Mudanças entre as edições de "IER-2014-1"

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar
Linha 820: Linha 820:
 
[[imagem:Simulador-vlan.png|link=http://www2.rad.com/networks/2006/vlan/demo.htm|Um simulador de VLANs]]
 
[[imagem:Simulador-vlan.png|link=http://www2.rad.com/networks/2006/vlan/demo.htm|Um simulador de VLANs]]
  
[[=== Atividade Extra AE0 - Solução com VLAN ===]]
 
  
Na figura abaixo, a rede da esquerda está fisicamente implantada em uma pequena empresa. No entanto, uma reestruturação tem como objetivo modificá-la de acordo com o diagrama mostrado à direita. Essa alteração da rede deve ser feita sem adicionar switches ou modificar o cabeamento (tampouco devem-se mudar as conexões de pontos de rede às portas de switches). Faça essa modificação usando o [[Netkit]].
+
[[AE0 - Aplicando VLAN]] prazo: 21/05/14 às 18:30Hs. Execução: em dupla. Como: Manuscrita, impressa ou via email
 
 
[[imagem:Vlan-ex1.png]]
 
 
 
# '''Criar a topologia física:'''<syntaxhighlight lang=text>
 
sw1[type]=switch
 
sw2[type]=switch
 
pc1[type]=generic
 
pc2[type]=generic
 
pc3[type]=generic
 
pc4[type]=generic
 
pc5[type]=generic
 
pc6[type]=generic
 
 
sw1[eth0]=sw1-port0
 
sw1[eth1]=sw1-port1
 
sw1[eth2]=sw1-port2
 
sw1[eth3]=link-sw1-sw2
 
 
sw2[eth0]=sw2-port0
 
sw2[eth1]=sw2-port1
 
sw2[eth2]=sw2-port2
 
sw2[eth3]=link-sw1-sw2
 
 
pc1[eth0]=sw1-port0
 
pc2[eth0]=sw1-port1
 
pc6[eth0]=sw1-port2
 
 
 
pc3[eth0]=sw2-port0
 
pc4[eth0]=sw2-port1
 
pc5[eth0]=sw2-port2
 
</syntaxhighlight>
 
# '''Criar a topologia lógica usando VLANs'''<br>''... isso é com vocês!'' <!-- <syntaxhighlight lang=text>
 
<syntaxhighlight lang=text>
 
sw1[type]=switch
 
sw2[type]=switch
 
pc1[type]=generic
 
pc2[type]=generic
 
pc3[type]=generic
 
pc4[type]=generic
 
pc5[type]=generic
 
pc6[type]=generic
 
 
sw1[eth0]=sw1-port0:vlan_untagged=1
 
sw1[eth1]=sw1-port1:vlan_untagged=3
 
sw1[eth2]=sw1-port2:vlan_untagged=2
 
sw1[eth3]=link-sw1-sw2
 
 
sw2[eth0]=sw2-port0:vlan_tagged=1,2,3
 
sw2[eth1]=sw2-port1:vlan_untagged=3
 
sw2[eth2]=sw2-port2:vlan_untagged=1
 
sw2[eth3]=link-sw1-sw2
 
 
pc1[eth0]=sw1-port0:ip=192.168.1.1/24
 
pc2[eth0]=sw1-port1:ip=192.168.3.2/24
 
pc6[eth0]=sw1-port2:ip=192.168.2.6/24
 
 
 
pc3[eth0]=sw2-port0:vlan_tagged=(1,ip=192.168.1.3/24),(2,ip=192.168.2.3/24),(3,ip=192.168.3.3/24)
 
pc4[eth0]=sw2-port1:ip=192.168.3.4/24
 
pc5[eth0]=sw2-port2:ip=192.168.1.5/24
 
</syntaxhighlight>
 
-->
 
  
 
=== A nova rede do IFSC-SJ ===
 
=== A nova rede do IFSC-SJ ===

Edição das 02h05min de 15 de maio de 2014

Instalação de Equipamentos de Redes: Diário de Aula 2014-1

Professor: Jorge Casagrande (casagrande@ifsc.edu.br)
Atendimento paralelo: 4a feira 11:35h - 12:30h e 4a feira 16:35h - 17:30h

Plano de Ensino

ANEXOS

Cronograma de atividades
Horário de Aula e Atendimento Paralelo

Dados Importantes

Professor: Jorge Henrique B. Casagrande
Email: casagrande@ifsc.edu.br
Atendimento paralelo: 4a feira 11:35h - 12:30h e 4a feira 16:35h - 17:300h (Sala dos professores de TELE - ao lado da reprografia)
Endereço do grupo: https://www.facebook.com/groups/IFSCTeleSubsequente2013.1/
Link alternativo para Material de Apoio da disciplina: http://www.sj.ifsc.edu.br/~casagrande/RED

Toda vez que voce encontrar a marcação ao lado de alguma atividade extra, significa que essa atividade será computada na avaliação individual. O prazo estabelecido para entrega estará destacado ao lado da atividade. Portanto, não perca o prazo limite para entrega. Atividades entregues fora do prazo não serão aceitas!

Recados Importantes


20/02 ATENÇÃO: Uma avaliação só pode ser recuperada somente se existir justificativa reconhecida pela coordenação. Desse modo, deve-se protocolar a justificativa no prazo de 48 horas, contando da data e horário da avaliação, e aguardar o parecer da coordenação. O não cumprimento desse procedimento implica a impossibilidade de fazer a recuperação, e assim a reprovação na disciplina.

21/02 Uso da Wiki: A partir dessa data,todo o repositório de material de apoio e referências de nossas aulas passam a usar a Wiki de tele. Para interação fora da sala de aula, acessem nosso grupo do facebook. Os planos de uso do Moodle que eu comentei para voces serão adiados em função do projeto ampliado que o IFSC está construindo para usar esse ambiente.

