
      iptables -A FORWARD -i eth1 -p udp --dport 53 -j ACCEPT
      
      # Libera pacotes UDP com port de origem 53 (resposta do DNS), contanto que tenham entrado pela interface eth0
      iptables -A FORWARD -i eth0 -p udp --sport 53 -j ACCEPT
      
      # Libera segmentos TCP vindos pela interface eth0 e que tenham as flags SYN e ACK acesas (resposta de pedido de conexão TCP)
      iptables -A FORWARD -i eth0 -p tcp --tcp-flags SYN,ACK SYN,ACK -j ACCEPT
      
      
      # Libera segmentos TCP vindos pela interface eth0 e que não tenham a flags SYN acesa (pertencem a conexões estabelecidas)
      iptables -A FORWARD -i eth0 -p tcp ! --syn -j ACCEPT
      
    • Com filtro stateful:
      #!/bin/bash
      
      # Limpa as regras existentes
      iptables -F
      
      # As regras são inseridas na chain FORWARD, pois tratam de pacotes em trânsito pelo firewall
      
      # Libera todos pacotes de fluxos estabelecidos
      iptables -A FORWARD -m state --state ESTABLISHED -j ACCEPT
      
      # Libera pacotes que iniciem novos fluxos, originados na rede interna (interface eth1)
      iptables -A FORWARD -i eth1 -m state --state NEW -j ACCEPT
      
      # Regra default eh descartar
      iptables -P FORWARD DROP
      
  2. Caso 2: os computadores internos podem acessar somente serviços Web e DNS.
    #!/bin/bash
    
    # Limpa as regras existentes
    iptables -F
    
    # As regras são inseridas na chain FORWARD, pois tratam de pacotes em trânsito pelo firewall
    
    # Libera todos pacotes de fluxos estabelecidos
    iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
    
    # Libera datagramas UDP destinados a porta 53 (DNS), contanto que tenham se originado na rede interna
    iptables -A FORWARD -i eth1 -p udp --dport 53 -m state --state NEW -j ACCEPT
    
    # Libera segmentos TCP destinados as portas 80 (HTTP) e 443 (HTTPS), contanto que tenham se originado na rede interna
    iptables -A FORWARD -i eth1 -p tcp --dport 80 -m state --state NEW -j ACCEPT
    iptables -A FORWARD -i eth1 -p tcp --dport 443 -m state --state NEW -j ACCEPT
    
    # Descarta demais pacotes
    iptables -A FORWARD -j DROP
    
    • Versão alternativa, usando o módulo multiport:
      #!/bin/bash
      
      # Limpa as regras existentes
      iptables -F
      
      # As regras são inseridas na chain FORWARD, pois tratam de pacotes em trânsito pelo firewall
      
      # Libera todos pacotes de fluxos estabelecidos
      iptables -A FORWARD -m state --state ESTABLISHED -j ACCEPT
      
      # Libera datagramas UDP destinados a porta 53 (DNS), contanto que tenham se originado na rede interna
      iptables -A FORWARD -i eth1 -p udp --dport 53 -m state --state NEW -j ACCEPT
      
      # Libera segmentos TCP destinados as portas 80 (HTTP) e 443 (HTTPS), contanto que tenham se originado na rede interna
      iptables -A FORWARD -i eth1 -p tcp -m multiport  --dports 80,443 -m state --state NEW -j ACCEPT
      
      # Descarta demais pacotes
      iptables -A FORWARD -j DROP
      

Aula 25 - 13/06/16: Firewall

Atividade

Cada aluno deve implantar a seguinte rede virtual em seu computador utilizando a máquina virtual 1-Grafico para ser o PC e a máquina 1-Servidor para ser o Firewall:


Lab-firewall-intro.png


Inicie as máquinas virtuais, certificando-se de que suas interfaces de rede estejam em modo bridge. Configure os endereços IP de suas interfaces e também suas rotas default.

