FIC MATLAB 2017-2

De MediaWiki do Campus São José
Revisão de 20h50min de 21 de setembro de 2017 por Roberto.nobrega (discussão | contribs) (→‎Aula 5)
Ir para navegação Ir para pesquisar

Informações Básicas

Código: MLB16470
Professores: Diego da Silva de Medeiros e Roberto Wanderley da Nóbrega
Início: 05/Set/2017
Término: 21/Nov/2017
Horário: Terças e quintas, das 19h às 22h
Referência Básica: PALM, William J. Introdução ao MATLAB para engenheiros. Tradução de Tales Argolo Jesus. 3. ed. Porto Alegre: AMGH, 2013. xiv, 562, il. ISBN 9788580552041
Referência Complementar: MORAIS, V.. VIEIRA, C. MATLAB Curso Completo. FCA, 2013. 644. ISBN 9727227058

Conteúdos Abordados

Aula 1

05/Set - Apresentação da disciplina; Interface do MATLAB; Operadores; Funções; Constantes especiais
  • MATLAB e Octave;
  • Interface do MATLAB;
  • Command Window;
  • Workspace;
  • Comando whos;
  • Current Folder;
  • Command History;
  • Editor;
  • Utilização do ponto (.) no lugar de vírgula (,) para números decimais (1,33 -> 1.33);
  • Operadores:
Símbolo Operação Forma no Matlab
+ Adição: a+b
- Subtração: a-b
* Multiplicação: a*b
/ Divisão à direita: a/b
\ Divisão à esquerda: a\b
^ Exponenciação: a^b
  • Funções Matemáticas
Função Sintaxe no Matlab
exp(x)
sqrt(x)
abs(x)
log(x)
log10(x)
log2(x)
cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)

Observações:

  • Utilizando d após as funções sin, cos e tan e suas inversas, faz o cálculo em graus;
  • Utilizando h após as funções sin, cos e tan e suas inversas, tem-se suas versões hiperbólicas;


  • Exercício:
1. Supondo e , calcule:


  • Ajudas:
  • Comandos help, doc e lookfor;
  • Utilizando scripts (arquivo .m);
  • Limpeza:
  • Utilização do ponto e vírgula (;) para não aparecer na Command Window;
  • Comando clear para apagar variáveis;
  • Comando clc para apagar texto na Command Window;
  • Variáveis e constantes especiais:
Comandos Descrições
ans Variável temporária que contém a resposta mais recente.
eps Verifica a acurácia da precisão do ponto flutuante.
pi O número .
1i,1j A unidade imaginária .
Inf Infinito.
NaN Indica um resultado numérico indefinido.

Aula 2

12/Set - Formatos de exibição; Vetores e matrizes
  • Formatos de exibição:
Comando Descrição e exemplo
format short Quatro dígitos decimais (padrão); 13.6745
format long 16 dígitos; 17.27484029463547
format short e Cinco dígitos (quatro decimais) mais o expoente; 6.3792e+03
format long e 16 dígitos (15 decimais) mais o expoente; 6.379243784781294e-04
format bank Dois dígitos decimais; 126.73
format + Positivo, negativo ou zero; +
format rat Aproximação racional; 43/7
format compact Suprime algumas linhas em branco
format loose Restabelece o modo de exibição menos compacto


  • Definições de vetores;
  • Definições de matrizes;
  • Comandos length e size;
  • Arranjo de vetores:
  • Utilizando dois pontos (:);
  • Definição de passo;
  • Comandos linspace e logspace;


  • Exercícios:
1. Crie os vetores descritos abaixo usando dois métodos diferentes:
a) Início: 5, Fim: 28, com 100 elementos regularmente espaçados
b) Início: 5, Fim: 14, com passo de 0,2.
c) Início: -2, Fim: 5, com 50 elementos regularmente espaçados
d) Início: 100, Fim: 12, com 100 elementos regularmente espaçados
2. Crie os vetores descritos abaixo:
a) Início: 10, Fim: 1000, com 50 elementos logaritmicamente espaçados
b) Início: 0,01, Fim: 1, com 20 elementos logaritmicamente espaçados
3. Crie um vetor x que tenha 6 valores entre 0 e 10. Em seguida, crie uma matriz A cuja primeira linha contenha os valores 3x e segunda linha contenha os valores 5x - 20.
4. Repita o exercício anterior, substituindo a palavra linha por coluna.


