IER60808: Endereçamento IPv6

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar

Próxima aula
Aula anterior


Endereços IPv4 têm 32 bits e são capazes de endereçarem até pouco mais de 4 bilhões de hosts, e isso parecia mais do que suficiente quando o protocolo IP foi criado, nos primórdios da Internet. Mas desde os anos 1990, quando se massificou essa rede, constatou-se que os endereços IPv4 se esgotariam num horizonte próximo. Para evitar esse problema, e possibilitar que a Internet continuasse se expandindo (e também por outros motivos), foi criado o protocolo IPv6, cujos endereços têm 128 bits. Essa questão está bem descrita na introdução do livro Laboratório de IPv6:

Considerando que a concepção da Internet data da década de 70 e que, de lá para cá, houve uma explosão inesperada do seu uso, o IPv4 mostrou-se inadequado para acompanhar esta evolução.Uma das deficiências mais apontadas do IPv4 foi o espaço de endereçamento baseado num valor inteiro de 32 bits, que é tipicamente representado por quatro octetos em decimal, sendo possível disponibilizar apenas 4.294.967.296 endereços IPV4 diferentes. Para contornar essa deficiência, inúmeras soluções paliativas foram propostas e adotadas, como por exemplo o NAT (Network Address Solution) e o CIDR (Classless InterDomain Routing). Contudo, à medida que novas tecnologias de redes surgiram e o IP continuava sendo um dos protocolos chaves para sua operação, outras deficiências começaram a ser detectadas, especialmente aquelas referentes à segurança e ao suporte a parâmetros de QoS (Quality of Service) e mobilidade. Como consequência, no inicio da década de 90 é publicada a proposta da nova geração do IP (IPng – IP next generation) ou IPv6. Este novo protocolo traz a solução para muitas das deficiências de seu predecessor, o IPv4, incluindo espaço de endereçamento de 128 bits gerando a possibilidade de 340.282.366.920.938.463.463.374.607.431.768.211.456 endereços disponíveis, suporte a roteamento e segmentação de pacotes na estação origem, suporte a mobilidade e mecanismos de segurança.


Pji3-Number-of-internet-hosts-in-the-domain-name-system.jpg
Número de hosts na Internet mundial registrados no DNS (a quantidade total deve ser bem maior !). As quantidades são expressadas em milhões de hosts. Obtido de: Statista

Laboratórios

Endereço IPV6

Um endereço IPV6 possui 128 bits disponíveis para endereçar hosts, possibilitando 340 undecilhões de endereços possíveis. Para se ter uma ideia do que isto representa, se convertêssemos cada IPv6 possível em um cm2, poderíamos envolver toda a superfície do planeta Terra com 7 camadas de endereços..

End1.png

Adoção no Brasil

O Brasil está entre os 10 países com maior adoção de IPv6, segundo o Google:


Endereços IPv6 estão sendo amplamente usados por provedores de acesso, como se pode comprovar em serviços de dados do tipo ADSL e LTE:


Pji3-ipv6-movel.png
Cópia de tela de um celular mostrando o uso de endereço IPv6 em seu link de dados

Atividade

Para realizar estas atividades serão necessários alguns comandos:

  • Teste com ping6 para endereço de escopo local: deve-se especificar a interface de rede por onde as mensagens do ping6 serão transmitidas:

    ping6 -I eth0 endereço_IPv6_a_ser_pingado

  • Teste com ping6 para endereço de escopo global: não é prciso especificar a interface de rede por onde as mensagens do ping6 serão transmitidas:

    ping6 endereço_IPv6_a_ser_pingado

  • Tabela de rotas:

    route -A inet6

  1. Verifique quais provedores de conteúdo já usam IPv6. Isso pode ser feito com consultas DNS como esta:
    host -t aaaa www.google.com
    