  1. Configure seu servidor como roteador.
  2. Configure no Ubuntu Gráfico como roteador padrão seu servidor.
  3. Configure uma regra que impeça seu cliente (Ubuntu Gráfico) de acessar qualquer porta da máquina www.ifsc.edu.br.
  4. Repita a regra, mas agora mandando um aviso ao cliente.
  5. Proíba o seu cliente de fazer ping para qualquer máquina, liberando todos os demais serviços.
  6. Limpe as regras anteriores.
     iptables -F
    
  7. Permita que seu cliente acesse qualquer máquina na porta 80, mas somente nesta porta.
  8. Limpe todas as regras.
  9. Mude a política para DROP e permita que o seu cliente acesse somente www.ifsc.edu.br.
  10. De seu cliente, faça um ataque do tipo ping of death em seu servidor:
    ping -f 192.168.3.1X
    
  11. Iniba ataques do tipo ping of death na chain INPUT do seu servidor.
  12. Teste novamente com seu cliente e tente perceber a diferença no comportamento dos dois ataques.

OBS.: Não esquecer de prever regras de retorno!!!


Como configurar o cenário


Na máquina Servidor executar os seguintes comandos:

1 - Ativar uma segunda interface de rede da máquina virtual em modo Brigde com a sua eth0:

2 - Configurar esta interface de rede conforme abaixo:
 sudo ifconfig eth1 10.1.X.Y/24
3 - Tornar uma máquina Linux roteador:
echo 1 > /proc/sys/net/ipv4/ip_forward
4 - Ativar o NAT na interface externa do firewall (eth0 na nossa rede de teste):
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE


Na máquina Gráfico executar os seguintes comandos:

1 - Configurar a interface de rede eth0 conforme abaixo:
 sudo ifconfig eth0 10.1.X.Z/24
2 - Configurar uma rota default:
 sudo route add default gw 10.1.X.Y

Aula 26 - 14/06/16: Firewall - Continuação da atividade

Aula 27 - 18/06/16: Firewall - Início do trabalho

O trabalho deverá ser feito utilizando a seguinte rede:


Firewall-rmu20161.jpeg

IMPLEMENTAR

Deverão ser atendidos os seguintes pontos:

  1. Definir a política das chain de acordo com o necessário;
  2. PC1 pode fazer apenas acesso VoIP ao servidor 172.18.135.175 e acesso Web ao servidor 172.18.135.17;
  3. PC2 pode fazer o que PC1 tem permissão. Além disso, pode fazer acesso externo SSH e Web;
  4. Todo o fluxo RTP deverá ocorrer na faixa de portas 10000-20000;
  5. A página www.ifsc.edu.br deve ser permitida para ambos os PCs;
  6. A máquina firewall somente aceita acesso SSH da máquina interna PC2. Ela não aceita acesso via SSH da rede externa;
  7. A máquina firewall somente deve bloquear ping da rede externa;
  8. A máquina firewall não deve iniciar trafego VoIP;
  9. Implementar mais regras de acordo com o desejado.


AVALIAÇÃO

  1. No dia 27/06 será demonstrado o funcionamento das regras implementadas (70% da nota);
  2. No mesmo dia deve ser entregue um relatório contendo todas as regras implementadas e explicação de funcionamento de cada uma delas (30% da nota).

Aula 28 - 20/06/16: Firewall - Continuação do trabalho

Aula 29 - 21/06/16: Firewall - Continuação do trabalho

Aula 30 - 27/06/16: Firewall - Continuação do trabalho

Aula 31 - 28/06/16: Firewall - Apresentação do trabalho

Aula 32 - 04/07/16: Introdução a QoS

Introdução a QoS

Como medir a qualidade de serviço de uma rede ?

  • Disponibilidade ?
  • Largura de banda
  • Latência (atraso fim-a-fim)
  • Variação de atraso (jitter)
  • Perda de pacotes


Rmu-tabela-qos.png
Um comparativo de requisitos de QoS de algumas aplicações


  • Como prover QoS ?

Qos-tarefas.png

Atividade

Fazer as duas atividades do final do slide.

Aula 33 - 05/07/16: Palestra

Aula 34 - 11/07/16: QoS em roteador Linux

QoS

Provendo QoS: conceitos básicos

Como PROVER qualidade de serviço em uma rede ?

