IER60808: Introdução a LAN

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar


Referências bibliográficas:

  • Capítulo 13 do livro "Comunicação de Dados e Redes de Computadores", de Berhouz Forouzan
  • Capítulo 5 do livro "Redes de Computadores e a Internet, 5a edição", de James Kurose


O foco da disciplina IER é a infra-estrutura de rede, representada pelas camadas Internet e Acesso a rede no modelo TCP/IP (ou camadas Rede e inferiores no modelo OSI). Ela diz respeito ao conjunto de equipamentos, links, protocolos e tecnologias empregados para construir uma rede de computadores em LAN, MAN ou WAN. Essa rede pode ser assim usada para que sistemas finais consigam se comunicar, tais como computadores de usuários, servidores, smartphones, e quaisquer outros dispositivos que produzam ou consumam dados. Desta forma, em IER iremos conhecer tecnologias envolvidas nessas camadas inferiores, bem como selecionar e configurar equipamentos, e interligá-los para construir redes de computadores.


Distinção entre WAN, MAN e LAN

Existe uma classificação de redes de computadores segundo sua abrangência. Segundo ela, as redes podem ser divididas em:

  • LAN (Local Area Network, ou Rede Local): É uma rede onde seu tamanho se limita a apenas uma pequena região física. Uma rede de área local (LAN) é uma rede que conecta computadores e dispositivos em uma área geográfica limitada, como uma casa, escola, prédio de escritórios ou grupo de edifícios bem posicionado. LANs com fio são provavelmente baseadas em tecnologia Ethernet. Novos padrões como o ITU-T G.hn também fornecem uma maneira de criar uma LAN com fio usando a fiação existente, como cabos coaxiais, linhas telefônicas e linhas de energia.
  • MAN (Metropolitan Area Network, ou rede metropolitana): A MAN é uma rede que se espalha por uma cidade. Por exemplo, uma rede de farmácias, em uma cidade, onde todas acessam uma base de dados comum. As MAN oferecem altas taxas de transmissão, baixas taxas de erros, e geralmente os canais de comunicação pertencem a uma empresa de de telecomunicações que aluga o serviço ao mercado. As redes metropolitanas são padronizadas internacionalmente pela IEEE 802, e ANSI, e padrões conhecidos para a construção de MAN são Metro Ethernet, Frame Relay, PON (entre outros). Outro exemplo de rede metropolitana é o sistema utilizado nas TV's a cabo.
  • WAN (Wide Area Network, ou rede de longa distância): Uma WAN integra equipamentos em diversas localizações geográficas (hosts, computadores, roteadores/gateways, etc.), envolvendo diversos países e continentes.


Tomando-se como exemplo o projeto de um provedor de acesso metropolitano (ISP - Internet Service Provider), essa classificação pode ser aplicada a determinadas partes de sua infraestrutura:

  • Núcleo da rede do provedor (backhaul): o núcleo de sua rede forma uma MAN que se espalha por sua região de cobertura. Essa rede é formada por equipamentos de interconexão e acesso aos clientes, e enlaces segundo alguma tecnologia apropriada. Ela inclui também os enlaces de acesso aos clientes do provedor, sejam por fibra ou rádio.
  • Rede administrativa do provedor: a empresa do provedor deve ter uma LAN com alguns servidores, computadores de uso administrativo e técnico, além de equipamentos para interligá-los.
  • Enlaces de acesso a Internet: a rede do provedor deve possuir enlaces WAN para integrar sua rede a Internet.