Resultados das Avaliações

Aluno Lista 1 Lista 2 AE0 A1 RecA1 PI
Angelo
Francin
Gerson
Guilherme
Hyowatha
Jeferson
Lucas
Mathias
Nicholas
Rafael
Ronaldo
Samuel
Sidnei
Vinicius
Atividades Extras


Material de Apoio

Slides utilizados durante algumas aulas
Manuais e outros

Bibliografia

Para pesquisar o acervo das bibliotecas do IFSC:

Curiosidades

Softwares

  • Netkit: possibilita criar experimentos com redes compostas por máquinas virtuais Linux
  • IPKit: um simulador de encaminhamento IP (roda direto dentro do navegador)

Diário de Aulas

Aula 1 - 26/03 - Modelo Básico de Comunicação de Dados

Aula 1 - 26/03 - Modelo Básico de Comunicação de Dados

  • Apresentação da disciplina;
  • Conceitos importantes em comunicação de dados;
  • Componentes de uma infra-estrutura de telecomunicações;
  • Modelo Básico de comunicação de dados.
Aula 2 - 02/04 - Componentes de Redes e Comunicação Serial e Laboratório de comunicação básica entre DTEs

Aula 2 - 02/04 - Componentes de Redes e Comunicação Serial e Laboratório de comunicação básica entre DTEs

  • Arquiteturas Básicas dos Protocolos da camada de enlace:

Protocolos orientados à Byte
Protocolos orientados à Bit

  • Interfaces Digitais - Final dos slides - não será cobrado sobre RS485;
  • Laboratório de comunicação básica entre DTEs
Aula 3 - 09/04 - Modens Analógicos e Digitais e Laboratório de Circuito Básico de Comunicação de Dados

Aula 3 - 09/04 - Modens Analógicos e Digitais e Laboratório de Circuito Básico de Comunicação de Dados

  • Modens Analógicos e Digitais
  • Enlaces de teste e protocolos
  • Laboratório de Circuito Básico de Comunicação de Dados
Aula 4 - 16/04 - Laboratório de Interligação entre LANs com uso de roteadores em modo físico - Configuração dos Roteadores e Introdução A camada de Enlace

Aula 4 - 16/04 - Laboratório de Interligação entre LANs com uso de roteadores em modo físico - Configuração dos Roteadores e Introdução A camada de Enlace

Resumo da aula:

  • Serviços da Camada de enlace
  • Laboratório - Continuação da Interligação entre LANs com uso de roteadores em modo físico

Bibliografia relacionada:

  • Parte III e capítulos 10 e 11 do livro "Comunicação de Dados e Redes de Computadores, 4a ed.", de Behrouz Forouzan
  • Capítulo 3 do livro "Redes de Computadores" de Andrew Tanenbaum.

Fundamentos Teóricos

Enlaces lógicos

Equipamentos de rede se comunicam por meio de enlaces (links). Um enlace é composto por uma parte física, composta pelo meio de transmissão e o hardware necessário para transmitir e receber um sinal que transporta a informação, e uma parte lógica, responsável por empacotar os dados a serem transmitidos. O diagrama abaixo ilustra um enlace entre dois equipamentos, realçando as formas com que a informação é representada durante a transmissão e recepção. Nesse diagrama, a parte lógica está representada no bloco Enlace, e a parte física está no bloco Física; a informação transmitida, representada por Dados, pode ser, por exemplo, um datagrama IP.

Datalink-phy.png

O enlace lógico tem uma dependência total em relação à parte física. Isso quer dizer que o tipo de tecnologia de transmissão existente na parte física traz requisitos para o projeto da parte lógica.

Deste ponto em diante, a parte lógica será chamada simplesmente de Camada de Enlace, e a parte física de Camada Física.

Em nosso estudo vamos investigar enlaces ponto-a-ponto, os quais necessitam de protocolos específicos. Para ficar mais claro o que deve fazer um protocolo de enlace ponto-a-ponto, vamos listar os serviços típicos existentes na camada de enlace.

Serviços da camada de enlace

Data-link.png

Os serviços identificados na figura acima estão descritos a seguir. A eles foram acrescentados outros dois:

  • Encapsulamento (ou enquadramento): identificação das PDUs (quadros) de enlace dentro de sequências de bits enviadas e recebidas da camada física
  • Controle de erros: garantir que quadros sejam entregues no destino
    • Detecção de erros: verificação da integridade do conteúdo de quadros (se foram recebidos sem erros de bits)
  • Controle de fluxo: ajuste da quantidade de quadros transmitidos, de acordo com a capacidade do meio de transmissão (incluindo o atraso de transmissão) e do receptor
  • Endereçamento: necessário quando o enlace for do tipo multi-ponto, em que vários equipamentos compartilham o meio de transmissão (ex: redes locais e redes sem-fio)
  • Controle de acesso ao meio (MAC): também necessário para meios compartilhados, para disciplinar as transmissões dos diversos equipamentos de forma a evitar ou reduzir a chance de haver colisões (transmissões sobrepostas)
  • Gerenciamento de enlace: funções para ativar, desativar e manter enlaces

Protocolos de enlace ponto-a-ponto

Dois protocolos de enlace ponto-a-ponto muito utilizados são:

  • PPP (Point-to-Point Protocol): proposto no início dos anos 90 pelo IETF (ver RFC 1661), e amplamente utilizado desde então. Este protocolo não faz controle de erros nem de fluxo, portanto se quadros sofrerem erros de transmissão serão sumariamente descartados no receptor. Originalmente muito usado em acesso discado, recentemente sua aplicação se concentra em enlaces por linhas dedicadas, enlaces sem-fio 3G, e uma versão modificada para acesso doméstico ADSL (PPPoE). Ver mais detalhes na seção 11.7 do livro Comunicação de Dados e Redes de Computadores, de Behrouz Forouzan.
  • HDLC (High-level Data Link Control): criado nos anos 70, foi largamente utilizado em enlaces ponto-a-ponto, porém atualmente foi substituído pelo PPP na maioria dos cenários em que era usado. Este protocolo faz controle de erros e de fluxo usando um mecanismo ARQ do tipo Go-Back-N (com janela de tamanho 7 ou 127). Ainda se aplica a enlaces ponto-a-ponto em linhas dedicadas, enlaces por satélite e aplicações específicas (ver por exemplo este artigo sobre seu uso missões espaciais em um artigo da Nasa). Ver mais detalhes na seção 11.6 do livro Comunicação de Dados e Redes de Computadores, de Behrouz Forouzan.


Ambos protocolos possuem o mesmo formato de quadro. Na verdade, o PPP copiou o formato de quadro do HDLC, apesar de não utilizar os campos Address e Control. O campo Flag, que tem o valor predefinido , serve para delimitar quadros, assim o receptor sabe quando inicia e termina cada quadro.