    Algumas sugestões para procura:
    • IFSC
    • UFSC
    • UDesc
    • UOL
    • Epagri
    • Facebook
    • ... e outros !
  2. Em seu computador use o programa ifconfig para identificar o endereço IPv6 associado a sua interface ethernet.
  3. Use o ping6 para testar a comunicação com IPv6 entre seu computador e o de um colega. Há alguma diferença no resultado, em relação ao ping baseado em IPv4 ?
  4. Com o ping6 em execução ative a captura de pacotes com wireshark ou tcpdump. Visualize os pacotes enviados e recebidos pelo ping6 ... identifique os protocolos envolvidos. Qual a diferença em relação ao ping baseado em IPv4 ?
  5. Adicione outro endereço IPv6 ao seu computador. Escolha um endereço formado pelo prefixo AA:BB::/64 e o endereço MAC da sua interface de rede.
  6. Teste novamente com ping6 a comunicação com os computadores de seus colegas.
  7. Assim como no caso de IPv4, existe uma tabela de rotas IPv6 em cada host. Visualize a tabela de rotas IPv6 em seu computador com este comando:
    route -A inet6
    
    ... e procure identificar as subredes ali listadas.
Tipos de Endereços IPV6

O IPV6 possui categorias de endereços, conforme a tabela a seguir:

Tipos de end ipv6.png

  • Endereços Anycast: Um endereço IPv6 anycast é utilizado para identificar um grupo de interfaces, porém, com a propriedade de que um pacote enviado a um endereço anycast é encaminhado apenas a interface do grupo mais próxima da origem do pacote. Os endereços anycast são atribuídos a partir da faixa de endereços unicast e não há diferenças sintáticas entre eles.
  • Endereços Loopback: Endereços aplicados as interfaces loopback dos host; (Verificar com ifconfig)
  • Endereços Link local: Podem ser utilizados apenas no enlace específico onde a interface está conectada, sendo assim não é roteável;
  • Endereços Unique local address Endereço com grande probabilidade de ser globalmente único, utilizado apenas para comunicações locais, geralmente dentro de um mesmo enlace ou conjunto de enlaces. Um endereço ULA não deve ser roteável na Internet global;
  • Endereços Multicast: Endereços multicast são utilizados para identificar grupos de interfaces, sendo que cada interface pode pertencer a mais de um grupo. Os pacotes enviados para esses endereço são entregues a todos as interfaces que compõe o grupo;
  • Endereços Global unicast: Equivalente aos endereços públicos IPv4, o endereço global unicast é globalmente roteável e acessível na Internet IPv6.

Endereços Unicast

Lla.png

Link Local pode ser usado apenas no enlace específico onde a interface está conectada, o endereço link local é atribuído automaticamente utilizando o prefixo FE80::/64. Os 64 bits reservados para a identificação da interface são configurados utilizando o formato IEEE EUI-64. Vale ressaltar que os roteadores não devem encaminhar para outros enlaces, pacotes que possuam como origem ou destino um endereço link-local.


Ula ipv6.png


O endereço ULA é um endereço com grande probabilidade de ser globalmente único, utilizado apenas para comunicações locais, geralmente dentro de um mesmo enlace ou conjunto de enlaces. Um endereço ULA não deve ser roteável na Internet global. Um endereço ULA, criado utilizando um ID global e alocado pseudo-randomicamente, é composto das seguintes partes: Prefixo: FC00::/7; Flag Local (L); se o valor for 1 (FD) o prefixo é atribuído localmente. Se o valor for 0 (FC), o prefixo deve ser atribuído por uma organização central (ainda a definir); identificador global identificador de 40 bits usado para criar um prefixo globalmente único. Identificador da Interface identificador da interface de 64 bits.

Global unicast.png

Atualmente, está reservada para atribuição de endereços a faixa 2000::/3 (001), ou seja, 3 primeiros bits utilizados para registros da faixa 2000. Equivalente aos endereços públicos IPv4, o endereço global unicast é globalmente roteável e acessível na Internet IPv6. Ele é constituído por três partes: o prefixo de roteamento global, utilizado para identificar o tamanho do bloco atribuído a uma rede; a identificação da sub-rede, utilizada para identificar um enlace em uma rede; e a identificação da interface, que deve identificar de forma única uma interface dentro de um enlace.Sua estrutura foi projetada para utilizar os 64 bits mais a esquerda para identificação da rede e os 64 bits mais a direita para identificação da interface.

Endereço Multicast

Multcast.png

O IPV6 não possui endereço broadcast, e sim multicast. Endereços multicast são utilizados para identificar grupos de interfaces, sendo que cada interface pode pertencer a mais de um grupo. Os pacotes enviados para esses endereço são entregues a todos as interfaces que compõe o grupo. Seu funcionamento é similar ao do broadcast, dado que um único pacote é enviado a vários hosts, diferenciando-se apenas pelo fato de que no broadcast o pacote é enviado a todos os hosts da rede, sem exceção, enquanto que no multicast apenas um grupo de hosts receberá esse pacote.

