SOP-EngTel (página)

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar

Sistemas Operacionais - 2015-2

Professor: Arliones Hoeller

  • Encontros: Quintas às 15:40 e sextas às 13:30 no Lab. de Programação.
  • Atendimento
    • Terças das 10:35 às 11:30
    • Quintas das 14:25 às 15:20

Notas

Aluno P0 P1 T0 T1 Exs Final
122005023-7
132002623-0
132002999-0
131004419-8
131005150-0
131001281-4
121000492-5
121000484-4
132004514-6
122001832-5
132002264-2
131005334-0
132004278-3

Entrega das Avaliações Secundárias

Aluno S0 S1 S2 S3
122005023-7 OK
132002623-0 OK
132002999-0 OK
131004419-8 OK
131005150-0 OK
131001281-4 OK
121000492-5 OK
121000484-4 OK
132004514-6 OK
122001832-5 OK
132002264-2 OK
131005334-0 OK
132004278-3 OK

Material de aula

Slides

Listas de exercícios

As listas de exercícios são compostas por exercícios selecionados do livro do Silberschatz, 8a edição. Há 10 volumes deste livro na biblioteca do campus.

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Fundamentos de sistemas operacionais. 8. ed. Rio de Janeiro: LTC, 2011. 515 p., il. ISBN 9788521617471.

Exercícios selecionados:

  • Capítulo 1: 1-3, 6-8, 10, 13, 14, 17, 22, 23, 25.
  • Capítulo 2: 1-8, 12, 13, 15, 17, 22, 25.
  • Capítulo 3: 1, 3, 6-10, 13, 15
  • Capítulo 4: 1, 4, 7, 8, 10-13
  • Capítulo 5: 1-3, 5, 6, 9, 10, 13-15, 21
  • Capítulo 6: 1, 2 (utilizar semáforos POSIX), 6, 8, 11-15, 18, 20, 21, 25, 29, 39.
  • Capítulo 8: 1-6, 9-21, 23.
  • Capítulo 9: 1-8, 14-16, 19-23, 28.
  • Capítulo 10: 1-20
  • Capítulo 11: 1-7
  • Capítulo 12: 1-7, 13-14 (desafio).

Projeto

Esta disciplina utiliza um projeto contínuo, no qual os alunos desenvolvem um aplicativo que emula um sistema operacional no espaço de usuário no Linux. Este projeto é chamado de BOOOS - Basic Object Oriented Operating System.


Diário de aulas

Introdução

02/10: Aula 00 - Apresentação do Curso
02/10: Aula 01 - Visão geral de funções, responsabilidades e estruturas de um SO
08/10: Arquitetura de sistemas operacionais e modelos de programação
  • Apresentação sobre histórico visão geral e estruturas básicas de um SO (Arquivo:SOP29005-parte1.pdf)
  • Capítulo 2 do livro do Silberschatz
09/10: Laboratório: GCC/G++ no Linux
Referências
Herança

Classes em C++ podem ser estendidas, criando novas classes que retêm as característica da classe-base. Este processo, conhecido como herança, envolve uma classe-base e uma classe derivada: a classe derivada herda os membros da classe-base, sobre os quais ela pode adicionar seus próprios membros.

Por exemplo, imaginemos uma série de classes para descrever dois tipos de polígonos: retângulos e triângulos. Estes dois polígonos têm certas propriedades em comum, como os valores necessários para calcular suas áreas: ambos podem ser descritos simplificadamente com uma altura e uma largura. (ou base).

Isto pode ser representado no formato de classes como uma classe Polygon (polígono) da qual podemos derivar duas outras classes: Rectangle e Triangle:

Inheritance.png

A classe Polygon poderia conter membros comuns a ambos os tipos de polígonos. Em nosso caso: largura e altura (width e height). E as classes Rectangle e Triangle poderiam ser as classes derivadas, com características específicas que diferenciam um tipo de polígono de outro.

Classes que são derivadas de outras herdam todos os membros acessíveis da classe-base. Isto significa que se a classe-base inclui um membro A e nós derivamos uma classe dela, e esta nova classe possui um membro B, a classe derivada conterá ambos os membros A e B.

