Mudanças entre as edições de "PSD29007-Engtelecom(2017-2) - Prof. Marcos Moecke"

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar
Linha 742: Linha 742:
  
 
===Unidade 4===
 
===Unidade 4===
;Aula 24 (6 Nov)
+
;Aula 24 (6 Nov):
 
*Realização de Filtros
 
*Realização de Filtros
 
:* Realização de filtros FIR: Forma Direta.
 
:* Realização de filtros FIR: Forma Direta.
Linha 773: Linha 773:
 
:* Estudar [http://www.mathworks.com/help/simulink/slref/discretefirfilter.html estrutura de filtros disrcetos FIR no Matlab], [http://www.mathworks.com/help/dsp/ref/filterrealizationwizard.html Filter Realization Wizard - Reference], [http://www.mathworks.com/help/dsp/ug/filter-realization-wizard.html Filter Realization Wizard - User Guide].
 
:* Estudar [http://www.mathworks.com/help/simulink/slref/discretefirfilter.html estrutura de filtros disrcetos FIR no Matlab], [http://www.mathworks.com/help/dsp/ref/filterrealizationwizard.html Filter Realization Wizard - Reference], [http://www.mathworks.com/help/dsp/ug/filter-realization-wizard.html Filter Realization Wizard - User Guide].
 
:*Ver pag. 303 a 312 de <ref name="SHENOI2006"/>.
 
:*Ver pag. 303 a 312 de <ref name="SHENOI2006"/>.
====ATUAL====
+
 
;Aula 27 (9 Nov)
+
;Aula 27 (9 Nov):
 
:* Realização de Filtros usando o comando [http://www.mathworks.com/help/dsp/ref/realizemdl.html realizemdl] do MatLab   
 
:* Realização de Filtros usando o comando [http://www.mathworks.com/help/dsp/ref/realizemdl.html realizemdl] do MatLab   
 
<syntaxhighlight lang=matlab>
 
<syntaxhighlight lang=matlab>
Linha 807: Linha 807:
 
::* Ver [http://www.mathworks.com/help/dsp/ref/polyphase.html polyphase], [http://www.mathworks.com/help/dsp/ref/mfilt.firdecim.html mfilt.firdecim], [http://www.mathworks.com/help/dsp/ref/dsp.firdecimator-class.html dsp.FIRDecimator]
 
::* Ver [http://www.mathworks.com/help/dsp/ref/polyphase.html polyphase], [http://www.mathworks.com/help/dsp/ref/mfilt.firdecim.html mfilt.firdecim], [http://www.mathworks.com/help/dsp/ref/dsp.firdecimator-class.html dsp.FIRDecimator]
  
<!--
+
====ATUAL====
 +
;Aula 28 (13 Nov):
 
:* Realização de filtros IIR de 2ª ordem: Forma Direta I e II, e Forma Transposta I e II.
 
:* Realização de filtros IIR de 2ª ordem: Forma Direta I e II, e Forma Transposta I e II.
 
:<math> H(z) = \frac{Y(z)}{X(z)},    H(z) = \frac{b_0 z^2 + b_1 z^1 + b_2}{z^2 + a_1 z^1 + a_2},    H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} </math>
 
:<math> H(z) = \frac{Y(z)}{X(z)},    H(z) = \frac{b_0 z^2 + b_1 z^1 + b_2}{z^2 + a_1 z^1 + a_2},    H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} </math>
Linha 861: Linha 862:
 
:*Função para projeto de filtros - [http://www.mathworks.com/help/signal/ref/designfilt.html designfilt]
 
:*Função para projeto de filtros - [http://www.mathworks.com/help/signal/ref/designfilt.html designfilt]
  
 +
<!--
 
;Aula 27 (29 Mai)
 
;Aula 27 (29 Mai)
 
*Filtros Digitais: Utilização de filtros FIR
 
*Filtros Digitais: Utilização de filtros FIR

Edição das 14h22min de 13 de novembro de 2017

Registro on-line das aulas

Unidade 1

Aula 1 (27 Jul)
  • Resposta de sistemas LTI (Experimento 1.1)
  • Relembrar o conceito de equação de diferenças de um sistema LTI discreto e resposta ao impulso.
  • Resposta ao delta de Kronecker do sistema LTI discreto
onde , e logo
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.1
alpha = 1.15; N = 256;
x = [1 zeros(1,N)];
y = filter(1,[1 -1/alpha],x);
stem(y);
Aula 2 (31 Jul)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Amostragem de Sinais (Experimento 1.2)
  • Relembrar teorema da amostragem. Efeito da amostragem abaixo da frequência de Nyquist. Aliasing.
  • Notar que as amostras de um sinal (3 Hz) e um sinal (7 Hz) são idênticas quando amostrado com um sinal de 10 Hz.
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.2
fs = 10; % frequencia (Hz) de amostragem dos sinais
Ts = 1/fs; fase = 0;
time = 0:Ts:(1-Ts);
f1 = 3; % frequencia (Hz) do sinal s_1
f2 = 7; % frequencia (Hz) do sinal s_2
s_1 = cos(2*pi*f1*time+fase);
s_2 = cos(2*pi*f2*time+fase);
fsa = 1000; % frequência auxiliar de amostragem usada apenas para representação dos sinais originais
Tsa = 1/fsa;
time_aux = 0:Tsa:(1-Tsa);
figure(1);
stem(time,s_1,'ob');
hold on;
plot(time_aux, cos(2*pi*f1*time_aux+fase),'--k');
stem(time,s_2,'+r');
plot(time_aux, cos(2*pi*f2*time_aux+fase),'--m');
hold off;
legend('s_1 discreto','s_1 contínuo','s_2 discreto','s_2 contínuo')
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 2.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 2.2
% Resposta em frequencia usando a função freqz
N = 1;
num = [1 0 0 0];
den = poly([0.8 0.2])
%den = [1 0.6 -0.16];
% modo 1
%[H,w]=freqz(num,den,[0:pi/100:N*pi-pi/100]);
%plot(w/pi, abs(H));
% modo 2
%[H,w]=freqz(num,den);
%plot(w/pi, abs(H));
% modo 3
%[H,w]=freqz(num, den, 'whole');
%plot(w/pi, abs(H));
% modo 4
freqz(num, den, 'whole');
figure(2);
zplane(num,den);