Cabeçalho IPV6

Header ipv6.png

O cabeçalho IPv6 possui menos informações, quando comparado ao cabeçalho IPv4. Várias informações foram removidas do cabeçalho IPV6, como por exemplo o checksum, considerado uma informação desnecessária uma vez que o controle de erro é atribuído às camadas inferiores. Os campos presentes no cabeçalho IPV6 são definidos a seguir:

  • Class of traffic: define a classe de serviço a que o pacote pertence, possibilitando associar diferentes prioridades a pacotes dependendo da exigência de cada aplicação. Com isso, podem-se dar subsídios ao controle da qualidade de serviço (QoS) na rede.
  • Flow Label: proposto para identificar datagramas que fazem parte de um mesmo fluxo, o que facilitaria, em tese, o tratamento dado a esses datagramas na rede. Atualmente esse cabeçalho não tem sido usado, e pode ser que em revisões futuras seja mudado seu propósito.
  • Payload Length: quantidade de bytes contidos na carga útil transportada pelo datagrama (payload).
  • Next Header: informa que há um cabeçalho opcional em seguida.
  • Hop: Número máximo de saltos (roteadores intermediários), da origem ao destino do datagrama, que podem ser percorridos antes do datagrama ser descartado. Em outras palavras, quantidade máxima de encaminhamentos permitidos para o datagrama. Tem papel similar ao campo TTL do IPv4.

Header ipv4.png

Atividade

  1. Em seu computador, identifique os tipos de endereços IPv6 que estão configurados nas interfaces.
  2. Compare o endereço do tipo link local da interface ethernet do seu computador, com o endereço MAC dessa mesma interface. Que relação existe entre eles ?
  3. Experimente testar a comunicação entre seu computador e algum outro host fora do IFSC. Por exemplo teste um ping6 com um servidor externo ao IFSC o qual possui endereço IPv6. Explique o resultado desse teste, e relacione-o com o tipo de endereço IPv6 usado por seu computador.
  4. Execute o wireshark para capturar datagramas IPv6 na rede. Procure datagramas cujos endereços de destino sejam:
    • Unicast global
    • Link local
    • Multicast
Auto-configuração de endereços


Em redes IPv4, a auto-configuração de hosts se faz com o serviço DHCP. Em redes IPv6 existem duas formas de auto-configurar hosts:

  • SLAAC (Auto-configuração stateless): um host gera seu próprio endereço IPv6 a partir de informação anunciada periodicamente pelo gateway da rede. O gateway não sabe que host usa qual endereço IPv6.
  • DHCPv6: similar ao serviço DHCP para IPv4, um host obtém toda sua configuração de rede (incluindo seu endereço IPv6) de um servidor DHCPv6. Esse servidor mantém informações sobre que host usa qual endereço IPv6.

SLAAC

Com SLAAC, um host IPv6 tem a capacidade de auto-configurar seu endereço em uma subrede. Com isso, facilita-se a configuração de rede de um equipamento, pois torna-se desnecessário obter e definir manualmente seu endereço IPv6, além de outras informações tais como máscara de rede, gateway e servidores DNS. No entanto, isso depende de o gateway (ou algum outro equipamento) fornecer essas informações de configuração para os hosts em sua(s) subrede(s). Isso não é novidade, pois em redes IPv4 o serviço DHCP tem exatamente esse papel. Porém, com o surgimento de IPv6, a auto-configuração se tornou uma função do próprio protocolo de rede. Em redes IPv4, DHCP é um serviço que depende de softwares específicos tanto nos hosts (clientes) quanto no servidor. A auto-configuração IPv6 é muito mais simples, e não demanda nenhum software adicional nos hosts.