Exemplos de redes WAN

Para fins de ilustração, seguem alguns exemplos de redes WAN no Brasil:


Exemplos de redes MAN

Este outro exemplo apresenta um diagrama de uma rede MAN MetroEthernet em Florianópolis (diagrama antigo .. tal rede não deve mais ser assim !):

Man-metro.png


Outra possível MAN integraria uma região de uma cidade, como mostrado a seguir:

Pji3-Metro2.jpg
Uma rede MAN baseada em Ethernet (MetroEthernet)

Redes Locais (LAN)

Obs: obtido de Data and Computer Communications, livro de William Stallings, 8a edição:

  • Uma LAN consiste de um meio de transmissão compartilhado e um conjunto de hardware e software para servir de interface entre dispositivos e o meio de transmissão, além de regular o acesso ao meio de forma ordenada.
  • As topologias usadas em LANs são anel (ring), barramento (bus), árvore (tree) e estrela (star).
  • Um conjunto de padrões definido para LANs especifica uma faixa de taxas de dados e abrange uma variedade de topologias e meios de transmissão.
  • Na maioria dos casos, uma organização possui múltiplas LANs que precisam ser interconectadas. A abordagem mais simples para esse problema se vale de equipamentos chamados de pontes (bridges). Os conhecidos switches Ethernet são exemplos de pontes, no caso da tecnologia de LAN conhecida como Ethernet (padrão IEEE 802.3).
  • Switches formam os blocos de montagem básicos da maioria das LANs Ethernet (não muito tempo atrás, hubs também eram usados).


Algumas tecnologias:

  • Ethernet (IEEE 802.3): largamente utilizada hoje em dia, na prática domina amplamente o cenário de redes locais.
  • Token Ring (IEEE 802.5): foi usada nos anos 80 e início dos anos 90, mas está em desuso ... muito difícil de encontrar uma rede local deste tipo hoje em dia.
  • Fiber Channel: criada especificamente para interligar servidores em redes de armazenamento de dados (SAN).
  • Infiniband: especificamente criada para interligar equipamentos para fins de computação de alto-desempenho. Mantém-se na ativa nesse nicho específico.

Exemplos de uso de redes locais

Exemplos de redes locais são fáceis de apresentar. Praticamente toda rede que interconecta computadores de usuários é uma rede local - mesmo no caso de redes sem-fio, um caso especial a ser estudado mais a frente. A rede do laboratório de Redes de Computadores, onde temos nossas aulas, é uma rede local. Os demais computadores do câmpus formam outra rede local. Quando em casa se instala um roteador ADSL e se conectam a ele um ou mais computadores, cria-se também uma rede local. Portanto, redes locais são bastante comuns e largamente utilizadas. Ainda assim, cabem alguns outros exemplos de possíveis redes locais, mostrados abaixo:


Lan2-2011-1.png
Uma LAN típica com um link para Internet


Cisco-datacenter.jpg
Uma LAN que integra servidores em um datacenter


San.gif
Um tipo de LAN especial para interligar servidores de armazenamento (storage), chamada SAN (Storage Area Network)

Topologias

Uma topologia de rede diz respeito a como os equipamentos estão interligados. No caso da rede local, a topologia tem forte influência sobre seu funcionamento e sobre a tecnologia adotada. Dependendo de como se desenha a rede, diferentes mecanismos de comunicação são necessários (em particular o que se chama de acesso ao meio). A eficiência da rede (aproveitamento da capacidade de canal, vazão) e sua escalabilidade (quantidade de computadores e equipamentos que podem se comunicar com qualidade aceitável) também possuem relação com a topologia. A tabela abaixo exemplifica topologias conhecidas de redes locais.

Topologia Exemplo Tecnologias
Estrela Lan-Star.png Ethernet (IEEE 802.3) com hubs e switches
Anel
(em desuso)
Lan-Ring.png Token-ring (IEEE 802.5), FDDI
Barramento
(em desuso)
Lan-Bus.png Ethernet (IEEE 802.3)
Árvore Lan-Tree.png Ethernet (IEEE 802.3) com hubs e switches
Árvore-gorda (Fat-tree) Lan-Fat-tree.png Ethernet (IEEE 802.3) com hubs e switches

Atividade

Objetivos:

  • Conhecer os equipamentos típicos de uma rede local Ethernet
  • Estimar o desempenho de uma LAN Ethernet comutada (com switch)


A rede de teste para o experimento será composta de computadores ligados a um switch Ethernet a 100 Mbps em modos half ou full-duplex. Serão sintetizados tráfegos intensos, de forma a poder comparar o desempenho das transmissões nos dois casos.

