GER20706-2014-2

De MediaWiki do Campus São José
Revisão de 17h03min de 10 de setembro de 2014 por Tomas.grimm (discussão | contribs)
Ir para navegação Ir para pesquisar

Informações da disciplina

Plano de aula

Cronograma
Aula Data Horas Conteúdo Recursos
1 31/7 4 Introdução. O processo de Boot e instalação de software. Lab. Redes 1
2 7/8 4 Instalação de aplicativos com APT-GET. RAID. Lab. Redes 1
3 14/8 4 Sistema de arquivos LVM. Contas de usuários e grupos. Lab. Redes 1
4 21/8 4 Cotas em disco. Agendamento de tarefas administrativas com o uso de crontab. Lab. Redes 1
5 28/8 4 Políticas de backups. Shell scripts para automatizar tarefas. Lab. Redes 1
6 4/9 4 Shell scripts para automatizar tarefas. Lab. Redes 1
7 11/9 4 1a avaliação individual prática e teórica. Configuração da interface de rede. Apelidos de IP. Lab. Redes 1
8 18/9 4 Montagem de sub-redes e configuração dos roteadores + NAT. DNS. Lab. Redes 1
9 25/9 4 DNS. Servidor web. Lab. Redes 1
10 2/10 4 Servidor web. Servidor de e-mail. Lab. Redes 1
11 9/10 4 Webmail. Servidor SMB. Servidor NFS. Lab. Redes 1
12 16/10 4 Servidor DHCP. Servidor FTP. Servidor SSH. Lab. Redes 1
13 23/10 4 2a avaliação individual prática e teórica. Servidor Proxy/Cache com Squid. Lab. Redes 1
14 30/10 4 Firewall. Lab. Redes 1
15 6/11 4 VPN. Protocolo SNMP – Simple Network Management Protocol. MRTG. Lab. Redes 1
16 13/11 4 Nagios, monitoramento de serviços. Cacti, monitoramento de redes. Lab. Redes 1
17 20/11 4 3a avaliação individual prática e teórica. Lab. Redes 1
18 27/11 4 Recuperação de conteúdo Lab. Redes 1
19 4/12 4 Recuperação de conteúdo Lab. Redes 1
20 11/12 4 Reavaliação Lab. Redes 1
TOTAL 80

Material auxiliar

Aulas

Aula 01 (07/08): Apresentação da Disciplina, Processo de Boot, Instalação de Software e RAID

Apresentação da Disciplina

Roteiro
  1. Auto apresentação
  2. Apresentação da Wiki
  3. Apresentação do modelo de aulas a ser adotado -- laboratório
  4. Visão geral de Gerência de Redes
    1. Ementa e referências bibliográficas
    2. Explanar os três blocos da disciplina: servidor, serviços, segurança e monitoramento de redes
  5. Avaliação
    1. Teórica
    2. Prática
    3. Recuperação de conteúdo e reavaliações
  6. Curso_Superior_de_Tecnologia_em_Sistemas_de_Telecomunicações_(páginas_das_disciplinas)
  7. Conceituação das máquinas virtuais e seu uso
    1. Motivo de uso no laboratório

O boot

Roteiro

O processo de inicialização do sistema operacional, chamado de boot. Tradicionalmente no Unix System V isto se faz com a definição de níveis de execução (runlevels) e uma tabela que descreve que processos ou serviços devem existir em cada nível. Os níveis de execução são:

  1. Monousuário (single-user), ou administrativo: usado para manutenção do sistema, admite somente o login do superusuário. Não inicia serviços de rede.
  2. Multiusuário com rede (parcial): admite logins de usuários, mas não ativa acesso a recursos de rede (como sistemas de arquivo remotos)
  3. Multiusuário com rede plena
  4. Não usado
  5. Multiusuário com rede plena e ambiente gráfico: ativa também o ambiente gráfico X11
  6. Reinício do sistema (reboot)

As distribuições Linux em geral adotam a inicialização no estilo Unix System V. No entanto, o Ubuntu usa um outro processo chamado de upstart. Esse serviço de inicialização confere maior flexibilidade e mesmo simplicidade à definição de que serviços devem ser executados. O upstart não usa o conceito de níveis de execução, mas devido à sua flexibilidade ele pode emular esse estilo de inicialização. Para o upstart, um serviço deve ser iniciado ou parado dependendo de uma combinação de eventos, sendo que um evento indica a ocorrência de uma etapa da inicialização.