  • Definições de matrizes eye, zeros e ones;
  • Usando length e size na criação de matrizes;
  • Matriz transposta ( .' ) e matriz Hermitiana (');


Aula 3

14/Set - Operações com matrizes; Plots
  • Operações;
  • Soma e diferença;
  • Produto matricial;
  • Produto e divisão elemento a elemento;
  • Potenciação;
  • Funções (sin, log, etc) aplicadas a matrizes;
  • Operações entre matrizes e escalares;
  • Comandos sum e prod;
  • Mínimo (min), máximo (max), média (mean) e norma (norm);
  • Determinante (det) e inversa (inv) de uma matriz;


  • Exercícios:
1. Defina as matrizes abaixo:
2. Para as matrizes acima, realize as operações abaixo:
a) B + C
b) A D (multiplicação matricial)
c) C BT A
d) X = BT C
e) X2
f) B C (multiplicação elemento a elemento)


  • Plots:
  • Comandos plot, stem, bar e stairs de uma função
  • Uso de apenas um parâmetro
  • Comando hold para manter a curva no gráfico
  • Comando grid para mostrar linhas em forma de grade
  • Nomes aos eixos com xlabel e ylabel
  • Comando title
  • Comandos axis, xlim e ylim para ajuste de eixos
  • Comando legend
  • Especificadores de linha, cores e marcadores:
Tipo de linha Símbolo
Sólida (padrão) -
Tracejada --
Tracejada com pontos -.
Com pontos :
Cores Símbolo
Preto k
Azul b
Ciano c
Verde g
Magenta m
Vermelho r
Branco w
Amarelo y
Marcadores de dados Símbolo
Ponto .
Asterisco *
Cruz x
Círculo o
Adição +
Quadrado s
Losango d
Triângulo apontando pra cima ^
Triângulo apontando pra baixo v
Triângulo apontando pra direita >
Triângulo apontando pra esquerda <
Estrela de 5 pontas p
Estrela de 6 pontas h


  • Exercícios
1. Faça o plot de algumas das funções matemáticas vistas na aula 1. Use cores, hold on, etc
2. Plotar a função de -4 até 4 e encontrar as raízes por Bhaskara
3. Utilize o MATLAB para plotar a função ao longo do intervalo . Insira um título na plotagem e rotule adequadamente os eixos. A variável T representa a temperatura em graus Celsius; a variável t representa o tempo em minutos.
4. Plote as funções e ao longo do intervalo . Rotule adequadamente a plotagem e cada uma das curvas, utilizando legend. A variável u representa a velocidade de uma Ferrari em km/h. A variável v representa a velocidade de um Fusca.
5. Use a função stem para plotar os sinais abaixo na mesma figura:
, para
, para
6. A série de Fourier é uma representação em série de funções periódicas em termos de senos e cossenos. A representação em série de Fourier da função
é
.
Plote em um mesmo gráfico a função f(x) e sua representação em série g(x), utilizando os quatro termos explicitados.
7. Fazer o plot de um sinal de tensão versus tempo, como da figura:
Não esquecer de nomear os eixos.
Exercícios Aula 3 FIC Matlab.jpg


Aula 4

19/Set - Números aleatórios; Endereçamento de vetores e matrizes
  • Outros comandos relacionados a plotagem:
  • Comando figure
  • Comando subplot
  • Comando close all para fechar todas figuras
  • Números aleatórios
  • Comando randi para valores inteiros uniformemente distribuídos
  • Comando rand para valores uniformemente distribuídos
  • Comando randn para valores normalmente distribuídos
  • Comando hist e histogram para cálculo/visualização do histograma
  • Endereçamento de vetores e matrizes
  • Indexação de um elemento
  • Índice
  • Subscrito
  • Submatrizes
  • Índice
  • Subscrito
  • Palavra-chave end
  • Indexação/submatrizes do lado esquerdo vs do lado direito
  • Exclusão de linha ou coluna


