Mudanças entre as edições de "PSD29007-Engtelecom(2020-2) - Prof. Marcos Moecke"

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar
Linha 15: Linha 15:
 
*[[Transformadas de Fourier]]
 
*[[Transformadas de Fourier]]
  
;Aula 5 e 6  (24 e 26 nov):
+
;Aula 5 e 6  (24, 26 nov):
  
 
* Revisão de Sinais e Sistemas no tempo discreto em Matlab:
 
* Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Linha 192: Linha 192:
 
:*Ver também [http://www.mathworks.com/help/releases/R2014a/pdf_doc/matlab/index.html PDF Documentation for MATLAB]. Principalmente [http://www.mathworks.com/help/releases/R2014a/pdf_doc/matlab/getstart.pdf MATLAB Primer].
 
:*Ver também [http://www.mathworks.com/help/releases/R2014a/pdf_doc/matlab/index.html PDF Documentation for MATLAB]. Principalmente [http://www.mathworks.com/help/releases/R2014a/pdf_doc/matlab/getstart.pdf MATLAB Primer].
  
<!--
+
====ATUAL====
;Aula 8 (9 mar):
+
;Aula (1 dez):
 
:* A filtragem de sinais digitais pode ser realizada de diferentes formas:  
 
:* A filtragem de sinais digitais pode ser realizada de diferentes formas:  
 
::* convolução (y = conv(x,h)), onde x(n) é o sinal de entrada e h(n) é a resposta ao impulso do filtro (sistema linear invariante no tempo),  
 
::* convolução (y = conv(x,h)), onde x(n) é o sinal de entrada e h(n) é a resposta ao impulso do filtro (sistema linear invariante no tempo),  
Linha 326: Linha 326:
 
</syntaxhighlight>
 
</syntaxhighlight>
 
{{collapse bottom}}
 
{{collapse bottom}}
-->
+
 
 
<!--
 
<!--
 
;Aula 7 (19 ago):
 
;Aula 7 (19 ago):

Edição das 14h39min de 1 de dezembro de 2020

Unidade 1

Unidade 1
Aula 1 (10 nov)
  • APRESENTAÇÃO DA DISCIPLINA
  • Nesta página será atualizado a cada aula o REGISTRO DIÁRIO E AVALIAÇÕES.
  • A PÁGINA DA DISCIPLINA contem os materiais gerais de referência e consulta.
  • Para a realização e entrega das atividades será utilizada a PLATAFORMA MOODLE. Chave para auto inscrição (engtelecom2020-2)
  • Durante a pandemia do COVID19 os encontros síncronos serão realizados através da plataforma Google Meet. Os encontros (havendo a concordância de todos) serão gravados, e ocorrerão nos horários normais das aulas. As aulas terão duração de 1h20 minutos com possibilidade de ainda acrescer 20 minutos previstos para esclarecimento de dúvidas. As gravações ficarão disponíveis por 30 dias no Drive do aluno, mas não poderão ser baixadas por limitação do sistema.
  • Além dos horários de aula síncrona, serão agendados horários de ATENDIMENTO EXTRACLASSE para que os alunos possam tirar dúvidas da disciplina ou das ferramentas de ensino.
  • Para a comunicação entre professor-aluno, além dos avisos do SIGAA, utilizaremos a plataforma SLACK. Sugere-se que os alunos também a utilizem para comunicação entre eles, principalmente nos trabalhos em equipe.
  • Nas aulas de PSD utilizaremos desde o inicio o Matlab e no final o Simulink e HDL Coder. Para facilitar o acesso foi disponibilizada uma VM com essa plataforma para vocês. No inicio vocês podem usar normalmente a nuvem do IFSC, mas quando forem usar o Simulink, a VM tem melhor desempenho, então recomendo que baixem a VM e instalem em seu computador.
  • A página da wiki com as orientações para instalação e uso é Teste de VM para uso pelos alunos no ensino remoto#VM Matlab
Aula 2 a 4 (12, 17, 19 nov)
Aula 5 e 6 (24, 26 nov)
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Explorar a interface do Matlab.
  • Funções de visualização das variáveis no workspace.
  • Execução de instruções passo a passo.
  • Escrita de script .m
  • Uso da execução das seções de um script.
  • Incremento de valor e execução.
EXEMPLOS:
  • Leia com atenção e execute o exemplo (Moving-Avarage Filter) na página de help da função filter.
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
  • Leia com atenção o help Using FFT, abra o script clicando no botão [Open this Example]. Execute o script seção após seção. Note o uso da fft para determinar a frequência das manchas solares.
  • Para melhorar o desempenho no Matlab recomendo que leiam a pagina do Help, . Também gostaria de lembra-los que a tecla F9 executa o código destacado no Help. Programação com scripts .m.
  • Leia sobre manchas solares para entender o que são os dados do segundo exemplo.
Sinais no dominio do tempo e dominio da frequencia. Uso da função fft
Exemplo de uso da FFT
%% Signal in Time Domain 
% Use Fourier transforms to find the frequency components of a signal buried in noise.
% Specify the parameters of a signal with a sampling frequency of 1 kHz and a signal duration of 1.5 seconds
Fs = 1000;            % Sampling frequency                    
T = 1/Fs;             % Sampling period       
L = 1500;             % Length of signal
t = (0:L-1)*T;        % Time vector

% Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz sinusoid of amplitude 1.
S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

% Corrupt the signal with zero-mean white noise with a variance of 4.
X = S + 2*randn(size(t));

% Plot the noisy signal in the time domain. It is difficult to identify the frequency components by looking at the signal X(t).
subplot(311);
plot(1000*t(1:200),X(1:200), 'b')
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')
hold on
plot(1000*t(1:200),S(1:200),'r')
hold off

% Signal in Frequency Domain
% Compute the Fourier transform of the signal.
Y = fft(X);

% Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based on P2 and the even-valued signal length L.
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

A2 = angle(Y);
A1 = A2(1:L/2+1);

% Define the frequency domain f and plot the single-sided amplitude spectrum P1. 
% The amplitudes are not exactly at 0.7 and 1, as expected, because of the added noise. 
% On average, longer signals produce better frequency approximations.
f = Fs*(0:(L/2))/L;
subplot(3,1,2);
plot(f,P1, 'b')

title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
hold on
% Now, take the Fourier transform of the original, uncorrupted signal and retrieve the exact amplitudes, 0.7 and 1.0.
Y = fft(S);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

plot(f,P1, 'r') 

title('Single-Sided Amplitude Spectrum of S(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
hold off

% Angulo  / fase 
subplot(3,1,3);
plot(f,A1)
%ylim([0 1.05]) 
title('Single-Sided Phase Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('phase(f)')
  • Amostragem de Sinais (Experimento 1.2)
  • Relembrar teorema da amostragem. Efeito da amostragem abaixo da frequência de Nyquist. Aliasing.
  • Notar que as amostras de um sinal (3 Hz) e um sinal (7 Hz) são idênticas quando amostrado com um sinal de 10 Hz.
Experimento 1.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 1.2
fs = 10; % frequencia (Hz) de amostragem dos sinais
Ts = 1/fs; fase = 0;
time = 0:Ts:(1-Ts);
f1 = 3; % frequencia (Hz) do sinal s_1
f2 = 7; % frequencia (Hz) do sinal s_2
s_1 = cos(2*pi*f1*time+fase);
s_2 = cos(2*pi*f2*time+fase);
fsa = 1000; % frequência auxiliar de amostragem usada apenas para representação dos sinais originais
Tsa = 1/fsa;
time_aux = 0:Tsa:(1-Tsa);
figure(1);
stem(time,s_1,'ob');
hold on;
plot(time_aux, cos(2*pi*f1*time_aux+fase),'--k');
stem(time,s_2,'+r');
plot(time_aux, cos(2*pi*f2*time_aux+fase),'--m');
hold off;
legend('s_1 discreto','s_1 contínuo','s_2 discreto','s_2 contínuo')
DICAS:
  • No help on-line da Mathworks, usando o botão [Try This Example > Try in your browser], permite executar o código no próprio browser sem ter nenhuma instalação do Matlab. Para verificar que o código realmente é executado mude a amplitude do ruído randômico para 0.1 ou 0.5, insira o comando close all antes da primeira linha, e execute todo o código [Run All]
  • No help do Matlab, usando o botão [Open this Example], é possível executar o código seção a seção.
  • Revisão de Sinais e Sistemas no tempo discreto em Matlab:
Variação do Experimento 2.2
%  Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
%% Experimento 2.2
% Resposta em frequencia usando a função freqz
N = 1;
num = [1 0 0 0];
den = poly([0.8 0.2])
%den = [1 0.6 -0.16];
% modo 1
%[H,w]=freqz(num,den,[0:pi/100:N*pi-pi/100]);
%plot(w/pi, abs(H));
% modo 2
%[H,w]=freqz(num,den);
%plot(w/pi, abs(H));
% modo 3
%[H,w]=freqz(num, den, 'whole');
%plot(w/pi, abs(H));
% modo 4
freqz(num, den, 'whole');
figure(2);
zplane(num,den);

%% Resposta em frequencia substituindo z -> e^(jw)
syms z
Hf(z) = symfun(z^2/(z-0.2)/(z+0.8),z);
pretty(Hf)
latex(Hf)
N = 1;
w = [0:pi/100:N*pi-pi/100];
plot(w/pi,abs(Hf(exp(1i*w))))
%title(['$' latex(Hf) '$'],'interpreter','latex')
text(0.2,2,['H(z) = ' '$$' latex(Hf) '$$'],'interpreter','latex')
xlabel(['w/' '$$' '\pi' '$$'],'interpreter','latex')
  1. Verifique a diferença entre os tipos de plots comentados no código.
  2. substitua o denominador de H(z) por dois polos em [-0.8 -0.8].
  3. verifique o que ocorre se forem utilizados polos complexos conjugados [0.3-0.4i 0.3+0.4i 0.1]
  4. verifique o que ocorre se forem utilizados polos complexos não conjugados [0.3-0.4i 0.3+0.8i]
  5. verifique o que ocorre se os polos estiverem fora do circulo unitário [1.2 -0.2]. Interprete este resultado

ATUAL

Aula 7 (1 dez)
  • A filtragem de sinais digitais pode ser realizada de diferentes formas:
  • convolução (y = conv(x,h)), onde x(n) é o sinal de entrada e h(n) é a resposta ao impulso do filtro (sistema linear invariante no tempo),
  • filtragem no domínio do tempo (y = a1.x(n)+ a2.x(n-1)+ .. ak.x(n-k));
  • no domínio da frequência (y = ifft(fft(x)fft(h))
Variação do Experimento 3.1
%% Variação do Experimento 3.1 do livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Ex3_1.m
% Exemplificando as possiveis formas de realizar a filtragem de um sinal x(n)

clc; clear all; close all;
%% Definindo valores iniciais
Nh = 10; Nx = 20;
%Nh = 400; Nx = 10000;
x = ones(1,Nx);
% A resposta ao impulso de um sistema h(n) 
% no filtro FIR aos coeficientes b(n) = h(n) 
h = [1:Nh]; b = h;
%% Filtrando o sinal e medindo tempos

% OPÇÃO 1 - Filtragem utilizando a convolução
% NOTE: length(y) = length(x) + length(h) -1

tic;  % iniciar a contagem do tempo
y1 = conv(x,h); 
t(1) = toc; % terminar a contagem e mostrar tempo no console