O upstart é implementado pelo processo init (programa /sbin/init), que é o primeiro processo criado pelo sistema operacional. Quer dizer, logo após terminar a carga e inicialização do kernel, este cria um processo que executa o programa /sbin/init. O upstart lista o subdiretório /etc/init e procura arquivos com extensão .conf. Cada arquivo desses descreve um serviço a ser controlado pelo upstart. Por exemplo, o serviço tty2 é escrito no arquivo tty2.conf:

# tty2 - getty
#
# This service maintains a getty on tty2 from the point the system is
# started until it is shut down again.

start on runlevel [23]
start on runlevel [!23]

respawn
exec /sbin/getty -8 38400 tty2

Abaixo segue o significado de cada linha:

  • start on runlevel [23]: o serviço deve ser iniciado quando ocorrerem os eventos "runlevel 2" ou "runlevel 3"
  • stop on runlevel [!23]: o serviço deve ser parado quando ocorrer qualquer evento "runlevel X", sendo X diferente de 2 e 3
  • respawn: o serviço deve ser reiniciado automaticamente caso termine de forma anormal
  • exec /sbin/getty -8 38400 tty2: a ativação do serviço implica executar o /sbin/getty -8 38400 tty2

Em linhas gerais, a descrição do serviço informa quando ele deve ser ativado (start), quando deve ser parado (stop), o tipo de execução (respawn para reinício automático, ou task para uma única execução), e que ação deve ser executada para ativar o serviço (exec para executar um programa, ou script .. end script para executar uma sequência de comandos de shell). Maiores detalhes podem ser lidos na página de manual do init.

Um exemplo de criação de serviço no upstart

Atividade

  1. Analisar alguns serviços no /etc/init/ e verificar o conteúdo dos upstarts. Tentar replicar a ideia para o faxineiro.
  2. Criar um serviço chamado faxineiro, para remover dos diretórios temporários (/var/tmp) todos os arquivos.
  3. Configurar esse novo serviço para executar no boot, logo após o serviço mountall.
  4. Reiniciar o sistema para testá-lo (executar reboot)

Resposta

Foi proposta a criação de um serviço chamado faxineiro, para remover dos diretórios temporários (/tmp e /var/tmp).

  1. Criar o arquivo /etc/init/faxineiro.conf
  2. Adicionar o seguinte conteúdo a esse arquivo:
    start on startup
    script
    rm -rf /tmp/*
    rm -rf /var/tmp/*
    end script
    
  3. Reiniciar o sistema para testá-lo (executar reboot)

Instalação de software

Roteiro

A instalação de software pode ser feita de diversas formas, dentre as quais serão destacadas três:

  • Com utilitário apt-get: busca o software de um repositório de rede e o instala; dependências (outros softwares necessários) são automaticamente instaladas. Esses softwares buscados da rede estão no formato dpkg (Debian Package).

Exemplo de uso do apt-get:

    • Instalar o navegador de texto lynx
    • Testar o navegador lynx
lynx http://www.ifsc.edu.br/
    • Remover o lynx
  • Diretamente com utilitário dpkg: instala um software que está contido em um arquivo no formato dpkg.