  • Exercícios:
1. Crie uma matriz A de tamanho 15 x 15 de inteiros.
a) Extraia o elemento da segunda linha e quarta coluna de A, armazenando na variável u
b) Crie um vetor v formado pelos elementos da segunda coluna de A
c) Crie um vetor w formado pelos elementos da última linha de A
d) Crie uma matriz B formada pelos elementos da segunda até a décima coluna de A
e) Crie uma matriz C formada pelos elementos da quinta até a penúltima linha de A
f) Crie uma matriz D formada pelos elementos da sétima até a penúltima linha e das 3 últimas colunas de A
g) Crie uma matriz E formada pelas linhas pares e colunas múltiplas de 3 de A
h) Crie uma matriz F formada pelas linhas 1 a 7 e mais a 13 e pelas colunas 4, 5 e 1 de A
2. Assuma que a matriz C seja definida como abaixo e determine o conteúdo das seguintes submatrizes. Descubra a saída dos comandos antes de executá-los.
a) C(2, :)
b) C(:, end)
c) C(1:2, 2:end)
d) C(6)
e) C(4:end)
f) C(1:2, 2:4)
g) C([1 3], 2)
h) C([2 2], [3 3])
3. Determine a saída no command window após a execução dos comandos abaixo. Descubra a saída dos comandos antes de executá-los.
A = [1 2 3; 4 5 6; 7 8 9]
A([3 1], :) = A([1 3], :)
A([1 3], :) = A([2 2], :)
A = A(:, [2 2])
4. Determine o conteúdo da matriz A após a execução das seguintes declarações. Descubra a saída dos comandos antes de executá-los.
a) A = eye(3,3);
b = [1 2 3];
A(2, :) = b;
b) A = eye(3,3);
b = [4 5 6];
A(:, 3) = b';
c) A = eye(3,3);
b = [7 8 9];
A(3, :) = b([3 1 2]);


Aula 5

21/Set - Aula de exercícios
  • Exercícios:
1. A tabela a seguir mostra o salário por hora, as horas de trabalho e a produção (número de dispositivos produzidos) em uma semana para cinco fabricantes de dispositivos.


Trabalhador 1 Trabalhador 2 Trabalhador 3 Trabalhador 4 Trabalhador 5
Salário por hora ($) 5,00 5,50 6,50 6,00 6,25
Horas de trabalho (h) 40 43 37 50 45
Produção (dispositivos) 1000 1100 1000 1200 1100


Utilize o MATLAB para responder essas questões:
a) Quanto cada trabalhador recebeu na semana?
b) Qual foi o salário total pago?
c) Quantos dispositivos foram fabricados?
d) Qual é o custo médio para se produzir um dispositivo?
e) Quantas horas são necessárias, em média, para se produzir um dispositivo?
f) Assumindo que a produção de cada trabalhador tenha a mesma qualidade, qual trabalhador é o mais eficiente? Qual é o menos eficiente?
2. A aproximação de Bhaskara I para a função seno em graus é dada por:
Crie uma figura contendo 3 plots:
  • A função seno original
  • A aproximação de Bhaskara I
  • O erro da aproximação
3. Se uma bola estacionária é lançada da altura acima da superfície da terra, com velocidade vertical , a posição e a velocidade da bola como função no tempo serão dadas pelas equações
onde g é a aceleração da gravidade (-9,81 m/s²). Escreva um programa de MATLAB que desenhe a altura e a velocidade como função do tempo. Faça com que e sejam parâmetros da script. Não deixe de incluir as legendas apropriadas.
4. Joãozinho depositou num fundo de investimento com taxa de juros ao mês. Faça um gráfico do saldo do investimento. Em quanto tempo o valor depositado será dobrado? Dica: (link)
  • Desafio:
1. Plote um círculo com raio 2 e centrado no ponto (4,3). Dica: use equações paramétricas.
2. Repita o Exercício 6 da Aula 3 (Fourier) para um número de termos genérico.
3. Plote o símbolo do Batman (para quem tem dúvida, link).