Ppp-frame.png
Quadro PPP ou HDLC (tamanho de campos dados em bytes)


Esses protocolos foram criados para uso com comunicação serial síncrona (ver capítulo 4, seção 4.3 do livro Comunicação de Dados e Redes de Computadores, de Behrouz Forouzan). O PPP funciona também com comunicação serial assíncrona.

Agora, usando os conceitos básicos sobre enlaces PPP e HDLC, realize o laboratório a seguir com os seguintes passos:

Para esta atividade será criada uma rede composta por três roteadores Cisco, que estarão interligados como mostrado abaixo:

Rede-modems.png

  1. Criar os circuitos com modems operando a 2 Mbps. Os Modens da DIGITEL modelo DT2048SHDSL devem possuir a seguinte configuração: (chaves em ON)
  • Modens do rack central: DIP1-todas; DIP2-7,8; DIP3-todas OFF; DIP4-5
  • Modens do rack direito e esquerdo: DIP1-todas; DIP2-7,8; DIP3-todas OFF; DIP4-5
  1. Acesse a interface de gerência (console) do seu roteador. O roteador R2 está no rack esquerdo, o roteador R1 está no rack do centro, e R2 está no rack direito. Para acessar a console, faça o seguinte:
    1. Conecte um cabo serial cross na interface serial RS-232 do seu computador. Conecte esse cabo também na interface console do roteador, que fica no painel traseiro. Como os roteadores estão distantes das bancadas, será necessário usar as tomadas azuis, que conectam as bancadas aos racks.
    2. Execute o programa minicom, que abre um terminal de texto via porta serial. Ele deve ser configurado para se comunicar pela porta serial /dev/ttyS0, com 9600 bps, 8 bits de dados e 1 stop-bit (isso aparece descrito assim: 9600 8N1).
      sudo minicom -s
      
    3. Se o minicom estiver correto, você deverá ver a interface CLI do roteador (Command Line Interface). Caso contrário, confira se o cabo serial está bem encaixado, e se os parâmetros do minicom estão certos.
  2. Configure os roteadores da seguinte forma:
    • R1:
      > enable     (password "a")
      # configure terminal
      (conf)# interface fastethernet 0
      (conf-intf)# ip address 192.168.20.254 255.255.255.0
      (conf-intf)# no shutdown
      (conf-intf)# exit
      (conf)# interface serial 0
      (conf-intf)# encapsulation ppp
      (conf-intf)# ip address 10.1.1.2 255.255.255.252
      (conf-intf)# no shutdown
      (conf-intf)# exit
      (conf)# ip route 0.0.0.0 0.0.0.0 serial 0
      (conf)# exit
       # wr
      
    • R2:
      > enable
      # configure terminal
      (conf)# interface fastethernet 0
      (conf-intf)# ip address 192.168.10.254 255.255.255.0
      (conf-intf)# no shutdown
      (conf-intf)# exit
      (conf)# interface serial 0
      (conf-intf)# encapsulation ppp
      (conf-intf)# ip address 10.1.1.6 255.255.255.252
      (conf-intf)# no shutdown
      (conf-intf)# exit
      (conf)# ip route 0.0.0.0 0.0.0.0 serial 0
      (conf)# exit
       # wr
      
    • R3:
      > enable
      # configure terminal
      (conf)# interface ethernet 0
      (conf-intf)# ip address 192.168.1.231 255.255.255.0
      (conf-intf)# no shutdown
      (conf-intf)# exit
      (conf)# interface serial 0
      (conf-intf)# encapsulation ppp
      (conf-intf)# ip address 10.1.1.5 255.255.255.252
      (conf-intf)# no shutdown
      (conf-intf)# exit
      (conf)# interface serial 1
      (conf-intf)# encapsulation ppp
      (conf-intf)# ip address 10.1.1.1 255.255.255.252
      (conf-intf)# no shutdown
      (conf-intf)# exit
      (conf)# ip route 0.0.0.0 0.0.0.0 192.168.1.1
      (conf)# exit
       # wr
      
  1. Para conferir as configurações das interfaces, use o comando show interface (detalhado) ou show ip interface brief (resumidos configuração e status):
# show interface serial 0
Aula 5 - 23/04 - Laboratório de Interligação entre LANs com uso de roteadores em modo físico - Configuração final da Rede - Uso do NETKIT

Aula 5 - 23/04 - Laboratório de Interligação entre LANs com uso de roteadores em modo físico - Configuração final da Rede - Uso do NETKIT

Configuração final da rede

Para finalizar o laboratório da aula anterior, vamos analisar a conectividade de todas as sub redes, incluindo o acesso à internet.

  • Roteiro
  1. Assim que os enlaces forem estabelecidos (interfaces e protocolos dos 3 roteadores em UP), o que pode ser conferido com o comando show interface aplicado às interaces seriais, conclua a configuração da rede (rotas nos pcs e roteadores). Ela deve ser configurada de forma que um computador possa se comunicar com qualquer outro computador da outra rede, e também acessar a Internet. Para isso, use os comandos nos PCs como:
    • sudo ifconfg eth0 x.x.x.x netmask m.m.m.m up - para atribuir outro endereço na placa de rede;
    • sudo route add default gw x.x.x.x - para atribuir um novo gateway para a placa de rede;
    • sudo route add -net x.x.x.x netmask m.m.m.m eth0 - para associar uma nova rede a interface eth0;
    • use a opção del no lugar de add para apagar configurações correspondentes;
    • route -n - para ver a tabela atual de roteamento;
    E monte a tabela de roteamento com o comando (conf)# ip route x.x.x.x m.m.m.m y.y.y.y onde x é o endereço de rede com mask m a ser alcançado e y é o próximo salto (endereço da interface do próximo roteador). O y também pode ser o nome da interface.
  2. Solução para os roteadores:
    R1:
      > enable     (password "a")
      # configure terminal
      (conf)# ip route 192.168.20.0 255.255.255.0 fastethernet 0
      (conf)# ip route 192.168.10.0 255.255.255.0 10.1.1.1
      # wr
    
    R2:
      > enable     (password "a")
      # configure terminal
      (conf)# ip route 192.168.10.0 255.255.255.0 fastethernet 0
      (conf)# ip route 192.168.20.0 255.255.255.0 10.1.1.5
      # wr
    