A autoconfiguração do IPV6, chamada stateless, é o procedimento com que os hosts de uma subrede podem definir seus próprios endereços, baseados em informações locais (ex: endereço MAC de sua interfaces de rede Ethernet, Wifi, ou Bluetooth), e em informações recebidas de roteadores, denominadas mensagens Router Advertisement. Sendo assim, o roteador é o responsável por fornecer informações sobre a SUBrede para que seja possível que hosts que nela residem se autoconfigurem. A autoconfiguração do IPV6 é chamada de stateless porque o roteador não mantém nenhum registro sobre a configuração de cada host. Isso é consequência da capacidade dos hosts se autoconfigurarem apenas sabendo a subrede a que pertencem. No entanto, para que seja possível a autoconfiguração em redes baseadas em IPV6, duas etapas de configuração devem ser aplicadas, sendo elas:

  • Configuração do prefixo ou neste caso a identificação da subrede. Nesta etapa, os prefixos são coletados pelos hosts por meio de mensagens ICMPv6, chamadas de Router Advertisement, as quais são transmitidas pelos roteadores.
  • Configuração do sufixo do host identificação do host propriamente dito. Nesta etapa, o sufixo de host é automaticamente obtido a partir do endereço MAC de 48 bits obtido de sua próprio interface de rede Ethernet ou Wifi. Uma vez que um endereço MAC possui apenas 48 bits, porém os sufixos IPV6 possuem 64 bits, os 16 bits restantes para completar o endereço IPV6 são inseridos por uma função de expansão chamada de Extended Unique Identifier (EUI). A função EUI executa as seguintes etapas:
  1. Separa o endereço MAC em dois blocos de 24 bits
  2. Adiciona os algarismos hexadecimais FFFE entre os dois blocos
  3. Muda o sétimo bit do primeiro byte para 1 para sinalizar que o endereço é gerenciado localmente.


Este exemplo mostra a geração do sufixo de um endereço IPv6:

Sufix ipv62.jpg

Protocolo NDP (Neighbor Discovery Protocol)

A auto-configuração IPv6 depende do protocolo NDP, implementado usando mensagens ICMPv6. De acordo com este tutorial do site IPv6.br, no caso da autoconfiguração de hosts, o protocolo fornece suporte para a realização de três funcionalidades:

  • Parameter Discovery: atua na descoberta por um host de informações sobre o enlace (como MTU) e sobre a Internet (como limite de saltos).
  • Address Autoconfiguration: trabalha com a autoconfiguração stateless de endereços nas interfaces de um nó.
  • Duplicate Address Detection: utilizado para descobrir se o endereço que se deseja atribuir a uma interface já está sendo utilizado por um outro nó na rede.


Já no caso da transmissão de pacotes entre nós, o suporte é dado para a realização de seis funcionalidades:

  • Router Discovery: trabalha com a descoberta de roteadores pertencentes ao enlace.
  • Prefix Discovery: implementa a descoberta de prefixos de redes do enlace, cuja a finalidade é decidir para onde os pacotes serão direcionados numa comunicação (se é para um roteador especifico ou direto para um nó do enlace).
  • Address Resolution: descobre o endereço fisico através de um endereço lógico IPv6.
  • Neighbor Unreachability Detection: permite que os nós descubram se um vizinho é ou se continua alcançavel, uma vez que problemas podem acontecer tanto nos nós como na rede.
  • Redirect: permite ao roteador informar ao nó uma rota melhor ao ser utilizada para enviar pacotes a determinado destino.
  • Next-Hop Determination: algoritmo para mapear um endereço IP de destino em um endereço IP de um vizinho para onde o trafego deve ser enviado.


Tratando especificamente da auto-configuração IPv6, o protocolo NDP usa mensagens ICMPv6 do tipo RA (Router Advertisement - Anúncio de Roteador) para anunciar parâmetros da subrede. Essas mensagens são tipicamente enviadas periodicamente pelo gateway, e contêm estas informações:

  • prefixo da subrede
  • endereço do servidor DNS
  • MTU
  • rotas para subredes específicas
  • domínios DNS


Em sistemas Linux, o envio de mensagens RA por um roteador são feitas pelo software radvd.