Lab1.png



Parte 1: ativos de rede

  1. Observe a placa de rede de seu computador e sua conexão à rede por meio do cabo TP. Os computadores do laboratório estão conectados ao switch Intelbras, que reside no rack central. O número da porta onde está conectado seu computador na bancada corresponde à porta do switch. Desconecte o cabo do seu computador e observe o status da porta correspondente no switch (o status é informado por um led, que aceso significa que há equipamento ativo conectado àquela porta). Questão: como será que o switch sabe que um equipamento foi conectado a uma porta ? Ver esta explicação ...
  2. Veja que informações o Linux provê a respeito de seu adaptador Ethernet. Usando os comandos administrativos do Linux, descubra:
    • o modelo do adaptador, e seu endereço MAC: ver comandos lspci, lsusb e ifconfig.
    • seu modo de operação (velocidade, modo duplex, se o enlace está ativo): ver comando ethtool
    • suas estatísticas de operação (quadros transmitidos e recebidos, colisões e erros em geral): ver comandos netstat e ifconfig.

      Após obter essas informações, experimente desconectar o cabo da placa de rede e repetir a execução dos comandos.
  3. Use um switch TP-Link 8 portas para conectar seu computador à rede do laboratório.
  4. Repita os ítens 1 e 2, para conferir se houve alguma modificação na interface ethernet do seu computador.

Parte 2: switch ethernet

O objetivo deste experimento é medir a vazão possível de ser obtida na rede ethernet do laboratório. Além disso, deseja-se verificar a relação entre essa vazão e a quantidade de computadores que efetuam transmissões simultaneamente.


  1. Mantendo os computadores conectados ao switch do laboratório, cada aluno deve escolher um colega para fazer uma medição de vazão na rede (throughput).
    • Inicialmente apenas um par de aluno deve realizar a mediação de vazão.
    • Um dos alunos deve identificar o endereço IP da interface ethernet de seu computador, e informá-lo ao outro colega envolvido na medição.
    • Esse mesmo aluno deve executar este programa:
      iperf -s
      
    • Outro aluno deve executar o mesmo programa, porém em modo cliente desta forma:
      iperf -c IP_do_outro_computador -i 5 -t 30
      
    • Quando o programa cliente terminar, observe os valores reportados quanto à vazão obtida.
    • A medição deve ser repetida, porém com todos os alunos envolvidos a realizarem-na simultaneamente. Que diferença houve no resultado da vazão ?
Arquitetura IEEE 802


A arquitetura IEEE 802 define um conjunto de normas e tecnologias para redes no escopo das camadas física (PHY) e de enlace. A camada de enlace é dividida em duas subcamadas:

  • LLC (Logical Link Control): o equivalente a um protocolo de enlace de fato, porém na prática de uso restrito (pouco utilizada).
  • MAC (Medium Access Control): um protocolo de acesso ao meio de transmissão, que depende do tipo de meio físico e tecnologia de comunicação. Esse tipo de protocolo é necessário quando o meio de transmissão é compartilhado.


Arq-ieee.png


Alguns padrões conhecidos (lista completa):

  • IEEE 802.3 e variações: conhecidos como LAN Ethernet
  • IEEE 802.1: tecnologias para interligação de LANs
  • IEEE 802.11 e variações: conhecidos como WLAN (redes locais sem-fio), o que inclui WiFi
  • IEEE 802.15: padrões para WPAN (redes pessoais sem-fio), incluindo Bluetooth

Protocolo de acesso ao meio (MAC)

O protocolo de acesso ao meio (MAC) é parte da camada de enlace na arquitetura IEEE 802, e tem papel fundamental na comunicação entre estações. O MAC é responsável por:

  • Definir um formato de quadro onde deve ser encapsulada uma PDU de um protocolo de camada superior. Por exemplo, o quadro Ethernet (padrão IEEE 802.3) tem este formato:


Pji3-Ether-frame.jpg


  • Endereçar as estações, já que o meio de transmissão é multiponto (ver campos Endereço Destino (destination address) e Endereço de origem (source address) no quadro Ethernet). Endereços têm 6 bytes, em que informam o fabricante (OUI) e o número do adaptador de rede, conforme mostrado a seguir:

Pji3-MAC-48 Address.svg
Formato do endereço MAC (criado por: Inductiveload, modificado/corrigido por: Kju Link do original)


  • Acessar o meio para efetuar a transmissão de quadros, resolvendo conflitos de acesso quando necessário. Um conflito de acesso (chamado de colisão) pode ocorrer em alguns casos quando mais de uma estação tenta transmitir ao mesmo tempo. Isso é fundamental em redes sem-fio, tais como Wifi (IEEE 802.11) e Bluetooth (IEEE 802.15.3), porém não é mais necessário nas LAN ethernet atuais (IEEE 802.3), que operam em modo full-duplex.

Padrão IEEE 802.3 (Ethernet)

  • Ver seção 5.4 do livro Redes de Computadores e a Internet, 6a edição, de James Kurose e Keith Ross.


Ethernet.png

Desenho usado por Bob Metcalfe, um dos criadores da Ethernet, para apresentação em uma conferência em 1976.


Redes locais Ethernet (padrão IEEE 802.3 e extensões) são compostas de equipamentos que se comunicam, denominados estações (STA na padrão IEEE 802.3), de equipamentos que os interligam (hubs e switches), e do meio de transmissão. A figura abaixo ilustra uma rede local hipotética com seus vários componentes.

Lab1-lan-demo.png


De forma geral, uma estação possui um ou mais adaptadores de rede (placas de rede, ou NIC – Network Interface Card), como na figura abaixo à esquerda. Atualmente, adaptadores de rede das estações são conectados a um switch por meio de cabos de rede TP (par trançado) com conectores RJ-45, mostrado na figura abaixo à direita. Outros tipos de cabos são possíveis, tais como cabos coaxiais (em desuso, além de prescindir de switches) e fibra ótica.


Lab1-nic-switch.png


Em resumo, são estes os elementos de uma rede Ethernet:

  • Estações: equipamentos que se comunicam pela rede. Ex: computadores e roteadores.
  • Interface de rede (NIC): dispositivo embutido em cada estação com a finalidade de prover o acesso à rede. Implementa as camadas PHY e MAC.
  • Meio de transmissão: representado pelos cabos por onde os quadros ethernet são transmitidos. Esses cabos são conectados às interfaces de rede das estações.
  • Switch: equipamento de interconexão usado para interligar as estações. Cada estação é conectada a um switch por meio de um cabo. Um switch usualmente possui múltiplas interfaces de rede (12, 24 ou mais). Uma rede com switches apresenta uma topologia física em estrela, árvore ou mesmo em anel !


Originalmente LANs Ethernet foram construídas usando um cabo único para interligar as estações (cabo coaxial). Posteriormente surgiram as redes baseadas em hubs, equipamentos que interligavam as estações em nível da camada física (funcionavam como repetidores). Atualmente essas redes são construídas usando switches, equipamentos que interligam as estacões em nível da camada de enlace (na verdade, da subcamada MAC). Um switch apresenta como benefícios, se comparado com hubs:

  1. atuação em nível de MAC: o switch faz o acesso ao meio com CSMA/CD ao encaminhar um quadro, quebrando o domínio de colisão; além disto, um switch pode operar em modo full-duplex, quando então inexiste a possibilidade de colisão.
  2. preservação da capacidade do canal: para quadros unicast, o switch encaminha um quadro somente pela porta onde reside o destinatário.
  3. interligação de segmentos com diferentes taxas e modos de transmissão: um switch é capaz de receber um quadro por uma porta com uma certa taxa de transmissão (ex: 100 Mbps) e transmitir por outra com taxa diferente (ex: 1 Gbps).
  4. realizar funções avançadas de interligação de segmentos: um switch pode realizar diversas funções de rede, tais como virtualização (VLAN), tratamento de caminhos fechados (loops), agregação de enlaces, controle de acesso, entre outras.