    R3:
      > enable     (password "a")
      # configure terminal <
      (conf)# ip route 192.168.10.0 255.255.255.0 10.1.1.6
      (conf)# ip route 192.168.20.0 255.255.255.0 10.1.1.2
      (conf)# ip route 192.168.1.0 255.255.255.0 ethernet 0
      # wr
    
  3. Para o PC do professor
      $ sudo route add -net 192.168.10.0 netmask 255.255.255.0 eth0 
      $ sudo route add -net 192.168.20.0 netmask 255.255.255.0 eth0
    
  4. Para os PCs das subredes direita e esquerda
      $ sudo ifconfg eth0 192.168.x.y netmask 255.255.255.0 up  onde x={10,20}; y={1,2,3,4}
      $ sudo route add default gw 192.168.x.254 onde x={10,20}
    
  5. Verificar e anotar todas as configurações dos componentes de redes, modens, cabos, adaptadores, manobras dos cabos, etc...
  6. Acessar as redes mutuamente qualquer computador de um subrede deve acessar qualquer outro da outra subrede;
  7. Acessar a internet em todos os PCs;
  8. Teste a vazão pelos enlaces ponto-a-ponto. Em algum computador da subrede esquerda execute:
    netperf -f k -H 192.168.1.1
    
    Realize pelo menos três medidas para cada teste e use a média desses valores como resultado final;
  9. Faça isso também usando um computador da subrede da direita e depois entre computadores das subredes direta e esquerda.
  10. Excute o netperf entre computadores da mesma subrede, anote os valores e compare com o anterior que atravessa a rede até atingir a rede 192.168.1.1.
  11. É possível usar o protocolo HDLC ao invés do PPP, bastando nos roteadores substituir o comando encapsulation ppp por encapsulation hdlc.

O uso do NETKIT

A partir de hoje iremos usar o Netkit para simular vários experimentos sem a necessidade de recorrer a complicadas instalações físicas que envolvem muitos componentes de rede e consequentemente muitos pontos de prováveis problemas de funcionamento. Vá até o link Netkit e faça uma leitura até o item 4.1.5 para entender como se utiliza esta poderosa ferramenta. Após isso faça os experimentos seguintes.

LAN simples

Uma LAN com quatro computadores (pc1, pc2, pc3, pc4). Os computadores virtuais têm IPs 192.168.0.X, sendo X o número computador (ex: pc1 tem IP 192.168.0.1). Use ping para fazer testes de comunicação. Veja o arquivo Lab.conf (configuração da rede). A rede criada nesse experimento está mostrada abaixo:

Exemplo-Lan1-netkit.png

Ao executar esse experimento quatro abas dos computadores virtuais surgirão (um para cada pc virtual). Realize um ping entre os pcs para constatar a operação da LAN.

LAN com switch

Uma LAN com quatro computadores (pc1, pc2, pc3, pc4) interligados por um switch. O switch é implementado por um computador com Linux com 4 portas ethernet. Analise o arquivo Lab.conf. A rede do experimento está mostrada abaixo:

Exemplo-Bridge-netkit.png

LAN com 2 switches

Uma LAN com 6 computadores (pc1 a pc6) interligados por dois switches (switch1 e switch2). Ambos switches são implementados por computadores com Linux com 4 portas ethernet. Observe os valores de tempo de teste dos pings entre pcs de um mesmo switch e entre os dois switches. Compare com a LAN simples (com hub). A rede do experimento está mostrada abaixo:

Exemplo-lan2.png

Uplink para a rede real

O Netkit possibilita que se criem links para a rede real, e com isto as máquinas virtuais podem acessar a rede externa e mesmo a Internet. O link para a rede real funciona como um enlace ponto-a-ponto ethernet entre uma máquina virtual e a máquina real (o sistema hospedeiro), como pode ser visto neste exemplo:

Netkit-uplink.png

A criação do link para rede externa deve ser feita com o link especial uplink. Ele deve ter um endereço IP que será usado somente para criar o link entre a máquina virtual e o sistema hospedeiro. O IP no sistema hospedeiro é sempre o último endereço possível dentro da subrede especificada (no exemplo, seria o IP 10.0.0.2).

pc2[eth1]=uplink:ip=10.0.0.1/30

Se outras máquinas virtuais precisarem acessar a rede externa, devem ter rotas configuradas para usarem o gateway onde foi feito o uplink. Além disso, será necessário ativar o NAT nesse gateway. O NAT pode ser ativado em máquinas virtuais do tipo gateway. Em sua configuração deve-se informar qual a interface de saída onde será feito o NAT:

pc2[type]=gateway

pc2[nat]=eth1

Assim, todos datagramas que sairem pela interface eth1 do gateway pc2 terão seus endereços IP de origem substituídos pelo endereço IP dessa interface.

Por fim, a criaçao do uplink implica executar alguns comandos como root no sistema hospedeiro. Assim, ao ativar a rede o Netkit irá usar o sudo para executar esses comandos. Por isso é possível que a sua senha seja solicitada durante a inicialização da rede virtual.

Uplink em modo bridge

Às vezes uma interface de uma máquina virtual precisa ser exposta na rede real, como se ela pertencesse ao sistema hospedeiro. Neste caso, deve-se criar uma bridge entre a interface da máquina virtual e uma interface real do sistema hospedeiro (de forma semelhante ao que faz o Virtualbox e outros tipos de máquinas virtuais). Uma bridge é um mecanismo existente no Linux para interligar interfaces ethernet em nível de enlace, como se elas formassem um switch. O procedimento para criar uma bridge integrada a uma interface do tipo uplink do Netkit é um tanto trabalhoso, e por isso esse processo foi automatizado.

A criação de um uplink em modo bridge deve ser feita usando o parâmetro bridge ao se declarar uma interface de rede, como mostrado abaixo:

pc[eth0]=uplink:bridge=eth0:ip=192.168.1.100/24

Neste exemplo, será criada uma bridge entre a interface eth0 da máquina virtual pc e a interface eth0 do sistema hospedeiro. Como com isso a interface da máquina virtual estará exposta na rede real, seu endereço IP pode pertencer à subrede da rede real. Se esse endereço IP for de alguma outra subrede, a máquina virtual não conseguirá se comunicar com as máquinas reais, tampouco acessar a Internet. Mas isso pode ser desejável se a intenção for interligar redes virtuais que estejam sendo executadas em diferentes computadores.