  • Como classificar os pacotes, para que sejam tratados de acordo com os requisitos de QoS especificados ?
  • Como garantir banda para um determinada classe de tráfego ?
  • Como limitar o uso de banda ?
  • Como limitar o atraso fim-a-fim de pacotes ?
  • Como limitar a variação de atraso (jitter) de pacotes ?

Assume-se que a rede considerada seja formada por uma malha de roteadores. Cada interface de um roteador possui uma fila de saída, onde ficam os pacotes à espera de serem transmitidos, como mostrado na figura a seguir. Essas filas possuem tamanho limitado, sendo implementadas por buffers de memória. Para prover QoS, uma primeira necessidade é controlar quando saem pacotes por uma interface (para limitar banda), e a ordem em que pacotes saem (para priorizar pacotes, garantir banda e limitar atrasos). Isso significa atuar principalmente sobre as filas de saída das interfaces de rede.

Filas-roteador.png


Algumas técnicas conhecidas podem ser usadas para atender os requisitos acima:

  • Classificador: classifica os pacotes em classes de serviço, de acordo com contratos de tráfego predefinidos. Atua na entrada de pacotes no roteador.
  • Disciplinas de filas: trata de definir a ordem de saída de pacotes. Com isso se consegue implementar garantia de banda mínima, priorização de tráfego, redução de atraso fim-a-fim e variação de atraso.
  • Balde furado (leaky bucket): trata de definir quando pacotes podem sair. Com isso se pode fazer limitação de banda. Esta é uma técnica fundamental para fazer condicionamento de tráfego (traffic shaping);.


A combinação dessas técnicas possibilita atender os requisitos de QoS especificados para diferentes tipos de tráfego. Elas são amplamente usadas em arquiteturas para QoS na Internet, tais como Intserv e Diffserv.

QoS em um roteador Linux

Disciplinas de filas (qdisc)

Disciplinas de filas são mecanismos para condicionar a saída de pacotes por uma interface de rede. Com elas se podem priorizar pacotes e limitar taxas de bits de fluxos de saída.

Rmu-Qdisc-overview.png
Visão geral do enfileiramento de pacotes em uma interface de saída

As filas contidas nas qdisc podem ser tratadas de diferentes formas. Isso vai determinar a ordem e o ritmo com que os pacotes são desenfileirados para serem transmitidos. Alguns exemplos de qdisc implementadas no Linux:

Os diagramas abaixo ilustram algumas dessas qdisc:

Rmu-Prio-qdisc.gif
Uma disciplina de filas baseada em prioridades. Fonte: Differentiated Service on Linux HOWTO


Rmu-Tbf-qdisc.gif
A qdisc TBF (combinada com PRIO), usada para limitar a taxa de saída. Fonte: Differentiated Service on Linux HOWTO

Atividade

Os exercícios sobre disciplinas de filas serão realizados em um cenário em que dois tipos de fluxo são estabelecidos entre duas redes, que estão interligadas por um link ponto-a-ponto. Esse link tem capacidade limitada a 512 kbps. Os fluxos são representados por:

  • Uma transferência de um arquivo com HTTP
  • Uma chamada VoIP com SIP e RTP

Rede-qos-rtp.png


A rede a ser usada deve ser criada no Netkit, a partir da configuração abaixo:


Arquivo de configuração do Netkit (copie-o para dentro de Lab.conf)
# Global attributes: these values are obtained automatically from menu General->Preferences
global[mem]=32
global[compact]=False
global[vm]=0
global[clean]=False
# 32 MB por VM
# Não remove o diretório de trabalho ao final da execução
 
server1[type]=generic
server2[type]=generic
pc[type]=generic
r1[type]=gateway
r2[type]=gateway
 
# Rede 1: servidores + roteador r1
server1[eth0]=rede1:ip=192.168.1.1/24
server2[eth0]=rede1:ip=192.168.1.2/24
r1[eth0]=rede1:ip=192.168.1.254/24
 