%% Resposta em frequencia substituindo z -> e^(jw)
syms z
Hf(z) = symfun(z^2/(z-0.2)/(z+0.8),z);
pretty(Hf)
latex(Hf)
N = 1;
w = [0:pi/100:N*pi-pi/100];
plot(w/pi,abs(Hf(exp(1i*w))))
%title(['$' latex(Hf) '$'],'interpreter','latex')
text(0.2,2,['H(z) = ' '$$' latex(Hf) '$$'],'interpreter','latex')
xlabel(['w/' '$$' '\pi' '$$'],'interpreter','latex')
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado
Aula 3 (3 Ago)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Filtragem de Sinais
Variação do Experimento 3.1
%% Variação do Experimento 3.1 do livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Ex3_1.m
% Exemplificando as possiveis formas de realizar a filtragem de um sinal x(n)
 

clc; clear all; close all;
%% Definindo valores iniciais
Nh = 10; Nx = 20;
%Nh = 400; Nx = 10000;
x = ones(1,Nx);
% A resposta ao inpulso de um sistema h(n) 
% no filtro FIR aos coeficientes b(n) = h(n) 
h = [1:Nh]; b = h;
%% Filtrando o sinal e medindo tempos

% Filtragem utilizando a convolução
% NOTE: length(y) = length(x) + length(h) -1
tic;  % iniciar a contagem do tempo
y1 = conv(x,h); 
t(1) = toc; % terminar acontagem e mostrar tempo no console

% filtragem utilizando a equação recursiva
% NOTE: length(y) = length(x)
tic;
y2 = filter(b,1,x);
t(2) = toc;

% filtragem utilizando a equação recursiva
% aumentando o tamanho de x para que length(y3) = length(y1)
x3 = [x zeros(1,length(h)-1)];
tic;
y3 = filter(h,1,x3); 
t(3) = toc;

length_y = length(x) + length(h) - 1;

% filtragem utilizando a FFT
% a y = IFFT(FFT(x)*FFT(h))
tic;
X = fft(x,length_y);
H = fft(h,length_y);
Y4 = X.*H;
y4 = ifft(Y4);
t(4) = toc;

% filtragem utilizando a função fftfilt
% a y = IFFT(FFT(x)*FFT(h))

tic
y5 = fftfilt(h,x3);
t(5) = toc;

disp('Comprimento do vetor de saída length(y)')
disp(['    ' num2str([length(y1) length(y2) length(y3) length(y4) length(y5)])])
disp('Tempo usado na filtragem em micro segundos')
disp(['    ' num2str(t*1e6) ' us'])

%%  Plotando o gráfico
subplot(411);stem(y1);
hold on;
stem(y2,'xr');
stem(y3,'+m');
legend('y1', 'y2', 'y3')
hold off
subplot(412);stem(y1, 'ob');legend('y1')
subplot(413);stem(y2, 'xr'); hold on; stem(zeros(size(y1)),'.w');hold off; legend('y2')
subplot(414);stem(y3, '+m');legend('y3')
  • Análise de Sinais (Experimento 3.2) - Análise de um sistema h[n] correspondente a um filtro passa-faixa, utilizando um sinal de entrada x[n] senoidal (ou um sinal r[n] de ruído branco). Análise da entrada x[n] e saída y[n] usando a fft.
Variação do Experimento 3.2
%% Variação do Experimento 3.2 do livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Ex3_2.m
 
% Análise de sinais no domínio da frequência 
fs = 200;   % frequência de amostragem
f_sinal = 10;  A_sinal = 1;   % freqüência e amplitude do sinal 
T = 1;      % Duração do sinal
k_noise = 0.2;    % Intensidade do ruído  
snr = 0;

time = 0 : 1/fs : (T-1/fs);
L = length(time);
freq = time * fs/T;

% Sinal x(n) com amplitude A_sinal e frequencia de f_sinal (Hz) 
x = A_sinal*sin(2*pi*f_sinal.*time);

% Adicionando um ruido com a função randn
noise = k_noise*randn(1,fs*T);
x1 = x + noise;

% Adicionando um ruido com a função awgn
x2 = awgn(x,snr);

% Obtendo o sinal no domínio da frequencia
X = abs(fft(x))/L;
X1 = abs(fft(x1))/L;
X2 = abs(fft(x2))/L;