Final das atividades da aula de hoje


Atividade para casa: prazo: 30/04/14 às 18:30Hs. Execução: em dupla. Como: Manuscrita, impressa ou via email

  1. Implemente a rede "Laboratório de Interligação entre LANs com uso de roteadores em modo físico" iniciada na aula 4 e finalizada hoje usando a ferramenta Netkit. Voce "só" precisa enviar o arquivo lab.conf para o professor;
  2. Redesenhe a rede destacando todos os componentes de rede ativos e passivos utilizados (cabos, adaptadores, switches, etc) conforme voce anotou durante o roteiro nas aulas 4 e 5.
Aula 6 - 30/04 - Comutação de Circuitos Virtuais

Aula 6 - 30/04 - Comutação de Circuitos Virtuais

Conteúdos Relacionados com:

  • Capítulo 6 e 18 do livro "Comunicação de Dados e Redes de Computadores", de Berhouz Forouzan
  • Capítulo 2 do livro "Redes de Computadores", de Andrew Tanenbaum
  • Slides sobre multiplexadores Aulas 3 e 4 (a partir do item "Redes de Telecomunicações")

Distinção entre WAN, MAN e LAN

  • "Backbones" da Internet Brasileira:


Algumas redes WAN:

Uma rede MAN MetroEthernet em Florianópolis.

Man-metro.png


Ferramenta de apoio para configuração de redes: O IPKIT

Como vimos na aula anterior, o Netkit é uma ótima opção para complementar o estudo. Ele funciona como um laboratório de redes, onde se pode criar redes como aquelas que exemplificamos em sala de aula ou mesmo inventar novas redes. Seu uso se destina a fixar conceitos, para que o eventual uso e configuração dos equipamentos reais seja facilitado.

Além do Netkit, o seguinte simulador de roteamento IP, que roda dentro do próprio navegador, pode ajudar a exercitar a divisão de sub redes e a criação de rotas estáticas.

Exercícios

1. Usando o Netkit crie as seguintes redes. Não esqueça de definir as rotas estáticas.

Rede1-1.png

Arquivo do experimento
pc1[type]=generic
pc2[type]=generic
pc3[type]=generic
r1[type]=gateway
r2[type]=gateway

pc1[eth0]=link0:ip=192.168.0.1/24
pc2[eth0]=link1:ip=192.168.1.2/24
pc3[eth0]=link2:ip=192.168.2.3/24

r1[eth0]=link0:ip=192.168.0.254/24
r1[eth1]=link1:ip=192.168.1.254/24

r2[eth0]=link0:ip=192.168.0.253/24
r2[eth1]=link2:ip=192.168.2.254/24

pc1[default_gateway]=192.168.0.254
pc2[default_gateway]=192.168.1.254
pc3[default_gateway]=192.168.2.254

r1[route]=192.168.2.0/24:gateway=192.168.0.253
r2[route]=192.168.1.0/24:gateway=192.168.0.254

Rco2-Rede-intro2.png

Arquivo do experimento
pc1[type]=generic
pc2[type]=generic
pc3[type]=generic
pc4[type]=generic
r1[type]=gateway
r2[type]=gateway
r3[type]=gateway
r4[type]=gateway

pc1[eth0]=lan1:ip=192.168.1.1/24
pc2[eth0]=lan2:ip=192.168.2.1/24
pc3[eth0]=lan3:ip=192.168.3.1/24
pc4[eth0]=lan4:ip=192.168.4.1/24

r1[eth0]=lan1:ip=192.168.1.254/24
r1[eth1]=lan2:ip=192.168.2.254/24

r2[eth0]=lan2:ip=192.168.2.254/24
r2[eth1]=lan3:ip=192.168.3.254/24

r3[eth0]=lan1:ip=192.168.1.254/24
r3[eth1]=lan4:ip=192.168.4.254/24

r4[eth0]=lan3:ip=192.168.3.254/24
r4[eth1]=lan4:ip=192.168.4.254/24


Rco2-Rede-intro3.png

Arquivo do experimento
pc1[type]=generic
pc2[type]=generic
pc3[type]=generic
pc4[type]=generic
r1[type]=gateway
r2[type]=gateway

pc1[eth0]=lan1:ip=10.0.1.1/26
pc2[eth0]=lan2:ip=192.168.1.1/24
pc3[eth0]=lan3:ip=192.168.2.129/26
pc4[eth0]=lan4:ip=192.168.2.193/26

r1[eth0]=lan1:ip=10.0.1.62/26
r1[eth1]=lan2:ip=192.168.1.254/24

r2[eth0]=lan2:ip=192.168.1.253/24
r2[eth1]=lan3:ip=192.168.2.190/26
r2[eth2]=lan4:ip=192.168.2.254/26

2. Teste a comunicação entre os computadores e roteadores usando o comando ping. Use também o tcpdump ou wireshark para monitorar as interfaces de rede.


Aula 7 - 07/05 - Redes Locais e Arquitetura IEEE802

Aula 7 - 07/05 - Redes Locais e Arquitetura IEEE 802

  • Bibliografia Associada:
    • Capítulos 12, 13 e 15 do livro "Comunicação de Dados e Redes de Computadores", de Behrouz Forouzan.
    • Capítulo 5 do livro "Redes de Computadores e a Internet", de James Kurose.
    • Capítulo 4 do livro "Redes de Computadores", de Andrew Tanenbaum.

Redes Locais e o Acesso ao Meio

Veja abaixo o desenho usado por Bob Metcalfe, um dos criadores da Ethernet, para apresentação em uma conferência em 1976.

Ethernet.png

Até hoje esses conceitos se mantiveram. Atualmente temos os seguintes elementos em uma rede Ethernet:

  • Estações: equipamentos que se comunicam pela rede. Ex: computadores e roteadores.
  • Interface de rede (NIC): dispositivo embutido em cada estação com a finalidade de prover o acesso à rede. Implementa as camadas PHY e MAC.
  • Meio de transmissão: representado pelos cabos por onde os quadros ethernet são transmitidos. Esses cabos são conectados às interfaces de rede das estações.
  • Switch: equipamento de interconexão usado para interligar as estações. Cada estação é conectada a um switch por meio de um cabo. Um switch usualmente possui múltiplas interfaces de rede (12, 24 ou mais). Uma rede com switches apresenta uma topologia física em estrela.