Essas características importantes devem fazer com que uma LAN com switches tenha um desempenho superior a uma LAN com hubs. Por desempenho entenda-se um número menor de colisões sob tráfego intenso (ou mesmo ausência total de colisões), e maior capacidade de canal vista por cada equipamento conectado ao switch.


O padrão sofreu um grande número de atualizações e extensões desde sua concepção nos anos 1980. Por exemplo, em sua primeira versão uma rede ethernet apresentava taxa de transmissão de 10 Mbps em half-duplex, porém atualmente essas redes operem em 1 Gbps em modo full-duplex. Na realidade, já existem versões em uso com taxas de 10 Gbps, e outras mais recentes com taxas de até 100 Gbps (ver página 46 da revista RTI online). Uma tabela dessas extensões ao padrão podem ser vistas na Wikipedia.


Além de taxas maiores de transmissão, a operação em modo full-duplex predominante nas versões recentes do padrão prescindem do controle de acesso ao meio feito pelo protocolo MAC. Quando em modo half-duplex, o controle de acesso ao meio do tipo CSMA/CD (Carrier Sense Multiple Access/Collision Detect - Acesso Múltiplo com Detecção de Portadora/Detecção de Colisões) ainda é necessário.


Quando em modo half-duplex, usa-se o acesso ao meio do tipo CSMA/CD, que é probabilístico: uma estação verifica se o meio está está livre antes de iniciar uma transmissão, mas isso não impede que ocorra uma colisão (apenas reduz sua chance). Se acontecer uma colisão, cada estação envolvida usa esperas de duração aleatória para desempate, chamadas de backoff. A ideia é que as estações sorteiem valores de espera diferentes, e assim a que tiver escolhido um valor menor consiga transmitir seu quadro. Veja o fluxograma acima para entender como isso é feito.

Csmacd-fluxograma.jpg
Fluxograma para o acesso ao meio com CSMA/CD do padrão IEEE 802.3.


As colisões e esperas (backoffs) impedem que esse protocolo de acesso ao meio aproveite totalmente a capacidade do meio de transmissão. Nas gerações atuais do padrão IEEE 802.3 (Gigabit Ethernet e posteriores) o CSMA/CD não é mais utilizado. Nessas atualizações do padrão, o modo de comunicação é full-duplex (nas versões anteriores, que operavam a 10 e 100 Mbps, há a possibilidade de ser half ou full-duplex). Se as comunicações são full-duplex, então conceitualmente não existem colisões. Isso se deve ao fato de que nessas novas versões cada estação possui uma via exclusiva para transmitir e outra para receber, portanto não existe mais um meio compartilhado.

Atividade

Objetivos:

  • Usar um switch ethernet para interligar computadores em uma LAN
  • Identificar as informações contidas em quadros ethernet

Parte 1: reconhecendo o switch

  1. Conecte seu computador a um switch TP-Link. Esse switch, por sua vez, deve estar conectado à rede do laboratório.
  2. Refaça a medição da taxa de bits entre seu computador e o de um colega. O computador de seu colega deve estar conectado em outro switch.
  3. Conecte o computador de um colega ao seu switch, e teste a comunicação entre os computadores. Eles se comunicaram normalmente ?
    • Aproveite e estime quanto tempo leva um pacote para ir de um computador ao outro.
  4. Interligue seu switch ao switch de um colega. Experimente em seguida testar a comunicação entre seu computador e o de seu colega. Que diferenças existem em relação ao experimento anterior ? O que se pode concluir ?
    • Novamente estime quanto tempo leva um pacote para ir de um computador ao outro.
  5. Execute o wireshark em seu computador, e inicie a captura de pacotes na interface eth0.
    • Capture alguns pacotes
    • Selecione um ou mais pacotes e analise seus cabeçalhos ethernet. Compare essas informações com a estrutura de um quadro:

      IER-Ether-frame.png

Parte 2: usando switches para implantar LANs


Usando os switches TP-Link e roteadores TP-Link Archer C7, deve-se implantar a seguinte rede:

IER-Rede-intro-LAN.jpg


As subredes devem ser escolhidas a critério da turma. Ao final, todos os computadores devem conseguir acessar a Internet.