Mudanças entre as edições de "PJI11103-2016-2"

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar
Linha 325: Linha 325:
 
{{Collapse top | Aula 6}}
 
{{Collapse top | Aula 6}}
  
 +
=== O problema dos ciclos (caminhos fechados) em uma rede local ethernet ===
 +
 +
A interligação acidental de duas portas de um switch cria um ciclo na rede local (''loop''). Mas isso pode ser feito também de forma intencional, pois em LANs grandes pode ser desejável ter enlaces redundantes, para evitar que a interrupção de um enlace isole parte da rede. A existência de interligações alternativas portanto é algo que pode ocorrer em uma rede local, seja por acidente ou com a finalidade de conferir algum grau de tolerância a falhas na infraestrutura da rede. Um caso em que uma rede possui um ciclo intencionalmente colocado pode ser visto na LAN abaixo:
 +
 +
[[imagem:LAN-anel-stp.png]]
 +
 +
Apesar de desejável em algumas situações, uma topologia de rede com caminhos fechados, como visto na figura acima, não pode ser instalada sem alguns cuidados. Uma rede como essa trancaria devido a um efeito chamado de tempestade de broadcasts (broadcast storm). Isso acontece porque, ao receber um quadro em broadcast, um switch sempre o retransmite por todas as demais portas. Para que a rede acima funcione como esperado, uma ou mais portas de switches precisarão ser desativadas de forma que o caminho fechado seja removido. Ter que fazer isso manualmente tira o sentido de ter tal configuração para tolerância a falhas (e não impede um "acidente" como aquele descrito no início desta secão), por isso foi criado o protocolo STP (Spanning Tree Protocol, definido na norma IEEE 802.1d) para realizar automaticamente essa tarefa.
  
  
 
{{Collapse bottom | Aula 6}}
 
{{Collapse bottom | Aula 6}}

Edição das 18h26min de 25 de agosto de 2016

Endereço encurtado: http://bit.ly/pji320162

Link cronograma: https://drive.google.com/open?id=1NL4CXMEtKw81K5qVLZCydJ_UR832UxqT38THHOQ4TG4


Diário de aula de PJI - 2016-2 - Prof. Simara Sonaglio

Dados Importantes

Professora: Simara Sonaglio
Email: simara.sonaglio@ifsc.edu.br

Professor: Ederson Torresini
Email: etorresini@ifsc.edu.br

Encontros: quartas e quintas das 18:50 às 22:10 horas.

Diário de aulas

10/08/16: Apresentação da disciplina e discussão do projeto a ser desenvolvido

Aula 1


Itens sugeridos pelos alunos para possível implementação no projeto:

  1. Provimento com IP válido via fibra [[1]] [[2]] e redundância via rádio [[3]] [[4]]
  2. Controle de acesso [[5]] [[6]] [[7]]
  3. Wi-Fi [[8]] [[9]]
  4. Combate automatizado a incêndio
  5. Sistema de energia com nobreak
  6. Câmera de vigilância com acesso remoto
  7. Sistema de alarme
  8. Backup de dados
  9. Acesso remoto ao sistema da empresa
  10. Provimento via fibra e par metálico
  11. Dispositivos móveis para controle de estoque
  12. Acesso a visitantes e colaboradores
  13. Servidores de banco de dados
  14. Sensores de alarme e presença
  15. Identificação facial
  16. Serviço de domínio integrado com tag
  17. Portão com portal RFID [[10]]
  18. Servidor de email
  19. Servidor HTTP na nuvem
  20. Servidor DHCP
  21. Servidor DNS com cache
  22. Firewall
  23. Proxy com controle por usuário
  24. PABX IP com URA
  25. Registro na operadora VoIP
  26. Wi-Fi para visitantes e para colaboradores com controle de acesso [[11]] [[12]] [[13]] apostila
  27. Túnel MPLS com serviços integrados, como VoIP
  28. Sistema ERP [[14]] via Web integrado a RFID
  29. Câmeras sem fio
  30. Banco de baterias
  31. CFTV com acesso externo
  32. Notificação de recebimento/entrega de carga no galpão
  33. Rastreamento por GPS da entrega integrado ao site
  34. Antena repetidora GSM