% OPÇÃO 2 - filtragem utilizando a equação recursiva
% NOTE: length(y) = length(x)

tic;
y2 = filter(b,1,x);
t(2) = toc;

% OPÇÃO 3 - filtragem utilizando a equação recursiva 
% aumentando o tamanho de x para que length(y3) = length(y1)
x3 = [x zeros(1,length(h)-1)];

tic;
y3 = filter(h,1,x3); 
t(3) = toc;

length_y = length(x) + length(h) - 1;

% OPÇÃO 4 - filtragem utilizando a FFT 
% a y = IFFT(FFT(x)*FFT(h))

tic;
X = fft(x,length_y);
H = fft(h,length_y);
Y4 = X.*H;
y4 = ifft(Y4);
t(4) = toc;

% OPÇÃO 5 - filtragem utilizando a função fftfilt
% a y = IFFT(FFT(x)*FFT(h))

tic
y5 = fftfilt(h,x3);
t(5) = toc;

disp('Comprimento do vetor de saída length(y)')
disp(['    ' num2str([length(y1) length(y2) length(y3) length(y4) length(y5)])])
disp('Tempo usado na filtragem em micro segundos')
disp(['    ' num2str(t*1e6) ' us'])

%%  Plotando o gráfico
subplot(411);stem(y1);
hold on;
stem(y2,'xr');
stem(y3,'+m');
legend('y1', 'y2', 'y3')
hold off
subplot(412);stem(y1, 'ob');legend('y1')
subplot(413);stem(y2, 'xr'); hold on; stem(zeros(size(y1)),'.w');hold off; legend('y2')
subplot(414);stem(y3, '+m');legend('y3')
  • Verificar as funções tic e toc
  • Notar a diferença de tempo de processamento entre os processos de filtragem.
  • A situação pode ser muito diferente conforme muda o tamanho do sinal e ordem do filtro (h(n)). Modifique a resposta ao impulso e o sinal de entrada modificando os valores das variáveis de tamanho: Nh = 10, 100, 1000; Nx = 20, 1000, 10000;
  • Em função do sistema operacional e reserva de memória para as variáveis é importante desprezar a primeira medida de tempo. Realize 3 medidas de tempo para cada uma das 5 opções de filtragem, com pelo menos duas combinações de comprimento Nh e Nx.
  • Verifique o tempo de processamento usando a instrução profile
profile on
  • Após ativar o profiler, execute o programa e veja o tempo total do script e de cada função chamada.
profile viewer  

Execute no Matlab o código abaixo, e analise os 3 filtros implementados através dos seus zeros e polos. Busque tirar conclusões sobre a influência da posição dos polos e zeros (ver o gráfico do plano z) e correlacione com a resposta de frequência em magnitude (gráfico do freqz).

Variação do Experimento 2.3
%% Experimento 2.3 - Filtros Digitais
% Exemplos e Experimentos baseados no livro:
% DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235.
% FILE: Exp2_3.m
 
%% 1º filtro
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 ]'; P = [p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 2º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.9*exp(1j*pi/4);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p1 p1' p1 p1']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
 
%% 3º filtro
z1 = exp(1j*pi/8);
z2 = exp(1j*3*pi/8);
p1 = 0.99*exp(1j*pi/4);
p2 = 0.9*exp(1j*pi/4 - 1j*pi/30);
p3 = 0.9*exp(1j*pi/4 + 1j*pi/30);
Z = [1 -1 z1 z1' z2 z2']';
P = [p1 p1' p2 p2' p3 p3']';
[num,den] = zp2tf(Z,P,1);
[h,w] = freqz(num,den);
figure(1); plot(w,abs(h)/max(abs(h)));
figure(2); zplane(num,den);
  1. 1,0 1,1 DINIZ, P. S. R., DA SILVA, E. A. B., e LIMA NETTO, S. Processamento Digital de Sinais: Projeto e Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976 p. ISBN 978-8582601235