No C++, a relação de herança de duas classes é declarada na classe derivada. A definição de classes derivadas usa a seguinte sintaxe:

class classe_derivada : public classe_base
{ /*...*/ };

O código acima define uma classe com nome classe_derivada, que herda publicamente a classe com nome classe_base. A palavra reservada public pode ser substituído por protected ou private, dependendo do tipo de herança desejado. Este delimitador de acesso limita o nível de acesso aos membros herdados da classe-base: os membros com um nível de acesso mais acessível são herdados com o nível declarado na herança, enquanto os membros com níveis de acesso iguais ou mais restritivos mantém, na classe derivada, os níveis de restrição declarados na classe-base.

#include <iostream>
using namespace std;

class Polygon {
  protected:
    int width, height;
  public:

    virtual int area() = 0;

    void set_values (int a, int b)
      { width=a; height=b;}
 };

class Rectangle: public Polygon {
  public:
    int area ()
      { return width * height; }
 };

class Triangle: public Polygon {
  public:
    int area ()
      { return width * height / 2; }
  };
  
int main () {
  Rectangle rect;
  Triangle trgl;
  rect.set_values (4,5);
  trgl.set_values (4,5);
  cout << rect.area() << '\n';
  cout << trgl.area() << '\n';
  return 0;
}
  • Experimento 1: compile e execute o exemplo acima.
  • Experimento 2: substitua, no exemplo acima, uma herança pública por herança protegida ou privada e verifique o que acontece.
Espaços de nomes

Espaços de nome, ou namespaces, permite agrupar entidades como classes, objetos e funções sob um mesmo nome. Deste modo o escopo global pode ser dividido em "sub-escopos", cada um com seu próprio nome.

A sintaxe para uso de um namespace em C++ é dada abaixo, onde identifier é o nome do sob o qual as entidades serão declaradas e, no local do comentário, seria registrado o conjunto de classes, objetos e funções incluídos no namespace:

namespace identifier
{
  /* entities... */
}

Por exemplo, o código abaixo as variáveis a e b são inteiros normais declarados dentro do namespace myNamespace.

namespace myNamespace
{
  int a, b;
}

Estas variáveis podem ser acessadas normalmente por classes ou funções declaradas dentro do mesmo namespace. Para serem acessadas de fora do namespace, contudo, elas precisam ser adequadamente qualificadas utilizando o operador de escopo (::). Por exemplo, para utilizar as variáveis acima de fora do myNamespace, elas devem ser qualificadas como:

myNamespace::a
myNamespace::b

Espaços de nomes podem ser bastante úteis para evitar colisão de identificadores:

// namespaces
#include <iostream>
using namespace std;

namespace foo
{
  int value() { return 5; }
}

namespace bar
{
  const double pi = 3.1416;
  double value() { return 2*pi; }
}

int main () {
  cout << foo::value() << '\n';
  cout << bar::value() << '\n';
  cout << bar::pi << '\n';
  return 0;
}
  • Experimento 1: compile, execute, e entenda o código do exemplo acima.
  • Experimento 2: crie, dentro do namespace bar, uma função que acesse a função value do namespace foo.
Criando bibliotecas

Uma biblioteca é uma coleção de objetos, assim como uma biblioteca tradicional é uma coleção de livros. Quando construindo seu programa, você pode utilizar, no gcc, uma ou mais bibliotecas, de modo que o gcc utilizará os objetos nestas bibliotecas para completar seu programa. Por exemplo, todas as funções da biblioteca padrão C (como printf e exit) estão em uma biblioteca C, geralmente na pasta lib/libc.a da sua instalação GCC. Quando você faz a ligação do seu programa, o GCC adiciona ao binário os objetos da biblioteca C necessários, baseando-se nas chamadas de funções do seu programa. Importante perceber que apenas as funções/objetos utilizados são ligados ao programa, não gerando desperdício de tempo e espaço.

