DLP29006-Engtelecom(2018-1) - Prof. Marcos Moecke

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar

MURAL DE AVISOS E OPORTUNIDADES DA ÁREA DE TELECOMUNICAÇÕES


Registro on-line das aulas

Unidade 1 - Introdução

Unidade 1 - Inicialização

Aula 1 (16 fev)
  • Introdução aos dispositivos lógicos programáveis:
  • Conceito, tipos de PLDs
  • SPLD: PAL, PLA e GAL
  • CPLDs
Exemplos de PLDs
Ep310 macrocell.jpg
Figura 1.1 - Macrobloco do PLD EP300 da ALTERA
FONTE: https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html
Macrocell EP900.png
Figura 1.2 - Macrocélula dos PLDs Clássicos EP600, EP900, EP1800 da ALTERA (1999)
FONTE: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ds/archives/classic.pdf
Ep1800 block diagram.jpg Ep1800 block diagram2.jpg
Figura 1.3 - Architetura do PLD EP1800 da ALTERA
FONTE: https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html
FONTE: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ds/archives/classic.pdf
PackagePinOut EP1810.png ChipEP1810.png
Figura 1.5 - Pinagem e tipos de encapsulamento do PLD EP1800 da ALTERA
FONTE: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ds/archives/classic.pdf
FONTE: multisound_tahiti.jpeg
Max 5000 architecture.jpg
Figura 1.6 - Architetura do CPLD MAX 5000 da ALTERA
FONTE: https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html
  • Preços
  • Fabricantes de DLPs/FPGAs e familias de DLPs atuais.
Aula 2 (19 fev)
  • Arquitetura de FPGAs (Xilinx e Altera): CLB, LAB, RAM, DSP, Clock, PLL, I/O
  • Vizualização no Chip Planner de um projeto. (importante todos alunos terem acesso a IFSC-CLOUD
Ver pag. 413 a 431 de [1]
Ver pag. 495 a 501 de de [2]
Aula 3 (21 fev)
  • Historia, processo de produção dos chips.
Unidade 2 - Introdução ao VHDL e ambienta EDA - QUARTUS

Unidade 2 - Introdução ao VHDL e ambienta EDA - QUARTUS

Aula 4 e 5 (26 e 28 fev)
  • Introdução ao VHDL e ambiente EDA - QUARTUS
  • Estrutura do código VHDL
  • Declaração das bibliotecas e pacotes LIBRARY / PACKAGE

library library_name;
use library_name.package)name.all;

  • ENTITY

entity entity_name is
  [generic (
    cons_name1: const_type const_value;
    cons_name2: const_type const_value;
    ...
    cons_nameN: const_type const_value);]
  [port (
    signal_name1: mode signal_type;
    signal_name2: mode signal_type;
    ...
    signal_nameN: mode signal_type);]
  [declarative_part]
[begin
  statement_part]
end [entity] [entity_name];

  • ARCHITECTURE

architecture arch_name of entity_name is
  [declarative_part]
begin
  statement_part
end [architecture] [arch_name];

  • Exemplo - Declaração de uma porta NAND em VHDL
library std;
use std.standard.all;

entity nand_gate is
	port (a, b: in bit; x: out bit);
end entity;

architecture nome_arch of nand_gate is
begin
	x <= a nand b;
end architecture;


  • Exemplo 2.2 (VHDL) - programação de um flip-flop
 -- Declaração das bibliotecas e pacotes
 LIBRARY ieee;
 USE ieee.std_logic_1164.all;

 -- Especificação de todas as entradas e saídas do circuito
 ENTITY flip_flop IS
  PORT (d, clk, rst: IN STD_LOGIC;
   q: OUT STD_LOGIC);
 END;
  