% Obtendo os plots dos sinais no dominio do tempo e domínio da frequencia
figure(1);
subplot(211);plot(time,x, 'b', time,x1, 'g', time, x2, 'r'); 
legend('x(n)', 'x(n)+rand', 'x(n)awgn', 'Location','south')
xlabel('Tempo (seg)'); ylabel('Magnitude (linear)');
subplot(212);plot(freq, (abs(X)), 'b'); hold on ;plot(freq, (abs(X1)),'g');plot(freq,(abs(X2)),'r'); 
legend('X(f)', 'X(f)+rand', 'X(f)+awgn', 'Location','south'); hold off;
xlabel('Frequencia (Hz)'); ylabel('Magnitude (linear)');
  • Consulte a documentação do Matlab sobre
     fft, ifft, fftshift, randn
    
  • Consulte a documentação do Matlab sobre
     plot, grid, subplot, hold, xlabel, ylabel, title, legend, xlim, ylim, log10, log
    
  • Consulte a documentação do Matlab sobre text, zp2tf, tf2zp, fftfilt, awgn
  • Ver pag. 141 a 145 e 230 a 235 de [1]
Aula 4 (7 Ago)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
%% Experimento 2.3 - Filtros Digitais
% Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Exp2_3.m
 
%% 1º filtro
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 ]'; P = [p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 2º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p1 p1' p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 3º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.99*exp(1j*pi/4);
p2 = 0.9*exp(1j*pi/4 - 1j*pi/30);
p3 = 0.9*exp(1j*pi/4 + 1j*pi/30);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p2 p2' p3 p3']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
  • Exercício - Sinal DTMF com ruído
  • Verifique se o Matlab está reproduzindo corretamente o som.
%% Carregando o som
clear, close, clc
load handel;

%% Reproduzindo o som 
sound(y,Fs)
 
% Reproduzindo o som 
%soundsc(y,Fs)
 
% Reproduzindo o som 
%player = audioplayer(y, Fs);
%play(player);
  • Usando o Matlab (ou Audacity) para gerar um sinal DTMF correspondente a um número N e adicionar um ruido ao sinal. Opcionalmente utilize um sinal DTMF gravado
  • Utilizar uma frequência de amostragem de 8000Hz de fazer a duração do sinal igual a 2 segundos.
  • Para adicionar o ruído utilize a função y = awgn(x,snr), ou y = x + nivel*randn(n).
  • Observe este sinal no domínio do tempo (DT) e domínio da frequência (DF).
%% Carregando o som
clear, close, clc
[y,Fs] = audioread('DTMF_8kHz.ogg');

%% Reproduzindo o som 
sound(y,Fs)

%% Visualizando o som no DT
time = [0:length(y)-1]'/Fs;
plot(time',y'); xlabel('segundos');
xlim([0 time(end)]), ylim([-1 1]);

%% Visualizando o som no DF
Nfreq = length(y);
freq = linspace(0,2*pi,Nfreq)'*Fs/pi/2;
Y = fft(y,Nfreq)/Nfreq;
plot(freq,abs(Y)); xlabel('Hertz');
xlim([0 Fs/2]);

Unidade 2

Aula 5 (10 Ago)
  • Filtros Analógicos:
  • Função de transferência
  • Resposta em frequência: para obter a resposta em frequência é necessário avaliar
  • O projeto de filtros analógicos é realizado em 2 etapas:
  1. projeto de um filtro passa baixas (LP) protótipo normalizado com frequência de passagem
  2. transformação em frequência para o tipo de filtro (LP, HP, BP ou BS)
Aula 6 (14 Ago)
  • Análise básica de filtros analógicos com Matlab.
Dado um sistema linear invariante no tempo, representado pela função de transferência , obter a resposta de frequência do sistema (Magnitude e Fase).
Aula 7 e 8 (17 e 21 Ago)
  • Projeto de filtros analógicos do tipo Butterworth
  • A aproximação de magnitude de filtros analógicos pode ser realizado usando as aproximações de Butterworth, Chebyshev (tipo 1 ou 2) e Cauer.
  • Projeto de filtros analógicos do tipo Butterworth, considerando: é a frequência de passagem do filtro LP, é a atenuação em dB na frequência de passagem, é a frequência de stopband do filtro, é a atenuação em dB na frequência de stopband, , , são as frequências de passagem e stopband do filtro protótipo.
ATENÇÃO!!!!  Tinha um erro no valor de   antes estava .  
Jessica obrigado por avisar.
  • É necessário determinar a ordem do filtro:
  • Em seguida obter os polos do filtro:
  • Em seguida é necessário obter a função de transferência:
, onde
  • No caso de um filtro LP é necessário ainda obter a função de transferência do filtro especificado
  • Ver pag. 186 a 204 de [2]
%Butterworth lowpass Responses (db)
w = 0.1:0.01:10;
H=inline('10*log10(1./(1+w.^(2*n)))','w','n');
for k = 1:1:10
    semilogx(w,H(w,k)); hold on; 
end
grid on
 
%Butterworth lowpass Responses (linear)
w = 0.1:0.01:2;
H=inline('1./(1+w.^(2*n))','w','n');
for k = 1:1:10
    plot(w,H(w,k)); hold on; 
end
grid on
Aula 10 (24 Ago)
  • Projeto de filtros analógicos do tipo Chebyshev I.
  • Determine a ordem mínima necessária:
  • Em seguida obter os polos do filtro:
, onde
  • Exemplos de projeto de filtro passa-baixas com frequência de passagem de 16000 rad/s com atenuação máxima de 0.3 dB, frequência de rejeição de 20000 rad/s com atenuação mínima de 20 dB; e ganho em DC de 3 dB.
%% Projeto de filtro passa-baixas usando funções do Matlab  
%% Especificações do filtro 
Wp =16000; Ws = 20000; Ap = 0.3; As = 20; G0= 3;
% Para analisar o filtro projetado, use fvtool(b,a) para observar plano s, resposta em magnitude, fase e atraso de grupo
 