Próximas aulas

Aula 5

20/Mar - Endereçamento lógico; Concatenação de matrizes; Polinômios
  • Endereçamento de vetores e matrizes
  • Lógico
  • Concatenação de vetores e matrizes
  • Comandos sort e find
  • Comandos mean, ceil, floor e round


  • Produto escalar (dot) e produto vetorial (cross) de dois vetores
  • Exercício: Calcule o produto vetorial e escalar dos vetores:
  • Polinômios
  • Representação de polinômios a partir de vetores
  • Comandos polyval, poly e roots
  • Multiplicação de polinômios (conv)
  • Divisão de polinômios (deconv), com ou ser resto
  • Comandos polyder e polyint
  • Exemplo: Livro página 88
  • Resolver os exercícios abaixo
Matlab poly EX1.jpg
Matlab poly EX2.jpg
Matlab poly EX3.jpg
Matlab poly EX4.jpg
Matlab poly EX5.jpg

Aula 6

22/Mar - Texto; Entrada e saída; Estruturas; Células
  • Trabalhando com texto
  • Entrada/Saída de dados e Texto
  • Comando input para entrada de dados
  • Comando disp e num2str
  • Exercício: Criar uma calculadora de IMC com perguntas (input) para massa e altura, aparecendo na sequência o resultado
  • Arranjo de células: texto e números
  • Comando celldisp e cellplot
  • Estruturas
  • Criando estruturas com o operador "."
  • Criando estruturas com o comando struct
  • Comando isfield para identificar se um campo existe ou não
  • Comando rmfield para remover campo da estrutura
Matlab Struct1.jpg
Matlab Struct2.jpg

Aula 7

27/Mar - Operadores; Scripts; Controle de fluxo de dados
  • Operadores:
  • Variáveis lógicas:
  • Comando logical
  • Operadores relacionais:
Operador relacional Significado
< Menor que
<= Menor ou igual a
> Maior que
>= Maior ou igual a
== Igual a
~= Não é igual a
  • Operadores lógicos (vetores):
Operador Nome
& AND
OR
~ NOT
xor(a,b) XOR
  • Operadores lógicos curto-circuito:
Operador Nome
&& AND
OR
  • Controle de fluxo de dados:
  • As sentenças if, else e elseif
  • Exercício: Criar um código que calcula o valor gasto total (em R$) e o peso total (em kg) da compra de algumas unidades de arroz (5 kg), feijão (1 kg) e café (500 g).
  • O usuário deve fornecer quantas unidades quer comprar de cada produto (comando input).
  • Os dados devem ser validados: verificar se o usuário forneceu alguma quantidade negativa.
  • Condições de compra:
  1. O preço unitário do arroz é R$15,00. Se comprar 3 ou mais, o preço cai para R$14,00 cada.
  2. O preço unitário do feijão é R$12,00. Se comprar 4 ou mais, o preço cai para R$11,50 cada.
  3. O preço unitário do café é R$10,00. Se comprar 3 ou mais, o preço cai para R$9,25 cada.

Aula 8

29/Mar - Switch; Estruturas de repetição
  • Sentença switch
  • Exercício (livro - Exemplo 4.7-1 p. 189): Utilize a estrutura switch para calcular o total de dias decorridos em um ano. Entrada de dados: o número do mês (1 até 12), o dia e a indicação de o ano ser bissexto ou não.
  • Exercício: Reescreva o código da calculadora executado em sala fazendo o uso da sentença switch.


  • Estruturas de repetição:
  • Laços for
  • Laços while
  • Sentenças break e continue
  • Exercício: Acrescente à calculadora a possibilidade de continuar realizando cálculos até que o usuário solicite a saída digitando 's'.