 -- Descrição de como o circuito deve funcionar
 ARCHITECTURE flip_flop OF flip_flop IS
 BEGIN
  PROCESS (clk, rst)
  BEGIN
   IF (rst='1') THEN
    q <= '0';
   ELSIF (clk'EVENT AND clk='1') THEN
    q <= d;
   END IF;
  END PROCESS;
 END;
RTL Ex2 2 Pedronib.png
Figura 2.2 - Código RTL do Exemplo 2.2
  • Use o Technology Map Viewer para ver a como o circuito foi mapeado para os elementos lógicos disponíveis no dispositivo FPGA selecionado (EP1C3T100A8)
TM Ex2 2 Pedronib.png
Figura 2.3 - Technology Map do Exemplo 2.2
ChipPlanner Ex2 2 Pedronib.png
Figura 2.4 - Chip Planner do Exemplo 2.2
  • Uso das bibliotecas no VHDL.
  • Library std
O Package standard: é parte do VHDL desde a primeira versão (1987). Ela contem definição de tipos de dados (BIT, INTEGER, BOOLEAN, CHARACTER, etc.) e seus operadores logicos, aritméticos, de comparação e shift.
O Package textio fornece os recurso para o tratamento de textos e arquivos, que podem ser utilizados na simulação.
  • Como declarar e usar os pacotes da biblioteca std.
Note que esses pacotes são implicitamente carregados não precisando ser declarados. Ambos pacotes foram expandidos no VHDL 2008.
-- NAO É NECESSARIO DECLARAR
library std;
use std.standard.all;
use std.textio.all;
  • Onde estão os arquivos dessa biblioteca na versão Quartus II instalada nos computadores do IFSC e na IFSC_CLOUD?
ls /opt/altera/13.0sp1/quartus/libraries/vhdl/std
  • Library ieee
O Package std_logic_1164 define os tipos de dados STD_ULOGIC e STD_LOGIC.
O Package numeric_std define os tipos de dados SIGNED e UNSIGNED e seus operadores considerando o tipo STD_LOGIC como base.
O Package numeric_bit define os tipos de dados SIGNED e UNSIGNED e seus operadores considerando o tipo BIT como base.
O Package numeric_std_unsigned introduz operadores sobre o tipo STD_LOGIC_VECTOR, considerando os como números sem sinal.
O Package numeric_bit_unsigned introduz operadores sobre o tipo BIT_VECTOR, considerando os como números sem sinal.
O Package fixed_pkg (e pacotes associados) definem os tipos de ponto fixo unsigned (UFIXED) e signed (SFIXED) e seus operadores.
O Package float_pkg (e pacotes associados) definem o tipo de ponto flutuante (FLOAT) e seus operadores.
  • Pacotes não padronizados (NÃO UTILIZAR)
O Package std_logic_arith define os tipos de dados SIGNED e UNSIGNED e seus operadores. Deve ser sempre substituído por pelo pacote padrão equivalente numeric_std. (disponível da Mentor e Synopsys)
O Package std_logic_unsigned é semelhante ao numeric_std_unsigned. (disponível da Synopsys)
O Package std_logic_signed é semelhante ao acima operando sobre números com sinal. (disponível da Synopsys)
  • Como declarar e usar os pacotes da biblioteca ieee.
library ieee;
-- UTILIZAR ESTES PACOTES
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

-- NAO UTILIZAR ESTES PACOTES
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_unsigned.all;
  • Onde estão os arquivos dessa biblioteca na versão Quartus II versão 13.0sp1 instalada nos computadores do IFSC e na IFSC_CLOUD?
Os pacotes padrão:
ls /opt/altera/13.0sp1/quartus/libraries/vhdl/ieee
Os pacotes não padrão:
ls /opt/altera/13.0sp1/quartus/libraries/vhdl/mentor/arithmetic  (Mentor Graphics)
ls /opt/altera/13.0sp1/quartus/libraries/vhdl/synopsys/ieee (Synopsys)
  • Os arquivos dessa biblioteca do padrão (versão 2008) estão apenas disponíveis a partir do Quartus II versão 16.0 instalado na IFSC_CLOUD?
ls /opt/altera/16.0/quartus/libraries/vhdl/ieee/2008
Aula 6 (2 mar)
  • Introdução ao VHDL e ambienta EDA - QUARTUS
  • Estrutura do código VHDL
  • Modifique o circuito do flip-flop para que ele passe a ter 4 flip-flops, e realize as simulações funcional e temporal do circuito.
RTL 4FF.png
Figura 2.5 - RTL 4 FF
SIM1 4FF.png
Figura 2.6 - Simulação Funcional de 4 FF 100ns
SIM2 4FF.png
Figura 2.7 - Simulação Temporal de 4 FF 100ns

Note que na simulação funcional a mudança da saída Q ocorre no instante em que ocorre a borda de subida do clock ou no momento do reset. No entanto, no caso da simulação com timing, existe um atraso de ~6ns nestas mudanças.