%% Butterworth
[n,Wn] = buttord(Wp, Ws, Ap, As,'s')
[b,a] = butter(n,Wn, 's');

%% Chebyshev I
n = cheb1ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby1(n,Ap, Wp, 's');

%% Chebyshev II
n = cheb2ord(Wp, Ws, Ap, As,'s')
[b,a] = cheby2(n,As, Ws, 's');

%% Elliptic - Cauer
[n, Wn] = ellipord(Wp, Ws, Ap, As,'s')
[b,a] = ellip(n,Ap,As, Wn, 's');
  • Ver pag. 204 a 208 de [2]
Aula 11 (28 Ago)
  • Filtros Analógicos:
  • Transformações de frequência de filtros analógicos
  • passa-baixas () -> passa-baixas ()
  • Substituição de variáveis
  • Cálculo do protótipo com
  • passa-baixas () -> passa-altas ()
  • Substituição de variáveis
  • Cálculo do protótipo com
  • passa-baixas () -> passa-faixa ( e )
  • Substituição de variáveis
  • Cálculo do protótipo com
onde e
  • passa-baixas () -> rejeita-faixa ( e )
  • Substituição de variáveis
  • Cálculo do protótipo com
onde e
  • Ver pag. 208 a 218 de [2]
Aula 12 (31 Ago)
  • Exemplos de Filtros Analógicos:
  • Exemplo 1: Filtro passa-baixas ( = 952Hz, = 1236 Hz, = 1 dB, = 20 dB)
  • Exemplo 2: Filtro passa-baixas ( = 1236 Hz, = 952Hz, = 1 dB, = 20 dB)
  • Exemplo 3: Filtro passa-baixas ( = 852Hz, = 80 Hz, = 770 Hz, = 941 Hz, = 1 dB, = 20 dB)
NOTA:
  • No calculo do filtro lembre-se de usar as frequências angulares para , , , .
  • onde () é a frequência de passagem em Hz (rad/s), () é a frequência de rejeição em Hz (rad/s), () é a frequência central em Hz (rad/s), () é a largura de banda em Hz (rad/s).
  • Confira os projetos dos filtros plotando as respostas em frequência dos filtros protótipo H(p) e filtro final H(s) de cada um dos exemplos.
Aula 13 (04 Set)
  • Filtros Digitais: Filtros IIR: transformações do tempo contínuo no tempo discreto
  • Transformação invariante ao impulso (pode ser usada apenas para filtros com forte atenuação em frequência altas, ex: passa-baixas e passa-faixa)
  • Transformação bilinear (pode ser usada para todos tipos de filtro)
  • Ver pag. 219 a 229 de [2]
  • Ver pag. 403 a 415 e 434 a 435 de [1]
Aula 14 (11 Set)
  • Filtros Digitais: Filtros IIR:
  • Ex 4.9
Aula 15 (14 Set)
  • Filtros Digitais: Filtros IIR: Uso do Matlab.
O projeto dos filtros digitais IIR baseados na transformada bilinear no Matlab é realizada em dois passos: (1) Determinação da ordem do filtro; (2) Determinação dos coeficientes do numerador e denominador de .