Ao receber uma mensagem RA, um host pode completar sua auto-configuração, e assim se comunicar na rede IPv6. A figura a seguir mostra mensagens RA enviadas por um roteador:

Pji11103-Radv.jpg

Atividade

  1. Execute o netkit2
  2. Arraste este link para o arquivo de configuração rede0.conf e solte-o sobre a janela do netkit2
  3. Use o menu File->Graph para visualizar a topologia da rede
  4. Use o menu Network->Start para iniciar a rede
  5. Verifique os endereços IPv6 globais usado por pc1 e pc2. Compare-os com os endereços globais usados por r1.
  6. Teste a comunicação entre pc1 e pc2 com ping6.
  7. Em r1 crie o arquivo /etc/radvd.conf com este conteúdo:
    interface eth1 {
      AdvSendAdvert on;
      MinRtrAdvInterval 3;
      MaxRtrAdvInterval 10;
      prefix ccdd:0:0:0:0:0:0:0/64 {
      AdvOnLink on;
      AdvAutonomous on;
      };
    };
    interface eth0 {
      AdvSendAdvert on;
      MinRtrAdvInterval 3;
      MaxRtrAdvInterval 10;
      prefix aabb:0:0:0:0:0:0:0/64 {
      AdvOnLink on;
      AdvAutonomous on;
      };
    };
    
  8. Em r1 execute este comando:
    /etc/init.d/radvd start
    
  9. Verifique os endereços IPv6 globais usado por pc1 e pc2. Compare-os com os endereços globais usados por r1.
  10. Teste a comunicação entre pc1 e pc2 com ping6.
  11. Verifique a tabela de rotas IPv6 em pc1 e pc2. Compare o endereço do roteador default com o do gateway.
  12. Selecione o host pc1 e, em seguida, o menu Wireshark->eth0.
  13. Observe as mensagens de anúncio de roteador recebidas. Que informações elas contêm ?
  14. Agora experimente por esta rede no ar usando SLAAC ! Talvez seja necessário algo mais ...
Descoberta de Vizinhança


Obs.: texto copiado literalmente de: Laboratório de IPv6.


A descoberta de vizinhança por meio do protocolo Neighbor Discovery no IPv6 é um procedimento realizado pelos nós de uma rede para descobrir endereços físicos dos dispositivos vizinhos presentes no mesmo enlace. A função deste protocolo se assemelha à função do ARP e do RARP no IPv4.

  • O procedimento é iniciado quando um dispositivo tenta enviar um pacote cujo endereço físico de destino é desconhecido. O nó solicitante envia uma mensagem Neighbor Solicitation (NS) para todos os nós do enlace pertencentes ao grupo multicast solicited-node (ff02::1:ffXX:XXXX), de modo que XX:XXXX são os últimos 24 bits do endereço IPv6 em que está interessado.
  • É possível notar que, por uma coincidência dos últimos 24 bits, é bastante provável que apenas o nó de destino faça realmente parte deste grupo. Isto é um truque interessante do IPv6 para diminuir o tráfego deste tipo de pacote na rede.
  • Na mensagem NS, o endereço IPv6 a ser resolvido é informado no campo Target. O campo Source link-layer address informa ao nó de destino o endereço MAC do nó de origem, poupando-o de ter que fazer o mesmo procedimento no sentido inverso.
  • O nó de destino, dono do IPv6 requisitado, ao receber este pacote, envia uma mensagem Neighbor Advertisement (NA) como resposta diretamente ao nó requisitante. O seu endereço físico será informado no campo Target link-layer address.
  • A informação de mapeamento entre endereços IP e endereços físicos é armazenada em uma tabela chamada neighbor cache. Nela também fica registrado o status de cada destino, informando se o mesmo é alcançável ou não.

Atividades: ETAPA 1

A figura abaixo apresenta o diagrama esquemático da rede a ser montada/analisada. Observe que todos os IPv6 Global Unicast já estão definidos na mesma, são esses IPs que utilizaremos em nosso experimento.

Diagrama rede IPv6.jpg

  1. Obtenha o arquivo de configuração ns.conf
  2. Rode o NetKit em seu computador. Em um terminal digite:
    netkit2 &
    
  3. No menu File - Load and Run, procure o arquivo /home/aluno/Downloads/ns.conf e clique em OK. Abrirá uma janela com 6 abas, onde cada uma delas é um terminal de configuração do respectivo equipamento: pc1-4 ou r1-2.
  4. Ao clicar no menu File - Graph, pode-se ter uma visão da rede a ser simulada e conferir se é equivalente ao diagrama proposto.
  5. Faça um ping6 entre o pc1 ao pc3:
    ping6 -c4 2001:bcc:1f0:1::103
    