Exemplo de uso:

    • Obter os pacotes Debian para o lynx
wget ftp://ftp.cn.debian.org/ubuntu-old-releases/ubuntu/pool/main/l/lynx-cur/lynx_2.8.7pre6-1_all.deb
wget ftp://mirror.linux.org.au/ubuntu/pool/main/l/lynx-cur/lynx-cur_2.8.7pre6-1_i386.deb
    • Instalar os pacotes
    • Testar o lynx
lynx ...
    • Remover os pacotes instalados


  • A partir do código fonte: busca-se manualmente na rede o código fonte do software desejado, que deve então ser compilado e instalado. Esta opção se aplica quando não existe o software no formato dpkg, ou a versão disponível em formato dpkg foi compilada de uma forma que não atende os requisitos para seu uso em seu servidor.

RAID

Roteiro

RAID (Redundant Array of Independent Disks) se destina a combinar discos de forma a incrementar o desempenho de entrada e saída e, principalmente, segurança dos dados contra defeitos em discos. RAID pode ser provido via software ou hardware (melhor este último). O Linux possui implementação por software em seu kernel, e neste HOWTO há uma descrição resumida.

Há vários níveis RAID, que correspondem a diferentes combinações de discos e partições. São eles:

  • LINEAR: concatena discos ou partições, mas não provê acréscimos de desempenho, nem de segurança dos dados (pelo contrário ! se um disco falhar, perdem-se todos os dados ...).
  • RAID 0 (ou striping): combina discos ou partições de forma alternada, para distribuir os acessos entre eles (aumentar desempenho). Porém, se um disco falhar perdem-se todos os dados. Requer um mínimo de dois discos.
    RAID 0.png
  • RAID 1 (ou mirroring): combina discos ou partições para espelhar dados (segurança). Requer o dobro de discos necessários para guardar os dados (ex: se há dois discos com dados, são necessários outros dois para espelhamento). Se todos os discos falharem, é possível continuar a operar usando os discos espelhados. Requer no mínimo dois discos.
    RAID 1.png
  • RAID 4 e 5: combina discos ou partições para ter redundância de dados (segurança), usando um esquema baseado em paridade. Se um disco falhar, é capaz de continuar operando (porém com desempenho reduzido até que esse disco seja reposto). RAID 4 na prática não se usa, pois apresenta um gargalo no disco onde residem os blocos de paridades. Requer no mínimo três discos.
    RAID 4.png RAID 5.png
  • RAID 6: combina discos ou partições para ter redundância de dados (segurança), usando um esquema baseado em paridade de forma duplicada. Isto garante que os dados se preservam mesmo que dois discos se danifiquem. Requer no mínimo quatro discos (pois há dois discos adicionais para paridades).
    RAID 6.png
  • RAID 10: combina RAID 1 e RAID 0, criando um volume com espelhamento (RAID 1), e depois fazendo o striping (RAID 0). Requer no mínimo quatro discos.
    RAID 10.png
  • RAID 01: combina RAID 0 e RAID 1, criando um volume com striping (RAID 0), e depois fazendo o espelhamento (RAID 1). Requer no mínimo quatro discos.
    RAID 01.png

Criação de um volume RAID no Linux:

  1. Usar o comando mdadm --create --verbose /dev/md0 --level=NIVEL_RAID --raid-devices=NUM_PARTICOES PARTICAO_1 PARTICAO_2 ...
    • NIVEL_RAID pode ser linear, 0, 1, 4, 5, 6, 10, mp, faulty (mais comuns são 0, 1 e 5).
    • NUM_PARTICOES é a quantidade de partições usadas no volume.
    • As partições são identificadas com o caminho (pathname) do dispositivo correspondente no Linux. Ex: a primeira partição do primeiro disco SCSI ou SATA é /dev/sda1, a segunda partição desse disco é /dev/sda2, a primeira partição do segundo disco SCSI ou SATA é /dev/sdb1, e assim por diante.
    • /dev/md0 é o caminho do dispositivo que corresponde ao volume RAID a ser criado. O primeiro volume RAID é /dev/md0, o segundo é /dev/md1, e assim por diante.
  2. Formatar o volume RAID: mkfs.ext4 -j /dev/md0
  3. Uma vez testado o volume RAID, sua configuração pode ser salva para posterior uso: mdadm --detail --scan >> /etc/mdadm/mdadm.conf
    • Isto é importante para que o volume possa ser ativado automaticamente no próximo boot.