Unidade 3

Aula 16 (21 Set)
  • Filtros Digitais: Filtros FIR
  • Filtros de fase linear: simétricos e antisimétricos (Tipo 1, 2, 3 e 4)
  • Filtros de fase linear: propriedades (respostas em frequência possíveis, distribuição dos zeros em simetria quadrantal)
Aula 17 (25 Set)
  • Coeficientes da série de Fourier de filtros ideias: LP, HP, BP, BS
  • Passa-baixas (Low-pass)
  • Passa-altas (High-pass)
  • Passa-faixa (Band-pass)
  • Rejeita-banda (Band-stop)
  • Janela retangular, fenômeno de Gibbs
Aula (28 Set, 02 e 05 Out)
  • Projeto de FILTRO IIR
  • Atividade a distância, com laboratório liberado para uso dos alunos para a realização da AE2.
Aula 18 (09 Out)
  • Uso de funções de janelamento temporal no projeto de filtros digitais.
  • Tipos de janelas temporais usadas no projeto de filtros digitais.
  • Retangular
  • Bartlett
  • Hanning
  • Hamming
  • Blackman
  • em todas as janelas quando
onde é para par e para impar
L = 64; 
wvtool(rectwin(L), triang(L), bartlett(L), hann(L), hamming(L), blackman(L), blackmanharris(L), nuttallwin(L));
Tabela 5.1
Janela
Retangular 13.3 20.33 0.92/M
Triangular 26.6 27.41
Bartlett 26.5 27.48
Hann 31.5 44.03 3.11/M
Bartlett-Hanning 35.9 40.77
Hamming 42.5 54.08 3.32/M
Bohman 46.0 51.84 7.01/M
Parzen 53.1 56.89
Backman 58.1 75.25 5.56/M
Flat Top 88.0 106.3
Backman-Harris 92.1 108.8
Nutfall 93.8 109.7
  • Dados acima obtidos para um filtro passa baixas de ordem N = 64 com
  • Ver pag. 256 a 265 de [2]
  • Ver artigos:
Aula 19 e 20 (16 e 19 Out)
  • Filtros Digitais: Filtros FIR:
  • Projeto de filtro FIR utilizando janelas temporais fixas.
  • Exemplo de projeto
Projetar um filtro passa baixas usando uma janela temporal fixa (verificar a janela que atende a especificação)
wp = 0.2*pi; Ap = 0.2 dB; Gp = 0 dB
ws = 0.3*pi; As = 60 dB;
  • Informar qual o tipo de janela, a ordem obtida, e o valor de wc do projeto final
  • Exemplo de projeto
Projetar um filtro LP usando uma janela temporal fixa (hamming, bartlett-hanning, hanning).
wp = 0.4*pi; Ap = 1 dB; Gp = 0 dB
ws = 0.6*pi; As = 40 dB;
  • Comparar os 3 tipos de janela, a ordem obtida, e o valor de wc em cada projeto.
Use como uma estimativa inicial os valores da Tabela 5.1 pag. 268.
  • PASSO 1 - Escolher o tipo de janela de acordo com a atenuação do lóbulo lateral Asl e As.
  • PASSO 2 - Estimar a ordem N1 do filtro considerando os parâmetros Dw
  • PASSO 3 - Calcule os coeficientes clp do filtro LP , calcule os valores da janela w e obtenha a resposta ao impulso do filtro h = clp * w.
  • PASSO 4 - Verifique o valor real de Dwr = wAs-wAp, e faça a correção da ordem do filtro em função do desvio constatado. N2 = N*Dwr/Dw.
  • PASSO 5 - Corrija o valor de projeto dos coeficientes Clp do filtro ideal, a janela e a resposta ao impulso.
  • Repita o PASSO 3 até 5, até obter um filtro que atenda as especificações de Dw.
  • PASSO 6 - Desloque a frequência de corte wc de modo a obter o valor correto de wp. wc2 = wp + (wp-wAp).
  • Projeto de filtro FIR.
  • Projete os dois filtros projetados anteriormente como IIR, utilizando 3 janelas diferentes. Compare os filtros obtidos com os filtros IIR.
Aula 21 (23 Out)
  • Filtros Digitais: Filtros FIR
  • Projeto de filtro FIR utilizando janelas temporais ajustáveis
L = 64; 
r = 60;    % Chebyshev e Tukey
alpha = 3; % Gauss
betha = 8; % Kaiser
nbar = 10; % Taylor
wvtool(kaiser(L,betha), chebwin(L,r), gausswin(L,alpha),tukeywin(L,r), taylorwin(L,nbar,-r));

Para a janela de Kaiser, a estimação do fator e da ordem do filtro são obtidos por:

onde é a atenuação do lóbulo lateral e é a largura da banda de transição em rad/amostra.

Utilizando o Matlab é possível estimar esses valores utilizando a função kaiserord. Exemplo da obtenção de um filtro passa baixa com , , atenuação de 40 dB na "stopband"

fsamp = 8000;
fcuts = [1000 1500];
mags = [1 0];
devs = [0.01 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);

Com os parâmetros é possível projetar o filtro usando a função fir1, que utiliza o método da janela para o projeto do filtro.

h_fir = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
[Hw,w] =freqz(h_fir);
plot(w*fsamp/2/pi,20*log10(abs(Hw)))
title(['Kaiser filter N = ' num2str(n)])
%fvtool(h_fir,1)
Aula 22 (26 Out)
  • Filtros Digitais: Filtros FIR
  • Uso das funções window e fir1 do Matlab para projeto de filtro FIR

%% Exemplo de Filtro wp1 = 0.1 \pi; ws1 = 0.2 \pi; ws2 = 0.6 \pi; wp2 = 0.8 \pi; Ap = 1 dB; Ar = 40 dB; </syntaxhighlight>

Aula 23 (30 Out)
  • Filtros Digitais: Filtros FIR
  • Uso do [2] Fdatool para projeto de filtro IIR, FIR equiripple e FIR com janela.
%% Exemplo de Filtro 
fp = 3000 Hz;
fr = 4000 Hz;
fs = 20000 Hz;
Ap = 1 dB;
Ar = 40 dB;


Unidade 4

Aula 24 (6 Nov)
  • Realização de Filtros
  • Realização de filtros FIR: Forma Direta.
FIR FD MathWorks.png
Figura 1 - Realização de filtros FIR na Forma Direta
  • Realização de filtros FIR: Forma Transposta. A transposição consiste na inversão do fluxo de todos os sinais, substituição de nós de soma por derivações e as derivações por soma. A entrada e saída também devem ser invertidas. A realização da transposição não altera o sistema implementado.
FIR FDT MathWorks.png
Figura 2 - Realização de filtros FIR na Forma Transposta
FIR FDT2 MathWorks.png
Figura 3 - Realização de filtros FIR na Forma Transposta
  • Realização de filtros FIR de fase linear: simétrico tipo I e II e antissimétrico tipo III e IV.
FIR Sym2 MathWorks.png
Figura 4 - Realização de filtros FIR de fase linear Simétrico I
FIR Sym1 MathWorks.png
Figura 5 - Realização de filtros FIR de fase linear Simétrico II
FIR AntiSym3 MathWorks.png
Figura 6 - Realização de filtros FIR de fase linear Antisimétrico III
FIR AntiSym4 MathWorks.png
Figura 7 - Realização de filtros FIR de fase linear Antisimétrico IV
Aula 27 (9 Nov)
  • Realização de Filtros usando o comando realizemdl do MatLab
Fs = 30000;              % Sampling Frequency
Fpass = 12000;           % Passband Frequency
Fstop = 13000;           % Stopband Frequency
Dpass = 0.01;            % Passband Ripple
Dstop = 0.01;            % Stopband Attenuation
flag  = 'scale';         % Sampling Flag