IMPORTANTE: Na prática normalmente não é necessário fazer a simulação temporal, pois através do Time Quest Report é possivel verificar se o circuito atende as restrições de tempo.

  • Para definir as restrições de tempo do clock por exemplo, pode ser adicionado um arquivo .sdc ao projeto definindo a frequencia do clock esperada através da seguinte linha:
create_clock -name CLK50MHz -period 50MHz [get_ports {*}]


  • Exemplo 2.3 (VHDL e QSIM) - programação de um circuito somador com registrador
Realizar as simulações funcional e temporal do circuito
Observar o "Technology Map" e o "RTL" do circuito
 LIBRARY ieee;
 USE ieee.std_logic_1164.all;

 ENTITY registered_comp_add IS
  PORT (clk: IN STD_LOGIC;
   a, b: IN INTEGER RANGE 0 TO 7;
   reg_comp: OUT STD_LOGIC;
   reg_sum: OUT INTEGER RANGE 0 TO 15);
 END;

 ARCHITECTURE circuit OF registered_comp_add IS
  SIGNAL comp: STD_LOGIC;
  SIGNAL sum: INTEGER RANGE 0 TO 15;
 BEGIN
  comp <= '1' WHEN a>b ELSE '0';
  sum <= a + b;
  PROCESS (clk)
  BEGIN
   IF (clk'EVENT AND clk='1') THEN
    reg_comp <= comp;
    reg_sum <= sum;
   END IF;
  END PROCESS;
 END;
Acrescente saídas para o sinal sum e para o sinal comp, de modo a poder observar estes sinais no simulador QSIM e realize novas simulações funcional e temporal.
RTL Ex2 3 Pedronib.png
Figura 2.8 - Código RTL do Exemplo 2.3
ver Tutorial do QSIM - Introduction to Simulation of VHDL Designs da ALTERA.
Ver pag. 3 a 24 de [2]
Unidade 3 - Tipos de Dados e Operadores em VHDL

Unidade 3 - Tipos de Dados e Operadores em VHDL

Aula 7 (5 mar)
  • Tipos de Dados em VHDL.
  • Objetos de VHDL: CONSTANT, SIGNAL, VARIABLE, FILE.
  • Palavra chave OTHERS
Ver pag. 31 a 35 de [2]
  • Bibliotecas padrão IEEE (std_logic_1164, numeric_std).
  • ATENÇÃO!!! Não use as bibliotecas que não são padrão (std_logic_arith, std_logic_unsigned, std_logic_signed)
  • Exemplo 3.3 Multiplicador de 4x4 bits (UN)SIGNED e INTEGER
Código Multiplicador
--LIBRARY ieee;
--USE ieee.numeric_std.all;

ENTITY multiplicador4x4 IS
-- multiplicador usando UNSIGNED
-- PORT (a, b: IN UNSIGNED(3 DOWNTO 0);    -- min(a) = 0; max(a) = 15       <- 4 bits
-- y: OUT UNSIGNED(7 DOWNTO 0));           -- min(a*b) = 0, max(a*b) = 225  -> 8 bits

-- multiplicador usando SIGNED
-- PORT (a, b: IN SIGNED(3 DOWNTO 0);      -- min(a) = -8; max(a) = 7       <- 4 bits 
-- y: OUT SIGNED(7 DOWNTO 0));             -- min(a*b) = -56, max(a*b) = 64 -> 8 bits

-- multiplicador usando INTEGER (positivos)
-- PORT (a, b: IN INTEGER RANGE 0 TO 15;   -- min(a) = 0; max(a) = 15       -> 4 bits
-- y: OUT INTEGER RANGE 0 TO 225);         -- min(a*b) = 0, max(a*b) = 225  -> 8 bits