Aula 9

03/Abr - Funções; Importação de dados
  • Função definida pelo usuário no arquivo .m
  • Exercício: Escreva uma função que retorna o fatorial de um número fornecido.
  • Exercício: Escreva uma função que retorna um vetor contendo os n primeiros termos da sequência de Fibonacci.
  • (Livro - Exemplo 4.6-2 p. 186) Exercício: Escreva uma função que determina o tempo (em anos) necessário para que você acumule pelo menos VF (em dólares) em uma conta bancária se você depositar inicialmente V0 (em dólares) e mais P (em dólares) ao final de cada ano, com um rendimento anual de R%.
  • Exercício: Fazer o plot de um sinal de tensão x tempo, como da figura abaixo, usando os conceitos da aula de hoje.
  • de até → função seno:
  • de até → 0
  • de até → 1
  • de até → -1
Não esquecer de nomear os eixos.
Exercícios Aula 3 FIC Matlab.jpg


  • Importação de dados para o MATLAB
  • Pelo menu
  • Pelo comando uiimport

Exemplo: usar Celular4g‎.txt, importar e trabalhar com as funções de matrizes.

  • Padronizar para o formato que o Matlab reconhece os números: ponto (.) e (,);
  • Converter formato table2array.

Exercício: com o arquivo Add_user.txt (Adições Líquidas de Aparelhos 4G das Operadoras no período), calcular a soma dos anos 2014, 2015 e 2016 (até o momento) por operadora e a soma e a média por período.


Aula 10

05/Abr - Gráficos em 2D e 3D
  • Gráficos em 2D
  • Revisão: plot, stem e bars
  • stairs
  • semilogx, semilogy e loglog
  • polar
  • Exercício: Plote a função polar: de .
  • Números complexos e funções abs e angle
  • Gráfico com dois eixos em y (plotyy)
  • Exercício (livro - adaptado - 15 p. 254): As seguintes funções descrevem as oscilações em circuitos elétricos e as vibrações de máquinas e estruturas. Sobreponha as plotagens dessas funções no mesmo eixo. Como elas são similares, defina qual é a melhor forma de plotá-las e de rotulá-las para evitar confusão.
-0,5t
-0,4t
  • Letras gregas nos gráficos:
Letra Representação
\alpha
\beta
\gamma
\delta
\epsilon
\kappa
\lambda
\mu
\nu
\omega
\phi
\pi
\chi
\psi
\rho
\sigma
\tau
\upsilon
\Sigma
\Pi
\Lambda
\Omega
\Gamma


  • Gráficos em 3D
  • plot3
  • view
  • Exercício (livro - 28 p. 258): As equações paramétricas para uma hélice circular são:
em que é o raio do caminho helicoidal e é uma constante que determina a "estreiteza" do caminho. Além disso, se , a hélice tem a forma de um parafuso destro; se , a hélice tem a forma de um parafuso canhoto. Obtenha uma plotagem tridimensional da hélice para os três casos a seguir e compare-os. Utilize e .
a) ;
b) ;
c) .
  • Criar uma malha 3D com meshgrid
  • Plot de função de f(x,y) com mesh
[X,Y] = meshgrid(-20:0.5:20);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z)
  • Rótulo no eixo z: zlabel
  • Comando para fazer malha 3D com sombreamento: surf
  • Comando shading, com parâmetros flat, faceted e interp
  • Curva de níveis:
  • Curva de níveis com contour, com a possibilidade de escolha do número de curvas
  • Comando para fazer malha 3D com sombreamento e curvas de níveis na projeção: surfc;
  • Comando para fazer malha 3D e curvas de níveis na projeção: meshc;
  • Mostrar uma cortina no eixo Z:
  • Comando para fazer malha 3D se alongar em z nas extremidades: meshz
  • Comando para aparecer a malha 3D em apenas um sentido com waterfall


Arquivo:FIC Matlab Exercicios plot.pdf


Aula 11

10/Abr - Aula de exercícios

Aula dedicada à execução dos exercícios das aulas anteriores.