% Calculate the order from the parameters using KAISERORD.
[N,Wn,BETA,TYPE] = kaiserord([Fpass Fstop]/(Fs/2), [1 0], [Dstop Dpass]);

% Calculate the coefficients using the FIR1 function.
b  = fir1(N, Wn, TYPE, kaiser(N+1, BETA), flag);

hFIR = dsp.FIRFilter;
hFIR.Numerator = b;

% Para definir diretamente os coeficientes
realizemdl(hFIR)

% Para definir os coeficientes através de uma matriz de entrada
realizemdl(hFIR,'MapCoeffsToPorts','on');
  • Realização de filtros FIR: Cascata, Polifase
  • Vantagens do uso de filtro Polifase:
1) Quando o sinal será subamostrado (downsampling) de "D" amostras após a filtragem, a complexidade da implementação é reduzida de "D" vezes, pois apenas uma das "fases" precisa ser implementada.
2) Para reduzir o harware a ser implementado, é possível implementar apenas uma das "fases" do filtro e trocar "D" vezes os coeficientes.

ATUAL

Aula 28 (13 Nov)
  • Realização de filtros IIR de 2ª ordem: Forma Direta I e II, e Forma Transposta I e II.
  • Separando H(z) em dois blocos , e obtendo o sinal intermediário W(z) ou Y(z) dependendo da ordem dos blocos.
H1 H2 MathWorks.png
Figura 7 - Separação do filtro IIR H(z) em H1(z) e H2(z)
Com o ordenamento dos blocos e em ordem direta teremos a Forma Direta I:
Podemos obter a realização de na forma direta.
Para obter a realização de , é necessário reescrever a saída em função de e das saídas anteriores e :
IIR FD1 MathWorks.png
Figura 8 - Realização de filtros IIR na Forma Direta I
Com o ordenamento dos blocos e em ordem reversa teremos a Forma Direta II:
IIR FD2a MathWorks.png
Figura 9 - Realização de filtros IIR na Forma Direta II
Considerando que os sinais no centro são idênticos podemos simplificar e obter a Forma Direta II (Canônica):
IIR FD2b MathWorks.png
Figura 10 - Realização de filtros IIR na Forma Direta II Canônica
Considerando as regras de transposição podemos obter a forma transposta I e II. A transposição consiste na inversão do fluxo de todos os sinais, substituição de nós de soma por derivações e as derivações por soma. A entrada e saída também devem ser invertidas. A realização da transposição não altera o sistema implementado.
IIR FT1 MathWorks.png
Figura 11 - Realização de filtros IIR na Forma Transposta I
IIR FT2 MathWorks.png
Figura 12 - Realização de filtros IIR na Forma Transposta II
  • Realização de filtros IIR de ordem maior que 2: Forma Direta I e II, Transposta I e II, Cascata, Paralela
  • Os filtros IIR de ordem superior a 2 podem ser implementados nas FD I ou II e na FT I ou II. No entanto nessa configuração tendem a ficar instáveis ao terem os coeficientes quantizados, e também terem uma significativa alteração da resposta em frequência. Para reduzir esses problemas uma possível solução é a decomposição em filtros de 2ª ordem para serem associados na forma em Cascata ou Paralela.
  • Filtros Digitais: Ferramentas do Matlab para projeto


Avaliações

  • Entrega dos diversas Atividades Extraclasse ao longo do semestre.
  • Entrega do Projeto Final. O projeto é avaliado nos quesitos:
1) Implementação do Sistema,
2) Documentação,
3) Avaliação Global do aluno no projeto.
  • Entrega dos Atividades Extraclasse ao longo do semestre AE1 a AE(N). A entrega, detalhes e prazos de cada AE serão indicados na plataforma Moodle
AE1 - Revisão de Sinais e Sistemas (prazo e forma de entrega ver na plataforma Moodle)
  • ATIVIDADE 1 - Experimento 3.1
  1. Utilizando Nh = 10 e Nx = 20, execute a filtragem pelo menos 3 vezes em seguida e anote os tempos.
  2. Anote o tamanho dos sinais de saída y, e analise os plots.
  3. Aumente o tamanho do filtro (Nh) e o tamanho do sinal de entrada (Nx) e execute a filtragem pelo menos 3 vezes em seguida e anote os tempos.
  4. Anote o tamanho dos sinais de saída y.
  5. Explique os resultados obtidos.
  • ATIVIDADE 2 - Experimento 3.2
  1. Acrescente um subplot para mostrar o sinal no domínio da frequência com a magnitude em dB 20*log10(abs(X)).
  2. Limite a escala da magnitude entre -100 e 1 dB usando ylim.
  3. Insira em todos os plots e subplot, títulos, legendas e labels para os eixos X e Y,
  4. Posicione o texto "F Hz" para indicar o pico nos gráficos 2 e 3, conforme mostrado na figura abaixo.
DTxDF sinal noise.png