Lan2-2011-1.png
Uma LAN com switches

... mas no início redes Ethernet não eram assim ! Leia o material de referência para ver como eram essas redes num passado não muito distante.


Arq-ieee.png

Protocolo de acesso ao meio (MAC)

Parte da camada de enlace na arquitetura IEEE 802, tem papel fundamental na comunicação entre estações. O MAC é responsável por:

  • Definir um formato de quadro onde deve ser encapsulada uma PDU de um protocolo de camada superior.


Quadro-ethernet.png
Quadro ethernet


  • Endereçar as estações, já que o meio de transmissão é multiponto (ver campos Endereço Destino (destination address) e Endereço de origem (source address) no quadro Ethenet).
  • Acessar o meio para efetuar a transmissão de quadros, resolvendo conflitos de acesso quando necessário. Um conflito de acesso (chamado de colisão) pode ocorrer em alguns casos quando mais de uma estação tenta transmitir ao mesmo tempo.


Csmacd-fluxograma.jpg
Fluxograma para o acesso ao meio com CSMA/CD.


O acesso ao meio com CSMA/CD é probabilístico: uma estação verifica se o meio está está livre antes de iniciar uma transmissão, mas isso não impede que ocorra uma colisão (apenas reduz sua chance). Se acontecer uma colisão, cada estação envolvida usa esperas de duração aleatória para desempate, chamadas de backoff. A ideia é que as estações sorteiem valores de espera diferentes, e assim a que tiver escolhido um valor menor consiga transmitir seu quadro. Veja o fluxograma acima para entender como isso é feito. As colisões e esperas (backoffs) impedem que esse protocolo de acesso ao meio aproveite totalmente a capacidade do meio de transmissão.

No entanto, nas gerações atuais do padrão IEEE 802.3 (Gigabit Ethernet e posteriores) o CSMA/CD não é mais utilizado. Nessas atualizações do padrão, o modo de comunicação é full-duplex (nas versões anteriores, que operavam a 10 e 100 Mbps, há a possibilidade de ser half ou full-duplex). Se as comunicações são full-duplex, então conceitualmente não existem colisões. Isso se deve ao fato de que nessas novas versões cada estação possui uma via exclusiva para transmitir e outra para receber, portanto não existe mais um meio compartilhado.

Utilização do meio de transmissão em uma rede local com MAC do tipo CSMA/CD

Nesta seção mostra-se como estimar o desempenho do CSMA/CD por meio de experimentos para medir a utilização máxima do meio. Esses experimentos podem ser feitos usando uma rede real, com computadores interligados por hubs, ou com um simulador. Em ambos os casos deve-se fazer com que vários computadores gerem tráfego intenso na rede, e calcular ao final a utilização do meio da seguinte forma:

O total de quadros recebidos pode ser obtido em qualquer um dos computadores.

Experiência com uma rede real

Para fazer com uma rede real:

Resultados:

64 53046660
128 61992856
256 67413192
512 70684436
756 71989464
1024 77967480
1500 73797088

Com esses dados deve-se plotar um gráfico da quantidade de bytes recebidos X tamanho dos quadros. Na tabela acima, os tamanhos de quadros estão na 1a coluna, e a quantidade de bytes recebidos está na 2a coluna.

Csma-cd.png


Desempenho do MAC CSMA/CD (Carrier Sense Multiple Access/Collision Detection): o gráfico acima mostra o resultado de um experimento feito em laboratório com 6 computadores transmitindo quadros intensamente e simultaneamente para um único computador. A cada transmissão simultânea variou-se o tamanho dos quadros transmitidos (mostrado no eixo X), e anotou-se quantos bytes foram recebidos no computador receptor (eixo Y). Os computadores foram interligados por um hub.

Experiência com uma rede simulada

Para fazer a experiência pode-se usar também o simulador Omnet++ (veja em: Instale o Omnet++ 4)

O gráfico abaixo foi obtido com uma simulação via Omnet++:

Csma-perf-sim.png

As simulações tiveram os seguintes parâmetros:

  • Quadros de 256, 512 e 1480 bytes
  • 2 a 45 estações
  • Geração de tráfego por estação com intervalos entre quadros dados por uma distribuição exponencial com média 15*tamanho_quadro_em_bits*0.11us (0.11us é o tempo aproximado de um bit)
Análise de desempenho do CSMA/CD

Uma análise feita no capítulo 4 do livro "Redes de Computadores, 4a ed." de Andrew Tanenbaum fornece a seguinte previsão aproximada de desempenho para o CSMA/CD em uma rede Ethernet a 10 Mbps.

  • Utilização do meio:

  • B: taxa de bits nominal
  • L: comprimento do meio de transmissão
  • c: velocidade de propagação do sinal
  • F: comprimento do quadro

Csma-perf.png

Essa figura mostra curvas para a utilização do meio em função da quantidade de estações prontas para transmitir, e para diferentes tamanhos de quadro. A conclusão é que quadros menores proporcionam desempenho inferior, assim como uma quantidade maior de estações resulta em uma provável menor utilização do meio. No entanto essa análise considera a rede numa situação de carga muito alta, o que não acontece normalmente. Há também algumas simplificações no desenvolvimento da análise, tal como considerar que a probabilidade de retransmissão constante em cada slot, ao invés de analisar o algoritmo de recuo exponencial binário (backoff). Finalmente, esse resultado tem sentido para um meio de transmissão compartilhado, mas a atualmente as redes locais ethernet trabalham com meios de transmissão exclusivos (ethernet comutada e full-duplex, em que não há risco de colisão).

Para fins de comparação, veja os resultados obtidos com as redes simuladas anteriormente.


A arquitetura IEEE802

  • Arquitetura IEEE 802 e Redes locais IEEE 802.3 (Ethernet): slides.

