PSD29007-Engtelecom(2018-1) - Prof. Marcos Moecke

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar

Registro on-line das aulas

Unidade 1

Unidade 1

Aula 1 (16 fev)


Aula 2 (20 fev)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Explorar a interface do Matlab.
  • Funções de visualização das variáveis no workspace.
  • Execução de instruções passo a passo.
  • Escrita de script .m
  • Uso da execução das seções de um script.
  • Incremento de valor e execução.
EXEMPLOS:
  • Leia com atenção e execute o exemplo (Moving-Avarage Filter) na página de help da função filter.
  • Leia com atenção o help Using FFT, abra o script clicando no botão [Open this Example]. Execute o script seção após seção. Note o uso da fft para determinar a frequência das manchas solares.
  • Para melhorar o desempenho no Matlab recomendo que leiam a pagina do Help, . Também gostaria de lembra-los que a tecla F9 executa o código destacado no Help. Programação com scripts .m.
DICAS:
  • No help on-line da Matworks, usando o botão [Try This Example > Try in your browser], permite executar o código no próprio browser sem ter nenhuma instalação do Matlab. Para verificar que o código realmente é executado mude a amplitude do ruído randômico para 0.1 ou 0.5, insira o comando close all antes da primeira linha, e execute todo o código [Run All]
  • No help do Matlab, usando o botão [Open this Example], é possível executar o código seção a seção.
  • Leia sobre manchas solares para entender o que são os dados do segundo exemplo.
Aula 3 (23 fev)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Sinais no dominio do tempo e dominio da frequencia. Uso da função fft
Exemplo de uso da FFT
%% Signal in Time Domain 
% Use Fourier transforms to find the frequency components of a signal buried in noise.
% Specify the parameters of a signal with a sampling frequency of 1 kHz and a signal duration of 1.5 seconds
Fs = 1000;            % Sampling frequency                    
T = 1/Fs;             % Sampling period       
L = 1500;             % Length of signal
t = (0:L-1)*T;        % Time vector

% Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz sinusoid of amplitude 1.
S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

% Corrupt the signal with zero-mean white noise with a variance of 4.
X = S + 2*randn(size(t));

% Plot the noisy signal in the time domain. It is difficult to identify the frequency components by looking at the signal X(t).
subplot(211);
plot(1000*t(1:200),X(1:200))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')

%% Signal in Frequency Domain
% Compute the Fourier transform of the signal.
Y = fft(X);

% Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based on P2 and the even-valued signal length L.
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

% Define the frequency domain f and plot the single-sided amplitude spectrum P1. 
% The amplitudes are not exactly at 0.7 and 1, as expected, because of the added noise. 
% On average, longer signals produce better frequency approximations.
f = Fs*(0:(L/2))/L;
subplot(212);
plot(f,P1)
ylim([0 1.05]) 
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

% Now, take the Fourier transform of the original, uncorrupted signal and retrieve the exact amplitudes, 0.7 and 1.0.
Y = fft(S);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

plot(f,P1) 
title('Single-Sided Amplitude Spectrum of S(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
  • Amostragem de Sinais (Experimento 1.2)
  • Relembrar teorema da amostragem. Efeito da amostragem abaixo da frequência de Nyquist. Aliasing.
  • Notar que as amostras de um sinal (3 Hz) e um sinal (7 Hz) são idênticas quando amostrado com um sinal de 10 Hz.
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.2
fs = 10; % frequencia (Hz) de amostragem dos sinais
Ts = 1/fs; fase = 0;
time = 0:Ts:(1-Ts);
f1 = 3; % frequencia (Hz) do sinal s_1
f2 = 7; % frequencia (Hz) do sinal s_2
s_1 = cos(2*pi*f1*time+fase);
s_2 = cos(2*pi*f2*time+fase);
fsa = 1000; % frequência auxiliar de amostragem usada apenas para representação dos sinais originais
Tsa = 1/fsa;
time_aux = 0:Tsa:(1-Tsa);
figure(1);
stem(time,s_1,'ob');
hold on;
plot(time_aux, cos(2*pi*f1*time_aux+fase),'--k');
stem(time,s_2,'+r');
plot(time_aux, cos(2*pi*f2*time_aux+fase),'--m');
hold off;
legend('s_1 discreto','s_1 contínuo','s_2 discreto','s_2 contínuo')
Aula 4 (27 fev)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 2.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 2.2
% Resposta em frequencia usando a função freqz
N = 1;
num = [1 0 0 0];
den = poly([0.8 0.2])
%den = [1 0.6 -0.16];
% modo 1
%[H,w]=freqz(num,den,[0:pi/100:N*pi-pi/100]);
%plot(w/pi, abs(H));
% modo 2
%[H,w]=freqz(num,den);
%plot(w/pi, abs(H));
% modo 3
%[H,w]=freqz(num, den, 'whole');
%plot(w/pi, abs(H));
% modo 4
freqz(num, den, 'whole');
figure(2);
zplane(num,den);

%% Resposta em frequencia substituindo z -> e^(jw)
syms z
Hf(z) = symfun(z^2/(z-0.2)/(z+0.8),z);
pretty(Hf)
latex(Hf)
N = 1;
w = [0:pi/100:N*pi-pi/100];
plot(w/pi,abs(Hf(exp(1i*w))))
%title(['$' latex(Hf) '$'],'interpreter','latex')
text(0.2,2,['H(z) = ' '$$' latex(Hf) '$$'],'interpreter','latex')
xlabel(['w/' '$$' '\pi' '$$'],'interpreter','latex')
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado



Avaliações

  • Entrega dos diversas Atividades Extraclasse ao longo do semestre.
  • Entrega do Projeto Final. O projeto é avaliado nos quesitos:
1) Implementação do Sistema,
2) Documentação,
3) Avaliação Global do aluno no projeto.
  • Entrega dos Atividades Extraclasse ao longo do semestre AE1 a AE(N). A entrega, detalhes e prazos de cada AE serão indicados na plataforma Moodle
Atividades Relâmpago (prazo e forma de entrega ver na plataforma AVA)
AE1 - Revisão de Sinais e Sistemas (prazo e forma de entrega ver na plataforma AVA)
  • Enviar o relatório (em pdf) incluindo as principais figuras obtidas e as respostas e conclusões na plataforma AVA.
  • Para a geração de documentação/relatórios técnicos/artigos, está disponibilizada a Plataforma Sharelatex. Utilize preferencialmente o modelo de artigo no padrão ABNT em 1 coluna. Se quiser pode utilizar o publish do matlab mas entregue o documento em pdf, com as respostas solicitadas e as conclusões de cada Atividade.


Referências Bibliográficas

  1. 1,0 1,1 DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235


Curso de Engenharia de Telecomunicações