Figura 1 - Análise no domínio da frequência do sinal

  1. Varie o valor de k entre 0 e 2 (com passo de 0.1) e analise o sinal no domínio do tempo e no domínio da frequência.
  2. Varie o valor de snr entre 100 e 1 e analise o sinal no domínio do tempo e no domínio da frequência.
  3. Utilize k = 0.3 e snr = 40 e varia a frequência do sinal entre 0 até 200 Hz (com passo de 10 Hz). Interprete os resultados obtidos.
  • ATIVIDADE 3 - Experimento 1.2 + 3.2
  1. Utilizando o espectro de frequência (Exp3.2) repita as medições feitas com o processo de amostragem (Experimento 1.2)
  2. Varie o valor da frequência de amostragem de 6 até 20 Hz e observe
  3. Para analisar o espectro talvez seja conveniente mudar a amplitude dos sinais de entrada (sugestão A1 = 0.3 e A2 = 0.8).
  4. Em qual frequência deixa de ocorrer recobrimento do sinal 2.
  5. Qual conclusão que você chega em relação a amostragem de sinais utilizando para a frequência de amostragem valores acima e abaixo do dobro da frequencia de Nyquist.
  • ATIVIDADE 4 - Filtragem de sinal DTMF
  1. Usando o Matlab (ou Audacity) gere um sinal DTMF correspondente a um número N (ver tabela abaixo), com duração de 2 segundos, com frequência de amostragem de 4kHz.
  2. Use o Matlab para ouvir o sinal x[n], mostrar o sinal no domínio do tempo e frequência.
  3. Use um filtro passa-faixa que permita a passagem apenas da frequência da linha (ou coluna) y[n]. Faça a filtragem no domínio do tempo, usando a função filter. Para projetar o filtro, posicionando no mínimo um polo sobre a frequência que deseja passar, e um zero sobre a frequência que deseja rejeitar.
  4. Use o Matlab para ouvir o sinal x[n], mostrar o sinal no domínio do tempo e frequência.
  1. VER os experimentos 3.1, 3.2 e 2.3 para códigos de auxilio.
Aluno Tecla
Fernando 1
Gabriel 6
Jessica 0
João 3
Leticia 9
Marcos 5
Pedro 8
Vitor 2
  • Enviar o relatório (em pdf) incluindo as principais figuras obtidas e as respostas e conclusões na plataforma Moodle.
  • Para a geração de documentação/relatórios técnicos/artigos, está disponibilizada a Plataforma Sharelatex. Utilize preferencialmente o modelo de artigo no padrão ABNT em 1 coluna. Se quiser pode utilizar o publish do matlab mas entregue o documento em pdf, com as respostas solicitadas e as conclusões de cada Atividade.
AE2 - Projeto de Filtros Digitais IIR (Entrega e prazos ver Moodle)

Esta avaliação visa verificar se você conhece a metodologia de projeto de filtros digitais IIR: (a) projeto de um filtro protótipo analógico passa-baixas H(p); (b) transformação em frequência do filtro H(p) -> H(s), obtendo o filtro LP, HP, BP, BS, conforme o tipo de filtro desejado; (c) transformação do filtro analógico em filtro digital H(s) -> H(z) utilizando a transformação "Bilinear" ou pela transformação "Invariante ao Impulso". Nesta avaliação é solicitado que cada equipe realize o projeto de 5 filtros, e trabalhos individuais serão 4 filtros. Para todos os filtros considere como valores default fa = 4 kHz, Gp = 0 dB, Ap = 1 dB e As = 40 dB (exceto se indica outro valor na tabela abaixo. Os filtro BP deverão ter apenas o BP1 projetado conforme o procedimento completo, sendo que nos demais deverá ser aproveitado o filtro H(p) para obtê-los.