Aula 12

Aula 13

17/Abr - Toolbox simbólico

Básico

  • Comandos syms e sym
  • Comandos pretty e latex
  • Comando subs
  • Valores via argumento da função
  • Valores retirados do workspace
  • Comandos factor, expand, collect e simplify

Cálculo

  • Comando limit: Limites
  • Comando diff: Derivada primeira, segunda, terceira, etc.
Comando int: Integrais indefinidas e definidas
  • Interlúdio: comandos assume e assumptions
  • Comando taylor: Séries de Taylor
  • comando symsum: Somatórios / séries
  • Outros: dsolve, fourier, laplace, partfrac

Solução de equações

  • Comando solve


Códigos executados em sala

Aula 14

19/Abr - Interface gráfica

Aula

Proposta de Interface gráfica

function varargout = Interface(varargin) % INTERFACE MATLAB code for Interface.fig % INTERFACE, by itself, creates a new INTERFACE or raises the existing % singleton*. % % H = INTERFACE returns the handle to a new INTERFACE or the handle to % the existing singleton*. % % INTERFACE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in INTERFACE.M with the given input arguments. % % INTERFACE('Property','Value',...) creates a new INTERFACE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before Interface_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to Interface_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Interface

% Last Modified by GUIDE v2.5 19-Apr-2017 19:45:52

% Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ...

                  'gui_Singleton',  gui_Singleton, ...
                  'gui_OpeningFcn', @Interface_OpeningFcn, ...
                  'gui_OutputFcn',  @Interface_OutputFcn, ...
                  'gui_LayoutFcn',  [] , ...
                  'gui_Callback',   []);

if nargin && ischar(varargin{1})

   gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

   [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

   gui_mainfcn(gui_State, varargin{:});

end % End initialization code - DO NOT EDIT

% --- Executes just before Interface is made visible. function Interface_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to Interface (see VARARGIN)

handles.contador = 0; display(handles.contador) assignin('base','handles',handles)

% Choose default command line output for Interface handles.output = hObject;

% Update handles structure guidata(hObject, handles);

% UIWAIT makes Interface wait for user response (see UIRESUME) % uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line. function varargout = Interface_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure varargout{1} = handles.output;


% --- Executes on button press in btnDesenhar. function btnDesenhar_Callback(hObject, eventdata, handles) % hObject handle to btnDesenhar (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

%Incrementa o contador handles.contador = handles.contador + 1; display(handles.contador) %handles

%Axis 1 hold(handles.axes1,'off')

amostras = [0:1:1000]; if not(isempty(str2num(get(handles.edtFrequencias,'String'))))

   Freq = str2num(get(handles.edtFrequencias,'String'))
   onda = 2*pi*Freq*0.001*amostras;
   plot(handles.axes1,sin(onda))
   grid(handles.axes1,'on')
   assignin('base','contador',handles.contador);
   assignin('base','hObject',hObject)
   % Update handles structure
   guidata(hObject, handles);
   if (get(handles.rbtCosseno,'Value') == 1)
       %Axis 2
       plot(handles.axes2,cos(onda))
       grid(handles.axes2,'on')
   elseif (get(handles.rbtTangente,'Value') == 1)
       %Axis 2
       plot(handles.axes2,tan(onda))
       grid(handles.axes2,'on')
       ylim(handles.axes2,[-2,2])
   else
       errordlg('Selecione uma onda de saída!')
   end

end % --- Executes on button press in rbtCosseno. function rbtCosseno_Callback(hObject, eventdata, handles) % hObject handle to rbtCosseno (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rbtCosseno set(hObject,'Value',1) set(handles.rbtTangente,'Value',0)


% --- Executes on button press in rbtTangente. function rbtTangente_Callback(hObject, eventdata, handles) % hObject handle to rbtTangente (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rbtTangente set(hObject,'Value',1) set(handles.rbtCosseno,'Value',0)


function edtFrequencias_Callback(hObject, eventdata, handles) % hObject handle to edtFrequencias (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edtFrequencias as text % str2double(get(hObject,'String')) returns contents of edtFrequencias as a double


% --- Executes during object creation, after setting all properties. function edtFrequencias_CreateFcn(hObject, eventdata, handles) % hObject handle to edtFrequencias (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

   set(hObject,'BackgroundColor','white');

end </syntaxhighlight>

Aula 15

24/Abr - Projeto
relógio analógico
dtmf
sudoku
jogo da velha
contar moedas
esteganografia
batalha naval

Questões da turma

Projetos finais