Tecnologias de LAN switches

Switches store-and-forward X cut-through

Algumas animações mostrando o funcionamento de switches store-and-forward e cut-through:

Laboratório sobre LANs


Aula 8 - 14/05 - Segmentação de Redes e VLANs

Aula 8 - 14/05 - Segmentação de Redes e VLANs

Segmentando redes

A equipe que administra a rede do campus São José estudou uma reestruturação da sua rede. Como diferentes setores e públicos a utilizam, e para diferentes propósitos, concluiu-se que seria apropriado segmentá-la em algumas subredes. Isso possibilitou facilitar o controle de quem usa a rede, além do policiamento do tráfego. Para isso, a subrede geral do campus precisou ser segmentada inicialmente em cinco novas subredes, denominadas:

Segmento Descrição Subrede IP
Pedagogica Pontos das salas de aula e laboratórios de informática 172.18.32.0/20
Administrativa Pontos de setores administrativos 172.18.16.0/20
DMZ Servidores acessíveis de fora da escola (ex: Wiki, WWW) 200.135.37.64/26
BD Servidores que hospedam bancos de dados (ex: LDAP, MySQL) 172.18.240.0/24
LAN Demais pontos de rede 172.18.0.0/20


A figura abaixo mostra a estrutura proposta para a rede do campus São José, composta pelas cinco novas subredes e as subredes dos laboratórios de Redes 1 e Redes 2. Como se pode observar, o roteador/firewall Cisco ASA 5510 se torna um nó central da rede, pois interliga todas suas subredes (com exceção dos laboratórios de Redes 1 e Redes 2).


Nova-rede-ifsc-sj.png


Existe mais de uma forma de implantar uma estrutura como essa, as quais serão apresentadas nas próximas subseções.

Segmentação física

A segmentação física é uma solução aparentemente simples e direta. Cada subrede deve ser composta de uma estrutura exclusiva, contendo seus switches e cabeamentos. No entanto, para adotar esse tipo de segmentação, algumas modificações precisarão ser feitas na infraestrutura de rede existente. Observe a estrutura física da rede do campus:

Rede-ifsc-sj.png


O que seria necessário fazer para implantar uma segmentação física ?

Segmentação com VLANs

Se a reestruturação pudesse ser efetuada com mínimas modificações na estrutura física (incluindo cabeamento), a implantação da nova rede seria mais rápida e menos custosa. Para isso ser possível, seria necessário que a infraestrutura de rede existente tivesse a capacidade de agrupar portas de switches, separando-as em segmentos lógicos. Quer dizer, deveria ser possível criar redes locais virtuais, como mostrado na seguinte figura:

Vlans.png

No exemplo acima, três redes locais virtuais (VLAN) foram implantadas nos switches. Cada rede local virtual é composta por um certo número de computadores, que podem estar conectados a diferentes switches. Assim, uma rede local pode ter uma estrutura lógica diferente da estrutura física (a forma como seus computadores estão fisicamente interligados). Uma facilidade como essa funcionaria, de certa forma, como um patch panel virtual, que seria implementado diretamente nos switches.

Redes locais virtuais são técnicas para implantar duas ou mais redes locais
com topologias arbitrárias, usando como base uma infraestrutura de rede local física.
Isso é semelhante a máquinas virtuais, em que se criam computadores virtuais
sobre um computador real.

Exemplo: a configuração do Netkit mostrada abaixo cria uma pequena rede composta por um switch e quatro computadores. Além disso, foram definidas duas VLANs (VLAN 5 e VLAN 10). Com isso, os computadores pc1 e pc4 pertencem a VLAN 5, e os computadores pc2 e pc3 estão na VLAN 10. Execute a rede abaixo e teste a comunicação entre os computadores - quais computadores conseguem se comunicar ?.

sw[type]=switch
pc1[type]=generic
pc2[type]=generic
pc3[type]=generic
pc4[type]=generic

# As portas do switch
sw[eth0]=port0:vlan_untagged=5
sw[eth1]=port1:vlan_untagged=10
sw[eth2]=port2:vlan_untagged=10
sw[eth3]=port3:vlan_untagged=5

# Ligando os computadores ao switch
pc1[eth0]=port0:ip=192.168.0.1/24
pc2[eth0]=port1:ip=192.168.0.2/24
pc3[eth0]=port2:ip=192.168.0.3/24
pc4[eth0]=port3:ip=192.168.0.4/24
Vlans-ex1.png

Padrão IEEE 802.1q

Os primeiros switches com suporte a VLANs as implementavam de forma legada (i.e. não seguiam um padrão da indústria). Isso impedia que houvesse interoperabilidade entre equipamentos de diferentes fabricantes. Logo a IEEE formou um grupo de trabalho para propor mecanismos padronizados para implantar VLANs, dando origem ao padrão IEEE 802.1q. Os fabricantes de equipamentos de rede o adataram largamente, suplantando outras tecnologias legadas (ex: ISL e VTP da Cisco). Com isso, VLANs IEEE 802.1q podem ser criadas usando switches de fabricantes diferentes.

Atualmente, a implantação de VLANs depende de switches com suporte ao padrão IEEE 802.1q. Assim, verifique quais dos switches do laboratório possuem suporte a VLAN:

Uma VLAN é identificada por um número, chamado VID (VLAN Identifier), sendo que a VLAN com VID 1 é considerada a VLAN default (configuração de fábrica). Em um switch com suporte a VLAN IEEE 802.1q, cada porta possui um (ou mais ...) VID, o que define a que VLAN pertence. Assim, para criar uma VLAN, devem-se modificar os VID das portas de switches que dela farão parte. Por exemplo, em uma pequena rede com duas VLANs as portas dos switches podem estar configuradas da seguinte forma:


Bridge3.png
switch1[type]=switch
switch2[type]=switch
pc1[type]=generic
pc2[type]=generic
pc3[type]=generic
pc4[type]=gateway
pc5[type]=generic
pc6[type]=generic

pc1[default_gateway]=192.168.0.4
pc2[default_gateway]=192.168.0.4
pc3[default_gateway]=192.168.1.4
pc5[default_gateway]=192.168.1.4
pc6[default_gateway]=192.168.0.4

switch1[eth0]=sw1-port0:vlan_untagged=5
switch1[eth1]=sw1-port1:vlan_untagged=5
switch1[eth2]=sw1-port2:vlan_untagged=10
switch1[eth3]=link-sw1-sw2:vlans_tagged=5,10

switch2[eth0]=sw2-port0:vlans_tagged=5,10
switch2[eth1]=sw2-port1:vlan_untagged=10
switch2[eth2]=sw2-port2:vlan_untagged=5
switch2[eth3]=link-sw1-sw2:vlans_tagged=5,10

pc1[eth0]=sw1-port0:ip=192.168.0.1/24
pc2[eth0]=sw1-port1:ip=192.168.0.2/24
pc3[eth0]=sw1-port2:ip=192.168.1.3/24
pc4[eth0]=sw2-port0:vlans_tagged=(5,ip=192.168.0.4/24),(10,ip=192.168.1.4/24)
pc5[eth0]=sw2-port1:ip=192.168.1.5/24
pc6[eth0]=sw2-port2:ip=192.168.0.6/24

Além do VID, a configuração da porta de um switch deve especificar o modo de operação da VLAN:

  • tagged: cada quadro transmitido ou recebido por essa porta deve conter o número da VLAN a que pertence. Esse modo é usado normalmente em portas que interligam switches.
  • untagged: quadros que entram e saem pela porta não possuem informação sobre a VLAN a que pertencem. Usado normalmente para conectar computadores e servidores a switches.