11/08/16: Discussão sobre os itens levantados pelo alunos

Aula 2
Física/Enlace

Provimento com IP válido via fibra e redundância via rádio Wi-Fi
Sistema de energia com nobreak
Provimento via fibra e par metálico
Wi-Fi para visitantes e para colaboradores com controle de acesso
Banco de baterias
Antena repetidora GSM

Rede

Firewall
Túnel MPLS com serviços integrados, como VoIP

Aplicações

Controle de acesso
Combate automatizado a incêndio
Câmera de vigilância com acesso remoto
Sistema de alarme
Backup de dados
Acesso remoto ao sistema da empresa
Dispositivos móveis para controle de estoque
Acesso a visitantes e colaboradores
Servidores de banco de dados
Sensores de alarme e presença
Identificação facial
Serviço de domínio integrado com tag
Portão com portal RFID
Servidor de email
Servidor HTTP na nuvem
Servidor DHCP
Servidor DNS com cache
Proxy com controle por usuário
PABX IP com URA
Registro na operadora VoIP
Sistema ERP via Web integrado a RFID
Câmeras sem fio
CFTV com acesso externo
Notificação de recebimento/entrega de carga no galpão
Rastreamento por GPS da entrega integrado ao site


Levantamento de itens necessários para implantação das soluções propostas:

Provimento via fibra
  1. Conversores ópticos/elétricos em ambos os lados (OLT e ONT)
  2. Fibras


Enlace via rádio
  1. Antenas no cliente e na operadora
  2. Rádios no cliente e na operadora


ADSL
  1. Par metálico
  2. Modens em ambos os lados
  3. DSLAM na operadora
  4. Concentrador de acesso
  5. Servidor RADIUS


Wi-Fi com controle de acesso integrado
e com ampla área de cobertura
  1. APs
  2. Mapeamento de áreas de cobertura de cada AP
  3. Uso de canais diferentes nos APs
  4. Integração servidor RADIUS
  5. Integração com LDAP

17/08/16: Discussão sobre os itens levantados pelo alunos

Aula 3

Memória da aula será acrescentada posteriormente

18/08/16: ADSL

Aula 4


Na infraestrutura ADSL, cabem destacar alguns elementos:

  • modem ADSL:O Modem ADSL que temos em casa também é chamado por outro nome: tranceptor. Os engenheiros na companhia telefônica ou no provedor de internet (ISP) o chamam de ATU-R. Independentemente do nome pelo qual é chamado, ele é o ponto em que os dados do computador ou rede do usuário se conectam com a linha

DSL. O Modem pode operar basicamente de duas formas: como roteador ou como bridge. Quando funciona como roteador, o modem possui recursos internos para estabelecer a conexão lógica com o AC. Quando funciona como bridge, os recursos necessários para o estabelecimento de uma conexão lógica devem estar instalados no computador, como o protocolo PPPoE.

  • splitter: filtro que separa os sinais de voz e de dados. São usados tanto do lado do assinante quanto no DSLAM.
  • DSLAM (DSL Access Multiplexer): multiplexador de acesso ADSL, que recebe as linhas dos assinantes do lado da operadora. Esse componente faz a intermediação entre os assinantes e a rede de dados da operadora. Dentre suas atribuições, destacam-se a modulação do sinal das linhas dos assinantes, a limitação das taxas de downstream e upstream de acordo com o contratado pelos assinantes, e as conversões de protocolos de enlace (quando necessárias) para a rede da operadora.
  • AC (concentrador de acesso): equipamento que concentra as pontas dos enlaces de dados dos assinantes no lado da rede da operadora.

A parte da infraestrutura ADSL dentro da rede de dados da operadora inclui equipamentos DSLAM (muitos deles), um ou mais AC e as redes de comunicação para interligá-los. Note-se que quem dá acesso de fato à Internet é o AC. A figura abaixo ilustra esses componentes.

Dslam-infra.png

O enlace de dados entre o equipamento do assinante e a rede da operadora pode ser feita de diferentes formas. Esse enlace é visto pelo assinante como seu enlace para a Internet - i.e. ele obtém seu endereço IP fornecido pela operadora. Os tipos de enlace de dados ADSL mais usados são:

  • PPPoE (PPP over Ethernet): cria um enlace ponto-a-ponto com protocolo PPP, cujos quadros são encapsulados em quadros Ethernet. Esta é a forma mais utilizada para assinantes residenciais.
  • PPPoA (PPP over ATM): cria um enlace ponto-a-ponto com protocolo PPP, cujos quadros são encapsulados em mensagens AAL5 da arquitetura ATM.
  • EoA (Ethernet over ATM): cria um enlace Ethernet, cujos quadros são encapsulados em mensagens AAL5 da arquitetura ATM.