-- multiplicador usando INTEGER (positivos e negativos)
-- PORT (a, b: IN INTEGER RANGE -8 TO 7;   -- min(a) = -8; max(a) = 7       -> 4 bits
-- y: OUT INTEGER RANGE -56 TO 64);        -- min(a*b) = -56, max(a*b) = 64 -> 8 bits 
END ENTITY;

ARCHITECTURE v1 OF multiplicador4x4 IS
BEGIN
 y <= a * b;
END ARCHITECTURE;
  • Observar o número de elementos lógicos, bits usados para representar as entradas e saídas.
  • Observar o código RTL obtido.
  • Realizar a simulação com entradas UNSIGNED e INTEGER na faixa de valores de 0 até 15, e analisar se o valor da saída está correto.
  • Realizar a simulação com entradas SIGNED e INTEGER na faixa de valores de -8 até 7, e analisar se o valor da saída está correto.
Ver pag. 39 a 54 de [2]
Aula 8 (7 mar)
  • Tipos de Dados em VHDL.
  • Classificação dos tipos de dados.
  • Tipos de dados: BIT, BIT_VECTOR, BOOLEAN, INTEGER, NATURAL, POSITIVE, CHARACTER, STRING, STD_(U)LOGIG, STD_(U)LOGIG_VECTOR
	package standard is
	type boolean is (false,true); 
	type bit is ('0', '1');
	type severity_level is (note, warning, error, failure); 
	type integer is range -2147483647 to 2147483647; 
	type real is range -1.0E308 to 1.0E308; 
	type time is range -2147483648 to 2147483647 
		units 
			fs;
			ps = 1000 fs;
			ns = 1000 ps;
			us = 1000 ns; 
			ms = 1000 us; 
			sec = 1000 ms; 
			min = 60 sec; 
			hr = 60 min; 
		end units;
	subtype natural is integer range 0 to integer'high; 
	subtype positive is integer range 1 to integer'high; 
	type string is array (positive range <>) of character; 
	type bit_vector is array (natural range <>) of bit;
	PACKAGE std_logic_1164 IS
	TYPE std_ulogic IS ( 'U',  -- Uninitialized
                         'X',  -- Forcing  Unknown
                         '0',  -- Forcing  0
                         '1',  -- Forcing  1
                         'Z',  -- High Impedance   
                         'W',  -- Weak     Unknown
                         'L',  -- Weak     0       
                         'H',  -- Weak     1       
                         '-'   -- Don't care
                       );
	TYPE std_ulogic_vector IS ARRAY ( NATURAL RANGE <> ) OF std_ulogic;
	SUBTYPE std_logic IS resolved std_ulogic;
	TYPE std_logic_vector IS ARRAY ( NATURAL RANGE <>) OF std_logic;
  • Exemplo 3.1 Buffer Tri-state
Importante: O terceiro estado 'Z' só pode ser usado em saídas, e a sua realização nos FPGAs só ocorre nos nós de I/O.
  • Exemplo 3.2 Circuito com Saida "don't care"
  • Tipos de dados: SIGNED e UNSIGNED
  • Exemplo 3.3 Multiplicador (visto anteriormente)
  • Resumo dos Tipos predefinidos.
Tipo de Dado Package Library Valores Observações
BOOLEAN standard std TRUE e FALSE sintetizável
BIT standard std valores '0', '1' sintetizável
INTEGER standard std números inteiros de 32 bits [de -2^31 até + (2^31 - 1)] sintetizável
NATURAL standard std números inteiros não negativos [de 0 até + (2^31 - 1)] sintetizável
POSITIVE standard std números inteiros positivos [de 1 até + (2^31 - 1)] sintetizável
BOOLEAN_VECTOR standard (2008) std vetor de BOOLEAN sintetizável
BIT_VECTOR standard std vetor de BIT sintetizável
INTEGER_VECTOR standard std vetor de INTEGER sintetizável
REAL standard std números reais [de -1.0E-38 até + 1.0E-38] simulação
CHARACTER standard std caracteres ASCII
STRING standard std vetor de CHARACTER
STD_LOGIC std_logic_1164 ieee valores 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-' sintetizável
STD_LOGIC_VECTOR std_logic_1164 ieee vetor de STD_LOGIC sintetizável
SIGNED numeric_std ieee STD_LOGIC_VECTOR que aceitam operações aritméticas com sinal sintetizável
UNSIGNED numeric_std ieee STD_LOGIC_VECTOR que aceitam operações aritméticas sintetizável
SIGNED numeric_bit ieee BIT_VECTOR que aceitam operações aritméticas com sinal sintetizável
UNSIGNED numeric_bit ieee BIT_VECTOR que aceitam operações aritméticas sintetizável
SIGNED std_logic_arith ieee STD_LOGIC_VECTOR que aceitam operações aritméticas com sinal sintetizável (não é padrão)
UNSIGNED std_logic_arith ieee STD_LOGIC_VECTOR que aceitam operações aritméticas sintetizável (não é padrão)
UFIXED fixed_pkg + (2008) ieee números de ponto fixo sem sinal sintetizável
SFIXED fixed_pkg + (2008) ieee números de ponto fixo com sinal sintetizável
FLOAT float_pkg + (2008) ieee Números de ponto flutuante sintetizável
Aula 9 (12 mar)
  • Desafio - Fazer um circuito que detecte se existe alguma vaga vazia em um lote de 5 vagas. Cada entrada x(n) está alta '1' se a vaga está vazia. A saída y estará alta '1' sempre que houver uma ou mais vagas vazias.
Importante: O don't care não funciona como se espera para uma entrada, por isso, use don't care apenas para saídas.
x = "1----" -- não funciona em VHDL
  • Se quiser mesmo usar don't care em entradas use a função std_match do pacote numeric_std
std_match(x, "1----") -- funciona em VHDL
  • Faça a simulação do circuito para ver se está funcionando,