  6. Faça um ping6 entre o pc1 e pc2.
  7. No pc1 use o seguinte comando para verificar como ficou a configuração dos endereços da interface de rede. O resultado é similar ao apresentado pelo comando ifconfig:
    ip addr show dev eth0
    
  8. Confira as rotas estabelecidas em todos os hosts com o comando abaixo.
    1. São coerentes com os dados apresentados no diagrama acima?
      ip -6 route show
      
  9. No pc1 use os seguintes comandos para ver a rota para alguns vizinhos:
    traceroute6 2001:bcc:1f0:1::103
    traceroute6 2001:bcc:1f0:1::104
    
    • Anote as rotas.
  10. Deixe um ping6 entre o pc1 ao pc3 rodando:
    ping6 2001:bcc:1f0:1::103
    
  11. Para visualizar os pacotes que trafegam por r1, faça o seguinte:
    1. Em r1 execute:
      tcpdump -i any -w /hostlab/r1.cap
      
    2. Na máquina real, execute o wireshark. Nele clique no menu File->Open, e selecione o arquivo r1.cap, que está na pasta lab.
  12. Analisando a captura do Wireshark, você verá os pacotes relativos ao ping6 e também pacotes parecidos com:
     fe80::4cd6:19ff:fedc:2b52	2001:db8:dead:1::1	ICMPv6	86	Neighbor Solicitation for 2001:db8:dead:1::1 from 4e:d6:19:dc:2b:52
    2001:db8:dead:1::1	fe80::4cd6:19ff:fedc:2b52	ICMPv6	78	Neighbor Advertisement 2001:db8:dead:1::1 (rtr, sol)
    
  13. Explique o processo de descoberta de vizinhança (Neighbor Discovery / Neighbor Solicitation - NS e Neighbor Advertisement - NA), citando o endereço link local utilizado.
    • Alguns exemplos de campos visualizáveis para uma mensagem do tipo Neighbor Advertisement:
    1. Destination (camada Ethernet)
      • O endereço MAC do nó requisitante que foi obtido por meio da mensagem NS enviada anteriormente.
    2. Source (camada Ethernet)
      • A origem é o endereço MAC da interface do dispositivo que enviou a resposta.
    3. Type (camada Ethernet)
      • Indica que a mensagem utiliza IPv6.
    4. Next header (camada IPv6)
      • Indica qual é o próximo cabeçalho. Neste caso, o valor 58 (0x3a) refere-se a uma mensagem ICMPv6.
    5. Source (camada IPv6)
      • A origem é o endereço IP da interface diretamente ligada ao enlace em que a requisição foi recebida.
    6. Destination (camada IPv6)
      • Diferentemente da mensagem NS, a mensagem NA possui como destino o endereço IPv6 global do nó requisitante.
    7. Type (camada ICMPv6)
      • Indica que a mensagem é do tipo 136 (Neighbor Advertisement).
    8. Flags (camada ICMPv6)
      • Uma mensagem NA possui três flags:
      1. Indica se quem está enviando é um roteador. Neste caso, o valor marcado é 0, pois não é um roteador.
      2. Indica se a mensagem é uma resposta a um NS. Neste caso, o valor marcado é 1, pois é uma resposta.
      3. Indica se a informação carregada na mensagem é uma atualização de endereço de algum nó da rede. Neste caso, o valor marcado é 1, pois está informando o endereço pela primeira vez.
    9. Target Address (camada ICMPv6)
      • Indica o endereço IP associado às informações das flags. Neste caso, é o próprio endereço da interface do dispositivo em questão.
    10. ICMPv6 option (camada ICMPv6)
      • Indica as opções do pacote ICMPv6:
      1. Target link-layer address
    11. Type
      • Indica o tipo de opção. Neste caso, Target link-layer address.
    12. Link-layer address
      • Indica o endereço MAC da interface do dispositivo em questão.
  14. Em todos os hosts rode o comando
     ip -6 neighbor show
    
    1. Qual é a funcionalidade desse comando?
    2. Qual é o significado do conteúdo dessa tabela?
    3. A tabela mostrada em cada um dos casos é compatível com o diagrama da rede montado?
    4. Por que, por exemplo, na tabela do pc3 não há uma referência explícita ao pc1?
DHCPv6


O protocolo DHCPv6 guarda semelhanças com DHCP usado em redes IPv4. Ele implementa um serviço de configuração dinâmica de endereços. Assim como DHCP, DHCPv6 pode fornecer muitas outras informações aos hosts, tais como endereços de servidores WINS, proxy HTTP, programa de boot, entre outros.