Para fazer usa própria biblioteca, você precisa, primeiro, compilar cada um dos arquivos-fonte, gerando um conjunto de arquivos-objeto. Aqui utilizaremos, como exemplo, o código do exercício-exemplo da aula anterior.

g++ -c pessoa.cc
g++ -c aluno.cc

A seguir, você utilizará o comando ar para criar uma biblioteca contendo os arquivos-objeto criados.

ar rvs mylib.a pessoa.o aluno.o

Cada uma das letras em rvs especifica um parâmetro para o ar. r significa substituir objetos com mesmo nome na biblioteca pelos novos passados pela linha de comando. Como a biblioteca está inicialmente vazia, isto significa o mesmo que adicionar novos objetos à biblioteca. Há também opções para extrair e remover objetos da biblioteca. A opção v significa verbose, ou seja, pede que o programa ar imprima na tela as ações sendo tomadas durante sua execução. Finalmente, a opção s diz ao ar para criar uma tabela de símbolos, que é um recurso extra que o GCC precisa para utilizar uma biblioteca.

Para utilizar a biblioteca, simplesmente adicione ela ao comando de ligação do gcc como se fosse outro objeto:

g++ main.cc mylib.a -o main

É importante listar as bibliotecas na ordem correta. Durante a ligação, o GCC "puxa" apenas os objetos que sabe necessitar até o momento. Isto que dizer que primeiro é necessário alimentar ao GCC os arquivos-objeto que dependem de uma biblioteca (no exemplo, o main.cc), e por fim as bibliotecas que completam esta dependência.

  • Experimento 1: pegue o código-fonte da aula anterior e gere a biblioteca mylib.a utilizando os comandos acima.
  • Experimento 2: modifique o arquivo makefile da aula anterior para trabalhar com a biblioteca.
  • Experimento 3: modifique a assinatura de algum método das classes Pessoa ou Aluno e verifique o que acontece.
15/10: Aula suspensa devido a Assembleia Geral do Campus

Processos

16/10: Gerência de tarefas; contextos, processos e threads
Referências
Syscall FORK
  • Em um terminal, execute "man fork"
    • A função da API POSIX fork() aciona uma chamada de sistema (system call - syscall) que cria um novo processo duplicando o processo que realiza a chamada. O novo processo, chamado de filho, é uma cópia exata do processo criador, chamado de pai, exceto por alguns detalhes listados na manpage. O principal destes detalhes para nós agora é o fato de terem PIDs diferentes.
    • O código dos dois processos (pai e filho) são idênticos;
    • Os dados dos dois processos (pai e filho) são idênticos NO MOMENTO DA CRIAÇÃO;
    • Execução do processo filho inicia na próxima instrução do programa (no retorno da chamada FORK);
    • Não é possível saber qual dos processos (pai ou filho) retormará a execução primeiro - isto fica a cargo do excalonador do SO;
    • Valores de retorno da chamada FORK:
      • (-1): erro na criação do processo (ex.: memória insuficiente);
      • (0): em caso de sucesso, este é o valor de retorno recebido pelo processo filho;
      • (>0): em caso de sucesso, este é o valor de retorno recebido pelo processo pai;
Syscall JOIN
  • A syscall JOIN é implementada no POSIX pelo função wait(). Execute "man wait".
    • Além da função wait(), há também waitpid() e waitid();
    • Todas estas syscalls são utilizadas para aguardar por mudanças no estado de um processo filho e obter informações sobre o processo filho cujo estado tenha mudado. São consideradas mudanças de estado: o filho terminou; o filho foi finalizado por um sinal (ex.: kill); o filho foi retomado por um sinal (ex.: alarme);
    • A chamada wait também libera os recursos do processo filho que termina;
    • wait(): esta função suspende a execução do processo chamador até que UM DOS SEUS FILHOS finalize;
    • waitpid(): suspende a execução do processo chamador até que UM FILHO ESPECÍFICO finalize;
Syscall EXEC
  • A syscall EXEC é implementada no POSIX pela família de funções exec(). Execute "man exec".
    • As principais funções da família são execl(), execlp() e execvp();
    • Todas estas funções são, na realidade, front-ends (abstrações) para a syscall execve. Esta syscall substitui a imagem do processo corrente (aquele que chama a syscall) pela a imagem de um novo processo;
    • Os parâmetros passados a estas funções são, basicamente, o nome de um arquivo com a imagem do programa a ser executado (um binário de um programa), e uma lista de parâmetros a serem passados a este novo programa;