O enlace PPPoE funciona como se tivesse um link ponto-a-ponto entre o roteador ADSL e um concentrador de acesso (AC). Quer dizer, parece que existe um fio ligando diretamente esses dois equipamentos, apesar de na realidade existir toda uma infraestrutura entre os dois. Isso pode ser visualizado na figura abaixo. Em cada ponta desse link PPPoE há um endereço IP usado pelos respectivos equipamentos.

Enlace-pppoe.png


ATIVIDADE 1


Cada equipe deve estabelecer seu enlace WAN usando ADSL. O modem ADSL deve ser configurado para trabalhar em modo PPPoE. Em seguida, fazer as configurações de rede necessárias em uma máquina virtual e fazer testes diversos afim de testar a conectividade de sua rede.


Configurações ADSL

Cada link ADSL deve ter seu IP dinamicamente configurado, o qual deve ser um IP válido fornecido à equipe pelo provedor (professores).

Os seguintes parâmetros dos modems ADSL devem ter estes valores:

  • Port: 0
  • VPI: 8
  • VCI: 35
  • Encapsulamento: LLC/SNAP
  • Modo: PPPoE
  • User: usuario1
  • Password: senha1
  • NÃO ativar firewall.
  • Ativar NAT


ATIVIDADE 2


Nesta atividade o modem deve ser configurado para operar em modo Bridge e um computador Linux deve ser preparado para user PPPoE.


A seguir há uma explicação sobre como realizar as configurações necessárias para estabelecer o enlace PPPoE em computador Linux:

  1. Instale o software necessário:
    sudo apt-get install pppoe
    
  2. Edite o arquivo /etc/ppp/peers/adsl, que deve ficar com este conteúdo:
    pty "/usr/sbin/pppoe -I eth0 -T 80 -m 1452 -C pji"
    noipdefault
    usepeerdns
    defaultroute
    hide-password
    lcp-echo-interval 20
    lcp-echo-failure 3
    connect /bin/true
    noauth
    persist
    mtu 1492
    noaccomp
    user usuario1
    default-asyncmap
    
  3. Edite o arquivo /etc/ppp/chap-secrets e acrescente o seguinte:
    usuario1   *   senha1
    
  4. Ative o enlace PPPoE executando o seguinte comando:
    sudo pppd call adsl
    
  5. Faça testes de conectividade


PPPoE (PPP over Ethernet)


PPPoE define um método para encapsular quadros PPP dentro de quadros Ethernet, e foi definido na RFC 2516. Ele foi criado para facilitar a integração de usuários discados e banda-larga em provedores de acesso (ISP - Internet Service Providers). Além disso, torna mais fácil o controle de acesso, de uso da rede, e contabilização para usuários que a acessam via rede Ethernet. Assim, é possível implantar uma rede em que os usuários, para conseguirem acesso, precisam se autenticar como em um serviço discado. Uma vez obtido o acesso, pode-se também impor limitações de uso de banda de acordo com o usuário. Exemplos de infraestruturas que podem se beneficiar com essa técnica são redes de condomínios e de prédios comerciais. Finalmente, PPPoE é usado como protocolo de enlace em acessos aDSL, ilustrado na figura abaixo.

Pppoe architecture.gif


No PPPoE suas PDUs são encapsuladas em quadros Ethernet, usando o ethertype 8863H (estágio de descoberta) ou 8864H (estágio de sessão). Devido ao cabeçalho PPPoE (6 bytes) combinado ao identificador de protocolo do quadro PPP (2 bytes), a MTU em enlaces PPPoE não pode ser maior que 1492 bytes. O quadro PPP é simplificado, não possuindo as flags delimitadoras e os campos Address, Control e FCS. A PDU PPPoE é mostrada a seguir:


Pppoe-pdu.png


Em um enlace PPPoE um dos nodos é o host (cliente), e o outro o concentrador de acesso (AC, que tem papel de servidor). O estabelecimento do enlace é iniciado pelo host, que procura um AC e em seguida solicita o início do enlace. Esse procedimento é composto por por dois estágios:

  • Descoberta (Discovery): o cliente descobre um concentrador de acesso (AC) para se conectar. Ocorre uma troca de 4 PDUs de controle:
    • PADI (PPPoE Active Discovery Indication): enviado em broadcast pelo cliente para descobrir os AC.
    • PADO (PPPoE Active Discovery Offer): resposta enviada por um ou mais AC, contendo seus identificadores e nomes de serviços disponíveis (no âmbito do PPPoE).
    • PADR (PPPoE Active Discovery Request): enviado pelo cliente para o AC escolhido, requisitando o início de uma sessão.
    • PADS (PPPoE Active Discovery Session-Confirmation): resposta do AC escolhido.

      Pppoe-discovery.png

  • Sessão (Session): nessa etapa são trocados quadros PPP como no estabelecimento de um enlace PPP usual. A sessão pode ser encerrada com a terminação PPP (i.e., via protocolo LCP), ou com a PDU PPPoE PADT (PPPoE Active Discovery Terminate).

ATIVIDADE 3


Na Atividade 3 os alunos deverão, em um único grupo, criar o AC da operadora ADSL que será utilizada no projeto. Para isso devem executar nesta máquina que será o AC os seguintes passos:

  1. Instalar o pacote no AC: sudo apt-get install pppoe</syntaxhighlight>
  2. No AC crie o arquivo /etc/ppp/pppoe-server-options com o seguinte conteúdo:

require-chap noauth login lcp-echo-interval 10 lcp-echo-failure 2 ms-dns 200.135.37.65 netmask 255.255.255.0 noipdefault debug kdebug 4 </syntaxhighlight>

  1. Crie no AC o arquivo /etc/ppp/chap-secrets com o seguinte conteúdo:

usuario1 * senha1 </syntaxhighlight>

  1. Crie o arquivo /etc/ppp/faixa-ip no AC com o seguinte conteúdo:

192.168.10X.10-50</syntaxhighlight>

  1. Ative o servidor PPPoE no AC:

pppoe-server -C pji -L 192.168.10X.200 -p /etc/ppp/faixa-ip -I eth1 </syntaxhighlight>

  1. Em máquinas virtuais, testar estabelecer os enlaces PPPoE conforme foi feito na Atividade 2.
  2. Veja no tcpdump o tráfego que foi criado durante o estabelecimento do enlace. Qual a sequência de quadros PPPoE trocada entre AC e computador?
  3. Observe se foi criada a interface ppp0. Confira o IP que ela está usando, o tipo de encapsulamento e a MTU. Confira também as interfaces ppp no AC, observando as mesmas informações.
  4. Tente usar a rede a partir do computador. Primeiro faça ping no AC, e em seguida tente acessar a rede externa. Foi possível?
  5. Coloque a máquina AC para rotear e mascarar pacotes.

24/08/16: ADSL

Aula 5

Continuação da Aula 4.

25/08/16: LAN

Aula 6

O problema dos ciclos (caminhos fechados) em uma rede local ethernet

A interligação acidental de duas portas de um switch cria um ciclo na rede local (loop). Mas isso pode ser feito também de forma intencional, pois em LANs grandes pode ser desejável ter enlaces redundantes, para evitar que a interrupção de um enlace isole parte da rede. A existência de interligações alternativas portanto é algo que pode ocorrer em uma rede local, seja por acidente ou com a finalidade de conferir algum grau de tolerância a falhas na infraestrutura da rede. Um caso em que uma rede possui um ciclo intencionalmente colocado pode ser visto na LAN abaixo:

LAN-anel-stp.png

Apesar de desejável em algumas situações, uma topologia de rede com caminhos fechados, como visto na figura acima, não pode ser instalada sem alguns cuidados. Uma rede como essa trancaria devido a um efeito chamado de tempestade de broadcasts (broadcast storm). Isso acontece porque, ao receber um quadro em broadcast, um switch sempre o retransmite por todas as demais portas. Para que a rede acima funcione como esperado, uma ou mais portas de switches precisarão ser desativadas de forma que o caminho fechado seja removido. Ter que fazer isso manualmente tira o sentido de ter tal configuração para tolerância a falhas (e não impede um "acidente" como aquele descrito no início desta secão), por isso foi criado o protocolo STP (Spanning Tree Protocol, definido na norma IEEE 802.1d) para realizar automaticamente essa tarefa.