# Rede 2: pc + roteador r2
r2[eth0]=rede2:ip=192.168.2.254/24
pc[eth0]=rede2:ip=192.168.2.1/24
 
# Link PPP entre Rede 1 e Rede 2 (512 kbps)
r1[eth1]=link:ip=10.0.0.1/30
r2[eth1]=link:ip=10.0.0.2/30
 
# Roteadores default dos servidores e pc
server1[default_gateway]=192.168.1.254
server2[default_gateway]=192.168.1.254
pc[default_gateway]=192.168.2.254
 
# Rotas estáticas nos roteadores
r1[route]=192.168.2.0/24:gateway=10.0.0.2
r2[route]=192.168.1.0/24:gateway=10.0.0.1
 
# Ativando o servidor HTTP em server1
server1[services]=apache2

Roteiro

1) Antes de mais nada, deve-se limitar a banda do enlace ponto-a-ponto (entre r1 e r2) a 256 kbps. Crie o arquivo /root/qdisc.sh em cada um desses roteadores, e grave neles o seguinte:

#!/bin/bash
 
# Limpa as qdisc que porventura existam
tc qdisc del dev eth1 root
 
# Cria uma qdisc HTB (Hierarchical Token Bucket) para limitar a saída a uma taxa comparável 
# a do link ponto-a-ponto
tc qdisc add dev eth1 root handle 1: htb default 1
tc class add dev eth1  parent 1: classid 1:1 htb rate 256kbit ceil 256kbit
Obs: isso implanta uma qdisc do tipo HTB (ser vista com detalhes numa aula posterior) para fazer a limitação de banda. Após criar o arquivo /root/qdisc.sh, execute-o:
bash /root/qdisc.sh

2) As chamadas VoIP serão simuladas usando uma ferramenta de teste chamada siprtp, que faz parte do projeto PJSIP. Seu uso deve ser da seguinte forma:

  • Em server2 executa-se o siprtp em modo servidor:
    siprtp --ip-addr=192.168.1.2
    
  • Em um dos roteadores deve-se executar o wireshark (ver menu Wireshark), escolhendo-se a interface eth0.
  • Em pc executa-se o siprtp em modo cliente, de forma a efetuar uma chamada para server2:
    siprtp --ip-addr=192.168.2.1 sip:0@192.168.1.2
    
  • Em pc pode-se monitorar o andamento da chamada teclando-se l. Um sumário como mostrado abaixo deve ser apresentado:
    >>> l
    List all calls:
    Call #0: CONFIRMED [duration: 00:00:01.643]
       To: sip:0@127.0.1.1;tag=PKcMBzp6yhIZQG-du1TsYkW1MPmX6L5V
       Signaling quality: got 1st response in 0 ms, connected after: 0 ms
       Stream #0: audio PCMU@8000Hz, 20ms/frame, 8.00KB/s (9.06KB/s +IP hdr)
                  RX stat last update: never
                     total 77 packets 12.03KB received (14.07KB +IP hdr)
                     pkt loss=0 (0.0%), dup=0 (0.0%), reorder=0 (0.0%)
                           (msec)    min     avg     max     last
                     loss period:   0.000   0.000   0.000   0.000
                     jitter     :   0.000   0.000   0.000   0.000
                  TX stat last update: never
                     total 77 packets 12.03KB sent (14.07KB +IP hdr)
                     pkt loss=0 (0.0%), dup=0 (0.0%), reorder=0 (0.0%)
                           (msec)    min     avg     max     last
                     loss period:   0.000   0.000   0.000   0.000
                     jitter     :   0.000   0.000   0.000   0.000
                 RTT delay      :   0.000   0.000   0.000   0.000
    
  • A cada vez que se teclar l, um novo sumário pode ser visualizado.
  • Quando se quiser encerrar a chamada, deve-se teclar h, e em seguida fornecer o número da chamada (0 - zero).
  • Após o término da chamada, recarregar os pacotes no wireshark (tecle no ícone para forçar a atualização). Em seguida selecione Telephony->VoIP Calls e visualize a chamada realizada. Experimente também selecionar Telephony->RTP->Show All streams e analisar a stream RTP da chamada. Observe particularmente os valores para delta e jitter.