Exemplos POSIX utilizando fork/wait/exec
  • Exemplo 1: fork/wait básico
// ex1: fork/wait básico
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
    int pid, status;
    pid = fork();

    if(pid == -1) // fork falhou
    {
        perror("fork falhou!");
        exit(-1);
    }
    else if(pid == 0) // Este é o processo filho
    {
        printf("processo filho\t pid: %d\t pid pai: %d\n", getpid(), getppid());
        exit(0);
    }
    else // Este é o processo pai
    {
        wait(&status);
        printf("processo pai\t pid: %d\t pid pai: %d\n", getpid(), getppid());
        exit(0);
    }
}
arliones@socrates:~/tmp$ gcc ex1.c -o ex1 
arliones@socrates:~/tmp$ ./ex1 
processo filho	 pid: 27858	 pid pai: 27857
processo pai	 pid: 27857	 pid pai: 5337
arliones@socrates:~/tmp$
  • Exemplo 2: processos pai e filho compartilham código, mas não dados.
// ex2: fork/wait "compartilhando" dados
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{
    int pid, status, k=0;
    printf("processo %d\t antes do fork\n", getpid());
    pid = fork();
    printf("processo %d\t depois do fork\n", getpid());

    if(pid == -1) // fork falhou
    {
        perror("fork falhou!");
        exit(-1);
    }
    else if(pid == 0) // Este é o processo filho
    {
        k += 1000;
        printf("processo filho\t pid: %d\t K: %d\n", getpid(), k);
        exit(0);
    }
    else // Este é o processo pai
    {
        wait(&status);
        k += 10;
        printf("processo pai\t pid: %d\t K: %d\n", getpid(), k);
        exit(0);
    }
    k += 10;
    printf("processo %d\t K: %d\n", getpid(), k);
    exit(0);
}
arliones@socrates:~/tmp$ gcc ex2.c -o ex2
arliones@socrates:~/tmp$ ./ex2 
processo 18425	 antes do fork
processo 18425	 depois do fork
processo 18426	 depois do fork
processo filho	 pid: 18426	 K: 1000
processo pai	 pid: 18425	 K: 10
arliones@socrates:~/tmp$
  • Modificação no código: comentar linhas 22 e 29
arliones@socrates:~/tmp$ gcc ex2.c -o ex2
arliones@socrates:~/tmp$ ./ex2 
processo 32342	 antes do fork
processo 32342	 depois do fork
processo 32343	 depois do fork
processo filho	 pid: 32343	 K: 1000
processo 32343	 K: 1010
processo pai	 pid: 32342	 K: 10
processo 32342	 K: 20
arliones@socrates:~/tmp$
  • Analise os resultados e busque entender a diferença.
22/10: Gerência de tarefas; contextos, processos e threads
Exercício fork/wait

Excrever um programa C que cria uma árvore de 3 processos, onde o processo A faz um fork() criando um processo B, o processo B, por sua vez, faz um fork() criando um processo C. Cada processo deve exibir uma mensagem "Eu sou o processo XXX, filho de YYY", onde XXX e YYY são PIDs de processos. Utilizar wait() para garantir que o processo C imprima sua resposta antes do B, e que o processo B imprima sua resposta antes do A. Utilizar sleep() (man 3 sleep) para haver um intervalo de 1 segundo entre cada mensagem impressa.

23/10: Gerência de tarefas; contextos, processos e threads
Exercício status/wait

O status passado como parâmetro à função wait(&status) é, na verdade, o mecanismo de retorno de resultado do wait/waitpid. Ao retornar, esta variável contém informações sobre o resultado da execução do processo filho. Por exemplo, se um processo terminou normalmente (i.e., chamou exit), o comando WIFEXITED(status) retorna true. Este comando retorna false se o processo foi abortado (e.g., segmentation fault) ou morto (e.g., kill). Investigue no manual do wait no Linux (man wait) o funcionamento do comando WEXITSTATUS(status), e use-o para modificar o exercício anterior para calcular o 5!, sendo que cada processo pode executar apenas uma multiplicação.