De acordo com o livro Laboratório de IPv6, na página 51, basicamente, a comunicação entre o servidor DHCP e as máquinas cliente se dá com a troca de quatro mensagens:

  • Solicit: enviada pelo cliente ao grupo multicast all-dhcp-agents (ff02::1:2) com o intuito de localizar o servidor DHCP.
  • Advertise: enviada pelo servidor DHCP, diretamente ao endereço link-local do cliente, para indicar que ele pode fornecer as informações necessárias para a configuração.
  • Request: enviada pelo cliente diretamente ao grupo multicast all-dhcp-agents (ff02::1:2) para requisitar ao servidor DHCP os dados de configuração.
  • Reply: enviada pelo servidor DHCP ao endereço de link-local do cliente como resposta à mensagem Request.


O DHCPv6 possui dois modos de operação:

  • Stateful: o servidor DHCPv6 é responsável por informar aos clientes os endereços IPv6 que devem ser utilizados em suas interfaces de rede, mantendo o estado de qual endereço foi atribuído a determinado cliente.
  • Stateless: o servidor DHCPv6 informa apenas parâmetros de configuração como endereço dos servidores DNS ou servidores SIP da rede aos clientes, sem a necessidade de guardar qual informação individual de cada cliente. Nesse segundo caso, o cliente deverá obter o endereço IPv6 de sua interface de outra forma, seja manualmente ou SLAAC.


Para usar DHCPv6, é necessário um software específico a ser executado no servidor. Esse software responde a requisições de configuração de rede enviadas por clientes, fornecendo-lhes seus endereços IPv6 e demais configurações. Em sistemas Linux (e outros da família Unix), o software mais usado é o ISC DHCP server. Como visto no caso de DHCP para redes IPv4, esse software deve ser copnfigurado a partir do arquivo /etc/dhcp/dhcpd6.conf. O exemplo de configuração a seguir mostra a declaração de uma subrede IPv6 com a respectiva faixa de endereços a serem concedidos e o servidor DNS a ser informado:

default-lease-time 600;
max-lease-time 7200;

subnet6 2001:db8::/64 {
  range6 2001:db8::1234 2001:db8::abcd;
  option dhcp6.name-servers 2001:db8::abc;
}


Muitas opções para DHCPv6 podem ser usadas. Maiores detalhes podem ser encontrados na documentação sobre as opções.

Atividade

  1. Execute o netkit2
  2. Arraste este link para o arquivo de configuração rede0.conf e solte-o sobre a janela do netkit2
  3. Use o menu File->Graph para visualizar a topologia da rede
  4. Use o menu Network->Start para iniciar a rede
  5. Verifique os endereços IPv6 globais usado por pc1 e pc2. Compare-os com os endereços globais usados por r1.
  6. Teste a comunicação entre pc1 e pc2 com ping6.
  7. Em r1 crie o arquivo /etc/radvd.conf com este conteúdo:
    interface eth1 {
      AdvSendAdvert on;
      MinRtrAdvInterval 3;
      MaxRtrAdvInterval 10;
      prefix ccdd:0:0:0:0:0:0:0/64 {
      AdvOnLink on;
      AdvAutonomous on;
      };
    };
    interface eth0 {
      AdvSendAdvert on;
      MinRtrAdvInterval 3;
      MaxRtrAdvInterval 10;
      AdvManagedFlag on;
    };
    
    Mesmo que se use DHCPv6 é necessário usar SLAAC para obter o endereço do gateway. Por isso em r1 se ativou o serviço radvd, porém indicando que o host deve usar configuração de endereço stateful (opção AdvManagedFlag).
  8. Em r1 crie o arquivo /etc/dhcp/dhcpd6.conf com este conteúdo:
    default-lease-time 600;
    max-lease-time 7200;
    
    subnet6 aabb::/64 {
      range6 aabb::10 aabb::a00;
      option dhcp6.name-servers aabb::2;
    }
    
    subnet6 ccdd::/64 {
      range6 ccdd::10 ccdd::a00;
      option dhcp6.name-servers aabb::2;
    }
    