3) O experimento da realização da chamada VoIP deve ser repetido, porém realizando-se também uma transferência de arquivo com HTTP entre server1 e pc:

  • Crie um arquivo de 16 MB em server1:
    dd if=/dev/urandom of=/var/www/teste.img bs=4096 count=4096
    
  • Inicie seu download em pc:
    wget http://192.168.1.1/teste.img > log 2>&1 &
    
  • Repita os passos do ítem 1, prestando especial atenção aos valores de jitter e perda de pacotes mostrados no sumário de chamada do siprtp. Compare aos valores obtidos quando foi realizada somente a chamada VoIP.

4) Chamadas VoIP são consideradas prioritárias em comparação a transferências de arquivos (e fluxos de dados em geral), pois possuem restrições de atrasos e jitter. Assim, devem ser definidas qdisc nos roteadores para priorizar pacotes RTP. Isso pode ser feito assim:

  • Em r1 e r2 cria-se uma qdisc do tipo prio na interface eth1. Os fluxos UDP com port 4000 (stream RTP criada pelo siprtp) devem ser colocados na fila de maior prioridade. Copie os comandos abaixo para dentro do arquivo /root/qdisc.sh:
    #!/bin/bash
     
    # Limpa as qdisc que porventura existam
    tc qdisc del dev eth1 root
     
    # Cria uma qdisc HTB (Hierarchical Token Bucket) para limitar a saída a uma taxa comparável 
    # a do link ponto-a-ponto
    tc qdisc add dev eth1 root handle 1: htb default 1
    tc class add dev eth1  parent 1: classid 1:1 htb rate 256kbit ceil 256kbit
     
    # Cria uma qdisc PRIO, porém subordinada a qdisc TBF
    tc qdisc add dev eth1 parent 1:1 handle 10:0 prio
     
    # Datagramas UDP vão pra fila mais prioritária.
    tc filter add dev eth1 parent 10: prio 1 protocol ip u32 match ip protocol 17 0xff flowid 10:1
     
    # Segmentos TCP vão pra fila menos prioritária.
    tc filter add dev eth1 parent 10: prio 1 protocol ip u32 match ip protocol 6 0xff flowid 10:2
    
    ... e em seguida execute-o:
    bash /root/qdisc.sh
    
  • Repita o ítem 2, e observe as perdas de pacotes e jitter da chamada VoIP. Houve melhora ?

5) Pela capacidade do link é possível haver mais de uma chamada VoIP. Sendo assim:

  • Calcule quantas chamadas podem ser atendidas através desse link.
  • Teste se de fato essa quantidade de chamadas pode ser atendida, respeitando-se seus requisitos de QoS. Para iniciar mais de uma chamada simultânea execute o siprtp da seguinte forma:
    # inicia duas chamadas
    siprtp --ip-addr=192.168.2.1 --count=2
    


Aula 35 - 12/07/16: QoS em roteador Linux

Realizar a atividade da aula passada.

Aula 36 - 18/07/16: QoS em roteador Linux - Trabalho

Trabalho

O trabalho será feito utilizando a rede da aula passada.


Rede-qos-rtp2.png


Configuração para o Netkit (salvar em Lab.conf)
# Global attributes: these values are obtained automatically from menu General->Preferences
# 32 MB por VM
global[mem]=32
# Não remove o diretório de trabalho ao final da execução
global[clean]=False
 
server1[type]=generic
server2[type]=generic
pc1[type]=generic
pc2[type]=generic
pc3[type]=generic
r1[type]=gateway
r2[type]=gateway
 
# Rede 1: servidores + roteador r1
server1[eth0]=rede1:ip=192.168.1.1/24
server2[eth0]=rede1:ip=192.168.1.2/24
r1[eth0]=rede1:ip=192.168.1.254/24
 
# Rede 2: pc + roteador r2
r2[eth0]=rede2:ip=192.168.2.254/24
pc1[eth0]=rede2:ip=192.168.2.1/24
pc2[eth0]=rede2:ip=192.168.2.2/24
pc3[eth0]=rede2:ip=192.168.2.3/24
 