Esses modos tagged e untagged implicam haver uma forma de um quadro Ethernet informar a que VLAN pertence. Isso é usado para restringir a propagação de quadros, fazendo com que sejam recebidos e transmitidos somente por portas de switches que fazem parte de suas VLANs.


O padrão IEEE 802.1q define, entre outras coisas, uma extensão ao quadro MAC para identificar a que VLAN este pertence. Essa extensão, denominada tag (etiqueta) e mostrada na figura abaixo, compõe-se de 4 bytes situados entre os campos de endereço de origem e Type. O identificador de VLAN (VID) ocupa 12 bits, o que possibilita portanto 4096 diferentes VLANs.


Quadro-8021q.png
Quadro ethernet com a TAG IEEE 802.1q


A tag de VLAN, inserida em quadros Ethernet, está diretamente relacionada com os modos tagged e untagged de portas de switches. Portas em modo tagged transmitem e recebem quadros que possuem tag, e portas em modo untagged recebem e transmitem quadros que não possuem tag. Isso foi pensado para tornar a implantação de VLANs transparente para os usuários finais, pois seus computadores não precisarão saber que existem VLANs (i.e. não precisarão interpretar tags). Por isso equipamentos que não interpretam tags são denominados VLAN-unaware (desconhecem VLAN), e equipamentos que recebem e transmitem quadros com tag são referidos como VLAN-aware (conhecem VLAN).


Exemplo: simulador de switch com VLAN:
Esta animação possibilita simular a configuração de VLANs em um switch, e efetuar testes de transmissão. Experimente criar diferentes VLANs e observar o efeito em transmissões unicast e broadcast (clique na figura para acessar o simulador).

Um simulador de VLANs


AE0 - Aplicando VLAN prazo: 21/05/14 às 18:30Hs. Execução: em dupla. Como: Manuscrita, impressa ou via email

A nova rede do IFSC-SJ

Voltando à segmentação da rede do campus São José, vamos implantar a nova rede usando VLANs.


Ifsc-sj-simples.png Ier-seta.png Nova-rede-ifsc-sj.png

Primeiro isso será realizado usando o Netkit, e em seguida será implantado no laboratório. Para simplificar a rede, vamos assumir que a topologia física está implantada como mostrado na figura acima, à esquerda.

Configuração da rede do IFSC-SJ
# switches
sw-rnp[type]=switch
sw-redes1[type]=switch
sw-redes2[type]=switch
sw-coinf[type]=switch
sw-labdes[type]=switch
 
# gateways
asa5510[type]=gateway
gw-redes1[type]=gateway
gw-redes2[type]=gateway
 
# computadores e servidores
bd[type]=generic
dmz1[type]=generic
dmz2[type]=generic
adm1[type]=generic
adm2[type]=generic
adm3[type]=generic
pedag1[type]=generic
pedag2[type]=generic
pc-redes1[type]=generic
pc-redes2[type]=generic
 
# Portas dos switches
sw-rnp[eth0]=rnp-port0
sw-rnp[eth1]=rnp-port1
sw-rnp[eth2]=rnp-port2
sw-rnp[eth3]=rnp-port3
sw-rnp[eth4]=rnp-port4
sw-rnp[eth5]=rnp-port5
 
sw-redes1[eth0]=redes1-port0
sw-redes1[eth1]=redes1-port1
 
sw-redes2[eth0]=redes2-port0
sw-redes2[eth1]=redes2-port1
 
sw-coinf[eth0]=coinf-port0
sw-coinf[eth1]=coinf-port1
sw-coinf[eth2]=coinf-port2
# Ligações entre switches
sw-coinf[eth3]=rnp-port5
sw-coinf[eth4]=labdes-port3
 
sw-labdes[eth0]=labdes-port0
sw-labdes[eth1]=labdes-port1
sw-labdes[eth2]=labdes-port2
sw-labdes[eth3]=labdes-port3
 
# Ligações dos computadores aos switches
asa5510[eth0]=rnp-port0:ip=172.18.0.254/16
bd[eth0]=rnp-port1:ip=172.18.0.10/16
dmz1[eth0]=rnp-port2:ip=172.18.0.11/16
adm1[eth0]=rnp-port3:ip=dhcp
gw-redes1[eth1]=rnp-port4:ip=172.18.0.100/16
 
pc-redes1[eth0]=redes1-port1:ip=192.168.1.2/24
gw-redes1[eth0]=redes1-port0:ip=192.168.1.1/24
 
pc-redes2[eth0]=redes2-port1:ip=192.168.2.2/24
gw-redes2[eth0]=redes2-port0:ip=192.168.2.1/24
 
dmz2[eth0]=coinf-port0:ip=172.18.0.13/16
adm2[eth0]=coinf-port1:ip=dhcp
pedag1[eth0]=coinf-port2:ip=dhcp
 
adm3[eth0]=labdes-port0:ip=dhcp
pedag2[eth0]=labdes-port1:ip=dhcp
gw-redes2[eth1]=labdes-port2:ip=172.18.0.101/16
 
# ASA 5510 é servidor dhcp da LAN ...
asa5510[dhcp]=eth0:range=172.18.100.1,172.18.100.250:gateway=172.18.0.254
 
# Gateways default dos computadores que usam IP fixo
gw-redes1[default_gateway]=172.18.0.254
gw-redes2[default_gateway]=172.18.0.254
pc-redes1[default_gateway]=192.168.1.1
pc-redes2[default_gateway]=192.168.2.1
bd[default_gateway]=172.18.0.254
dmz1[default_gateway]=172.18.0.254
dmz2[default_gateway]=172.18.0.254