Exercício 01
Implementação de um terminal utilizando chamadas POSIX fork/wait/exec
29/10: Escalonamento de tarefas
30/10: Projeto TerminALL
30/10: Escalonamento de tarefas


12/11: Escalonamento de tarefas
19/11: Atividades em laboratório: Estrutura de processos

O Linux, através da API POSIX, oferece um conjunto de funções que permite às aplicações manipular contextos, facilitando a vida do programador que quer implementar tarefas "simultâneas" dentro de um único processo, ou seja, threads. As seguintes funções e tipos estão disponíveis:

  • getcontext(&a): salva o contexto na variável a;
  • setcontext(&a): restaura um contexto salvo anteriormente na variável a;
  • swapcontext(&a,&b): salva o contexto atual na variável a e restaura o contexto salvo anteriormente na variável b;
  • makecontext(&a, ...): ajusta parâmetros internos do contexto salvo em a;
  • ucontext_t: as variáveis a e b são do tipo ucontext_t. Este tipo armazena um contexto.

Busque mais informações sobre estas funções utilizando o programa manpage do Linux (ex.: man getcontext).

Estude o código no arquivo pingpong.c abaixo e explique seu funcionamento.

#include <stdio.h>
#include <stdlib.h>
#include <ucontext.h>

#define STACKSIZE 32768		/* tamanho de pilha das threads */

/* VARIÁVEIS GLOBAIS */
ucontext_t cPing, cPong, cMain;

/* Funções-comportamento das Tarefas */
void f_ping(void * arg) {
   int i;

   printf("%s iniciada\n", (char *) arg);

   for (i=0; i<4; i++) {
      printf("%s %d\n", (char *) arg, i);
      swapcontext(&cPing, &cPong);
   }
   printf("%s FIM\n", (char *) arg);

   swapcontext(&cPing, &cMain);
}

void f_pong(void * arg) {
   int i;

   printf("%s iniciada\n", (char *) arg);

   for (i=0; i<4; i++) {
      printf("%s %d\n", (char *) arg, i);
      swapcontext(&cPong, &cPing);
   }
   printf("%s FIM\n", (char *) arg);

   swapcontext(&cPong, &cMain);
}

/* MAIN */
int main(int argc, char *argv[]) {
   char *stack;

   printf ("Main INICIO\n");

   getcontext(&cPing);
   stack = malloc(STACKSIZE);
   if(stack) {
      cPing.uc_stack.ss_sp = stack ;
      cPing.uc_stack.ss_size = STACKSIZE;
      cPing.uc_stack.ss_flags = 0;
      cPing.uc_link = 0;
   }
   else {
      perror("Erro na criação da pilha: ");
      exit(1);
   }

   makecontext(&cPing, (void*)(*f_ping), 1, "\tPing");

   getcontext(&cPong);
   stack = malloc(STACKSIZE);
   if(stack) {
      cPong.uc_stack.ss_sp = stack ;
      cPong.uc_stack.ss_size = STACKSIZE;
      cPong.uc_stack.ss_flags = 0;
      cPong.uc_link = 0;
   }
   else {
      perror("Erro na criação da pilha: ");
      exit(1);
   }

   makecontext (&cPong, (void*)(*f_pong), 1, "\tPong");

   swapcontext(&cMain, &cPing);
   swapcontext(&cMain, &cPong);

   printf("Main FIM\n");

   exit(0);
}
20/11: Comunicação entre processos
Troca de mensagens

Um mecanismo disponibilizado por sistemas UNIX para troca de mensagens entre processos é o PIPE. Pipes são mecanismos de comunicação indireta onde mensagens são trocadas através de mailboxes. Cada mailbox possui um identificador único, permitindo que processos identifiquem o canal de comunicação entre eles. O fluxo de mensagens em um Pipe é:

  • unidirecional: sobre um mesmo pipe, apenas um processo envia mensagens e um processo recebe mensagens;
  • FIFO: as mensagens são entregues na ordem de envio;
  • não-estruturado: não há estrutura pré-definida para o formato da mensagem.