# Link PPP entre Rede 1 e Rede 2 (512 kbps)
r1[eth1]=link:ip=10.0.0.1/30
r2[eth1]=link:ip=10.0.0.2/30
 
# Roteadores default dos servidores e pc
server1[default_gateway]=192.168.1.254
server2[default_gateway]=192.168.1.254
pc1[default_gateway]=192.168.2.254
pc2[default_gateway]=192.168.2.254
pc3[default_gateway]=192.168.2.254
 
# Rotas estáticas nos roteadores
r1[route]=192.168.2.0/24:gateway=10.0.0.2
r2[route]=192.168.1.0/24:gateway=10.0.0.1
 
# Ativando o servidor HTTP em server1
server1[services]=apache2


1) Aplicar e testar as regras de QoS listadas em "Regras para o r2" de forma que:

  • pc1 tenha garantidos 256 kbps, com garantia de QoS para uma chamada VoIP.
  • pc2 tenha garantidos 256 kbps, com garantia de QoS para duas chamadas VoIP.
  • pc3 não tenha banda garantida, mas possa usar a banda ociosa.
Regras para o r2
#!/bin/bash
 
IFACE=eth1
 
tc qdisc del dev $IFACE root > /dev/null 2>&1
 
# adiciona a qdisc raiz na interface eth0
tc qdisc add dev $IFACE root handle 1:0 htb default 23
 
# cria a classe filha, que impõe o limite de banda global desta HTB
tc class add dev $IFACE parent 1:0 classid 1:1 htb rate 512kbit ceil 512kbit
 
# cria as classes das aplicações

# Regras para pc1
tc class add dev $IFACE parent 1:1 classid 1:21 htb rate 256kbit ceil 512kbit
tc class add dev $IFACE parent 1:21 classid 1:31 htb prio 1 rate 90kbit ceil 90kbit
tc class add dev $IFACE parent 1:21 classid 1:32 htb prio 2 rate 166kbit ceil 512kbit

# Regras para pc2
tc class add dev $IFACE parent 1:1 classid 1:22 htb rate 256kbit ceil 512kbit
tc class add dev $IFACE parent 1:22 classid 1:33 htb prio 1 rate 180kbit ceil 180kbit
tc class add dev $IFACE parent 1:22 classid 1:34 htb prio 2 rate 76kbit ceil 512kbit

# Regras para pc3
tc class add dev $IFACE parent 1:1 classid 1:23 htb rate 1bps ceil 512kbit
 
# cria os filtros para classificar os datagramas
tc filter add dev $IFACE protocol ip parent 1:0 prio 1 u32 match ip protocol 17 0xff match ip src 192.168.2.1/32 flowid 1:31

tc filter add dev $IFACE protocol ip parent 1:0 prio 2 u32 match ip src 192.168.2.1/32 flowid 1:32

tc filter add dev $IFACE protocol ip parent 1:0 prio 1 u32 match ip protocol 17 0xff match ip src 192.168.2.2/32 flowid 1:33

tc filter add dev $IFACE protocol ip parent 1:0 prio 2 u32 match ip src 192.168.2.2/32 flowid 1:34

2) Incremente as regras de QoS acima para que o tráfego SSH tenha prioridade em relação aos demais tipos de tráfego de dados tanto para PC1 como para PC2. Usar Qdisc PRIO para estes dados.

3) Em relação ao exercício 2, ao invés de priorizar SSH modifique as regras para que se garanta ao menos 64 kbps para esse tipo de tráfego.

Avaliação

Entregar relatório individual contendo os itens abaixo e também os shell script contendo as regras cridas:

1) Texto breve falando sobre QoS e QoS em roteadores Linux

2) As regras criadas/testadas e texto explicando cada uma delas

3) Testes executados a fim de comprovação do funcionamento

Data de entrega: 23/07/2016 até ao meio dia

Aula 37 - 19/07/16: QoS em roteador Linux - Trabalho

Aula 38 - 25/07/16: QoS em roteador Linux - Trabalho

Aula 39 - 26/07/16: Recuperação