Vagas5.png

  • Os alunos foram liberados para assistir uma palestra pelos 30 anos do campus SJE as 14h00.

ATUAL

Aula 10 (14 mar)
  • Tipos definidos pelo usuário:
  • Escalares (Inteiros e Enumerados)
  • Tipos de Array 1D x 1D, 2D , 1D x 1D x 1D, 3D
Exemplos Ex 3.5, Ex 3.6 e Ex 3.7
Ver pag. 51 a 70 de [2]
  • Tipos de dados predefinidos: FIXED e FLOAT (apenas conhecer)
  • RECORD e SUBTYPE
  • Uso de ARRAYs em portas
  • Declaração do TYPE em PACKAGE
  • Exemplo 3.8: Multiplexador com porta 1D x 1D.
  • Qualificação de tipos, conversão de tipos (automática, casting e funções de conversão).

Avaliações

  • Avaliação A1 - Unidade 2 a 4 (XX/XX/2018) - Local: Lab Redes II.
  • Avaliação A2 - Unidade 5 a 7 (XX/XX/2018) - Local: Lab Redes II.
As avaliações A1 e A2 são com consulta apenas as folhas de consulta entregues VHDL QUICK REFERENCE CARD e VHDL 1164 PACKAGES QUICK REFERENCE CARD, e as tabelas das figuras 3.6, 3.10 e 4.1 do livro do Pedroni. Dica use também como fonte de consulta os templates do Quartus.
  • Recuperação R1-2 - Unidade 2 a 7 (XX/XX/2018) - Local: Lab Redes II.
Ao final das avaliações o aluno deverá enviar a avaliação para a plataforma moodle ou email moecke AT ifsc.edu.br com os arquivos solicitados.
  • Entrega dos Atividades Extraclasse ao longo do semestre AE0 a AE(N). A entrega, detalhes e prazos de cada AE serão indicados na plataforma Moodle


ESTUDOS SEM ENTREGA DE DOCUMENTAÇÃO

Os exemplos e exercícios essenciais estão destacados em negrito na listagens abaixo.


Referências Bibliográficas:

  1. PEDRONI, Volnei A. Eletrônica digital moderna e VHDL; 1ª ed. Rio de Janeiro:Elsevier, 2010. 619p. . ISBN 9788535234657
  2. 2,0 2,1 2,2 2,3 2,4 PEDRONI, Volnei A. Circuit Design and Simulation with VHDL; 2ª ed. Massachusetts-EUA:MIT, 2010. 608 p. ISBN 9780262014335


Curso de Engenharia de Telecomunicações