No UNIX, pipes são inicializados através da SystemCall pipe, que possui a seguinte sintaxe:

  • int pipe(int pipefd[2]): pipe inicializa um novo pipe no sistema e retorna, no array pipefd, os descritores identificando cada uma das pontas do pipe. A primeira posição do array, i.e. pipefd[0], recebe o descritor que pode ser aberto apenas para leitura, enquanto a segunda posição do array, i.e. pipefd[1], recebe o descritor que pode ser aberto apenas para escrita. A função retorna zero no caso de sucesso, ou -1 se ocorrer erro.

As primitivas send/receive para uso de um pipe no UNIX são implementadas por SystemCalls read/write, conforme segue:

  • ssize_t read(int fd, void *buf, size_t count): “puxa” dados do pipe identificado pelo descritor fd. Os dados recebidos são os apontados pelo ponteiro buf, sendo count a quantidade máxima de bytes a serem recebidos. A função retorna o número de bytes recebidos.
  • ssize_t write(int fd, const void *buf, size_t count): “empurra” dados no pipe identificado pelo descritor fd. Os dados transmitidos são os apontados pelo ponteiro buf, sendo count a quantidade de bytes a serem transmitidos. A função retorna o número de bytes transmitidos.

Abaixo há um exemplo de programa criando um pipe e compartilhando os descritores entre dois processos (criados via fork()).

#include <unistd.h>   
#include <fcntl.h>
#include <stdio.h>

char *message = "This is a message!!!" ;

main()
{
    char buf[1024] ;
    int fd[2];
    pipe(fd);    /*create pipe*/
    if (fork() != 0) { /* I am the parent */
        write(fd[1], message, strlen (message) + 1) ;
    }
    else { /*Child code */
        read(fd[0], buf, 1024) ;
        printf("Got this from MaMa!!: %s\n", buf) ;
    }
}
  • Desafio 1: construa um “pipeline”. Crie um programa que conecta 4 processos através de 3 pipes. Utilize fork() para criar vários processos.
  • Desafio 2: cópia de arquivo. Projete um programa de cópia de arquivos chamado FileCopy usando pipes comuns. Esse programa receberá dois parâmetros: o primeiro é o nome do arquivo a ser copiado e o segundo é o nome do arquivo copiado. Em seguida, o programa criará um pipe comum e gravará nele o conteúdo do arquivo a ser copiado. O processo filho lerá esse arquivo do pipe e o gravará no arquivo de destino. Por exemplo, se chamarmos o programa como descrito a seguir:
$ FileCopy entrada.txt copia.txt
o arquivo entrada.txt será gravado no pipe. O processo filho lerá o conteúdo desse arquivo e o gravará no arquivo de destino copia.txt. Escreva o programa usando os pipes da API POSIX no Linux.


Projetos

TerminALL - FORK/WAIT/EXEC na prática - Prazo: 12/11/2015

Você deve utilizar as chamadas de sistema fork, wait e exec para implementar em C++ um interpretador de comandos. Os requisitos do projeto são apresentados na figura abaixo.

TerminALL-requisitos.png

Uma estrutura geral do sistema é dado pelo diagrama de classes abaixo. Este diagrama é uma versão inicial e, certamente, incompleto. O sistema final de vocês provavelmente terá novos métodos ou assinaturas diferentes para os métodos que estão ali.

TerminALL-classes.png

Para embasar seu trabalho, estude as seguintes man pages.

  • man fork
  • man wait
  • man exec
  • man gethostname
  • man getlogin
  • man getpid
  • man 2 kill

Entrega: Quinta, 12/11/2015, por email, em duplas. Entregar o código-fonte do projeto, acompanhado de relatório curto com o diagrama de classes atualizado (implementado) e uma descrição de como o sistema foi testado.

Um versão do projeto com classes VAZIAS E INCOMPLETAS pode ser baixada aqui.