  9. Em r1 execute este comando:
    /etc/init.d/radvd start
    
  10. Verifique os endereços IPv6 globais usado por pc1 e pc2. Compare-os com os endereços globais usados por r1.
  11. Teste a comunicação entre pc1 e pc2 com ping6.
  12. O host pc1 não obteve seu endereço IPv6, pois ele deve fazê-lo via DHCPv6. Sendo assim, faça o seguinte:
    • Em r1 ative o servidor DHCPv6 com este comando:
      touch /var/lib/dhcp/dhcpd6.leases
      chown dhcpd.dhcpd /var/lib/dhcp/dhcpd6.leases
      dhcpd -6 -cf /etc/dhcp/dhcpd6.conf
      
    • Em pc1 execute o cliente DHCPv6 com este comando:
      dhclient -6 eth0
      
  13. Verifique o endereços IPv6 global usado por pc1. Compare-o com os endereços globais usados por r1.
  14. Teste a comunicação entre pc1 e pc2 com ping6.
  15. Verifique a tabela de rotas IPv6 em pc1 e pc2. Compare o endereço do roteador default com o do gateway.
  16. Uma reflexão: qual benefício existe em usar DHCPv6, ao invés de somente SLAAC ?
Subredes IPv6

Atividades

Estes experimentos devem ser realizados no Netkit2, que deve ser executado na máquina real.


Para realizar estas atividades serão necessários alguns comandos:

  • Teste com ping6 para endereço de escopo local: deve-se especificar a interface de rede por onde as mensagens do ping6 serão transmitidas:

    ping6 -I eth0 endereço_IPv6_a_ser_pingado

  • Teste com ping6 para endereço de escopo global: não é prciso especificar a interface de rede por onde as mensagens do ping6 serão transmitidas:

    ping6 endereço_IPv6_a_ser_pingado

  • Tabela de rotas:

    route -A inet6

  • Configuração de interface de rede: usa-se o programa ifconfig desta forma:

    ifconfig nome_interface inet6 add endereço_IPv6

  • Criação de rota: uma rota IPv6 pode ser adiciona assim:

    route -A inet6 add prefixo/máscara gw IPv6_do_próximo_roteador


1. Para esquentar: uma rede mais simples:

  1. Transfira para seu computador o arquivo de configuração rede0.conf
  2. Execute o Netkit2, e no menu File->Load Only selecione o arquivo de configuração rede1.conf
  3. Use o menu File->Graph para visualizar a topologia da rede
  4. Use o menu Network->Start para iniciar a rede
  5. Sabendo que pc1 está na subrede 2804:1454:1004:200::/64 e pc2 está na subrede 3ABB:CCDD:EEFF::/64, faça o seguinte:
    1. Configure os endereços IP de todas as interfaces dos hosts dessa rede
    2. Crie rotas estáticas nos hosts para que pc1 e pc2consigam se comunicar

2. Praticamente a mesma rede, mas com um roteador a mais:

  1. Transfira para seu computador o arquivo de configuração rede00.conf
  2. Execute o Netkit2, e no menu File->Load Only selecione o arquivo de configuração rede1.conf
  3. Use o menu File->Graph para visualizar a topologia da rede
  4. Use o menu Network->Start para iniciar a rede
  5. Sabendo que pc1 está na subrede 2010:1aba:4455::/64 e pc2 está na subrede 3ABB:EEFF::/64, faça o seguinte:
    1. Configure os endereços IP de todas as interfaces dos hosts dessa rede
    2. Crie rotas estáticas nos hosts para que pc1 e pc2 consigam se comunicar


3. Agora uma rede um pouco maior:

  1. Transfira para seu computador o arquivo de configuração rede1.conf
  2. Execute o Netkit2, e no menu File->Load Only selecione o arquivo de configuração rede1.conf
  3. Use o menu File->Graph para visualizar a topologia da rede
  4. Use o menu Network->Start para iniciar a rede
  5. Sabendo que pc1 está na subrede 2804:1454:1004:200::/64, pc2 está na subrede AABB:CCDD:EEFF::/64 e pc3 está na subrede 1234:5678::/56, faça o seguinte:
    1. Configure os endereços IP de todas as interfaces dos hosts dessa rede
    2. Crie rotas estáticas nos hosts para que pc1, pc2 e pc3 consigam se comunicar