Equipe Filtro 1 Filtro 2 Filtro 3 Filtro 4 Filtro 5
Equipe 1 LP - (f1 = 941 Hz; f2 = 1209 Hz, As = 20 dB, Butterworth) HP - (f1 = 941 Hz; f2 = 1209 Hz, As = 30 dB, Chebychev 1) BP1 - (f1 = 627 Hz; f2 = 683 Hz, f3 = 711 Hz; f4 = 767 Hz, Elíptico ) BP2 - (f1 = 693 Hz; f2 = 755 Hz, f3 = 785 Hz; f4 = 847 Hz, Elíptico ) BP3 - (f1 = 1202 Hz; f2 = 1309 Hz, f3 = 1363 Hz; f4 = 1470 Hz, Elíptico )
Equipe 2 LP - (f1 = 941 Hz; f2 = 1209 Hz, As = 25 dB, Chebychev 1) HP - (f1 = 941 Hz; f2 = 1209 Hz, As = 25 dB, Butterworth) BP1 - (f1 = 847 Hz; f2 = 922 Hz, f3 = 960 Hz; f4 = 1035 Hz, Chebychev 2 ) BP2 - (f1 = 1329 Hz; f2 = 1447Hz, f3 = 1507 Hz; f4 = 1625 Hz, Chebychev 2 ) BP3 - (f1 = 1470 Hz; f2 = 1600 Hz, f3 = 1666 Hz; f4 = 1796 Hz, Chebychev 2 )
Equipe 3 LP - (f1 = 941 Hz; f2 = 1209 Hz, As = 30 dB, Chebychev 1) HP - (f1 = 941 Hz; f2 = 1209 Hz, As = 20 dB, Butterworth) BP1 - (f1 = 767 Hz; f2 = 835 Hz, f3 = 869 Hz; f4 = 937 Hz, Elíptico ) BP2 - (f1 = 693 Hz; f2 = 755 Hz, f3 = 785 Hz; f4 = 847 Hz, Elíptico ) BP3 - (f1 = 1329 Hz; f2 = 1447Hz, f3 = 1507 Hz; f4 = 1625 Hz, Elíptico )
Equipe 4 LP - (f1 = 941 Hz; f2 = 1209 Hz, As = 25 dB, Butterworth) HP - (f1 = 941 Hz; f2 = 1209 Hz, As = 35 dB, Chebychev 1) BP1 - (f1 = 1088 Hz; f2 = 1185 Hz, f3 = 1233 Hz; f4 = 1330 Hz, Chebychev 2 ) BP2 - (f1 = 1329 Hz; f2 = 1447Hz, f3 = 1507 Hz; f4 = 1625 Hz, Chebychev 2 ) BP3 - (f1 = 627 Hz; f2 = 683 Hz, f3 = 711 Hz; f4 = 767 Hz, Chebychev 2 )
Equipe 5 LP - (f1 = 941 Hz; f2 = 1209 Hz, As = 35 dB, Chebychev 1) HP - (f1 = 941 Hz; f2 = 1209 Hz, As = 25 dB, Butterworth) BP1 - (f1 = 693 Hz; f2 = 755 Hz, f3 = 785 Hz; f4 = 847 Hz, Elíptico ) BP2 - (f1 = 1202 Hz; f2 = 1309 Hz, f3 = 1363 Hz; f4 = 1470 Hz, Elíptico )
onde:
LP (Low Pass)- Passa Baixa, HP (High Pass)- Passa Altas, BP (Band Pass)- Passa Faixa, BS (Band Stop)- Rejeita Faixa
- são as "N" frequência de especificação do filtro dadas em Hertz (kHz ou MHz); f_a é a frequência de amostragem dos sinais e do sistema.
- frequência de passagem; - frequência de rejeição, - Atenuação máxima na banda de passagem (dB), - Atenuação mínima na banda de rejeição (dB), - Ganho médio na banda de passagem (dB).
  • Os filtros LP e HP devem ser realizados utilizando a aproximação de Butterworth ou Chebyshev tipo 1 (devendo ser todos os calculados efetuados a partir das equações), enquanto os filtros BP devem ser realizados utilizando a aproximação de Chebyshev tipo 2 ou Euler (podendo ser calculada a função H(p) a partir das funções do Matlab.
  • A tabela acima indica o tipo de filtro que cada equipe deve utilizar
  • Para ambos filtros deve indicada a ordem do filtro, o valor de polos e zeros, e as equações de H(p), H(s), H(z).
  • Deve ser apresentado de forma gráfica a resposta em frequência dos filtros (ganho em dB e fase) dos filtros (a) protótipo H(p), (b) Filtro analógico H(s) e Filtro digital H(z). Para mostrar que os filtros atendem a especificação utilize uma mascara com as especificações.
  • No caso do filtro H(z) também deve ser mostrado o atraso de grupo (ver função grpdelay do Matlab)
  • Apresente o diagrama dos pólos e zeros dos filtros H(p), H(s) e H(z)
  • Utilize a mesma escala em dB para os 3 gráficos de cada filtro. Nas abcissas utilize uma escala em Hz (kHz ou MHz). Utilize uma mascara com cor diferenciada para indicar claramente a especificação do filtro, e crie um segundo gráfico mostrando claramente a banda de passagem conforme ilustrado nas figuras abaixo:

Resposta em frequência - Ganho em dB Detalhe da banda de passagem da resposta em frequência - Ganho em dB

  • Escreva um relatório técnico em PDF mostrando os resultados obtidos e comentando os resultados obtidos. Não é necessário apresentar a teoria utilizado para o projeto, mas todos os cálculos e metodologia utilizada devem estar documentados.
  • Envie o relatório em pdf e os arquivos ".m" utilizados na plataforma Moodle.

ATUAL

AE3 - Projeto de Filtros Digitais FIR (Entrega e prazos ver Moodle)

Esta avaliação visa verificar se você conhece a metodologia de projeto de filtros digitais FIR: (a) Projeto de filtros com Janela Fixas e Ajustáveis; (b) Projeto de filtros com o algoritmo de Parks-McCleallan; Nesta avaliação é solicitado que cada equipe realize os mesmos filtros projeto de filtros da atividade AE2.

  • Para todos filtros deve indicada a ordem do filtro, o valor de polos e zeros. Procure obter em cada caso a menor ordem que possibilite ter uma resposta de frequência que atende a sua especificação.
  • Deve ser apresentado de forma gráfica a resposta em frequência dos filtros (ganho em dB e fase e atraso de grupo) dos Filtro digital H(z).
  • Apresente o diagrama dos pólos e zeros do filtro H(z)
  • Utilize a mesma escala em dB para os filtros. Nas abcissas utilize uma escala em Hz (kHz ou MHz). Utilize uma mascara com cor diferenciada para indicar claramente a especificação do filtro, e crie um segundo gráfico mostrando claramente a banda de passagem conforme ilustrado nas figuras da atividade AE2.
  • Escreva um relatório técnico em PDF mostrando os resultados obtidos e comentando os resultados obtidos. Não é necessário apresentar a teoria utilizado para o projeto, mas todos os cálculos e metodologia utilizada devem estar documentados.
  • Envie o relatório em pdf e os arquivos ".m" utilizados na plataforma moodle.


Referências Bibliográficas

  1. 1,0 1,1 1,2 1,3 DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 SHENOI, B. A. Introduction to Digital Signal Processing and Filter Design. 1.ed. New Jersey: John Wiley-Interscience, 2006. 440 p. ISBN 978-0471464822
  3. LATHI, Bhagwandas P. Sinais e Sistemas Lineares. 2. ed. Porto Alegre: Artmed-Bookman, 2007. 856 p. ISBN 978-8560031139


Curso de Engenharia de Telecomunicações