Para ativar um volume já criado, basta executar mdadm --assemble caminho_do_volume. Ex: mdadm --assemble /dev/md0, mdadm --assemble /dev/md1.

Atividade:

  1. Dica: crie uma cópia de sua máquina virtual (snapshot - ferramenta do VirtualBox) antes de executar o roteiro, caso dê problemas a recuperação é muito simples.
  2. Crie duas partições de mesmo tamanho no disco /dev/sdb usando o cfdisk. Marque-as como sendo do tipo Linux RAID (fdisk t = "fd").
  3. Crie um volume RAID nível 1 com essas partições. Formate-o e monte-o em /mnt. Qual o tamanho total dele ?
  4. Desmonte e Pare o volume existente, com mdadm -S /dev/md0
  5. Crie um volume RAID nível 0 com essas partições. Formate-o e monte-o em /mnt. Qual o tamanho total dele ?
  6. Desmonte e Pare o volume existente, com mdadm -S /dev/md0
  7. Crie um volume RAID nível 5 com essas partições. Formate-o e monte-o em /mnt. Qual o tamanho total dele ?
  8. Desmonte e Pare o volume existente, com mdadm -S /dev/md0

Desafio

  1. Crie dois novos discos (virtuais) no VirtualBox, no diretório do aluno (vai ser apagado no reboot da máquina) e associe a sua máquina virtual. Isto deverá ser feito com a máquina virtual desligada.
  2. Crie uma partição em cada disco virtual, ocupando o tamanho total.
  3. Crie duas partições de mesmo tamanho no disco /dev/sd? usando o cfdisk. Marque-as como sendo do tipo Linux RAID (fdisk t = "fd").
  4. Crie um volume RAID nível 1 com essas partições. Formate-o e monte-o em /mnt.
  5. Copie, crie uma série de arquivos ou diretórios nesta partição.
  6. Desligue a máquina virtual e desassocie um dos discos.
  7. Religue a máquina e verifique se os dados estão intactos.

Aula 02 (21/08): LVM e contas de usuários e grupos

LVM

Capítulo 15 da apostila.

Roteiro

Armazenamento com Gerenciador de Volumes Lógicos (LVM). Ver páginas 57 e 58 da apostila.

Há um HOWTO com informação adicional sobre LVM no Linux, e outro com uma definição mais geral na Wikipedia.

LVM combina volumes físicos (ou PV, de Physical Volume), tais como discos, partições e volumes RAID, em uma abstração chamada grupo de volumes (ou VG, de Volume Group). Um VG funciona como um grande disco virtual, que pode ser dividido em volumes lógicos (LV, de Logical Volume). Cada LV pode ser usado para conter um sistema de arquivos, memória virtual (área de swap), ou qualquer outra finalidade de armazenamento (ex: área de dados de um banco de dados Oracle). A figura abaixo mostra a relação entre esses componentes, com exemplos de utilização dos LV:

Lvm-lg.gif
Diagrama do LVM (obtido no Linux DevCenter)

Um resumo dos componentes do LVM segue abaixo:

  • VG: Volume Group, que representa um disco lógico
  • PE: Physical Extent, ou uma subdivisão do PV (são todas de mesmo tamanho), que funciona como unidade de alocação de espaço
  • LE: Logical Extent, o equivalente ao PE, porém no contexto do LV
  • PV: Physical Volume, ou uma partição física
  • LV: Logical Volume, ou uma partição lógica criada dentro do VG

Em sua estrutura interna, o LVM divide cada PV em pequenas partições chamadas de PE (Physical Extent). Um tamanho típico para as PE é de 4 MB. Essas PE são usadas para alocar espaço para os LV, porém não há nenhuma relação entre a ordem física das PE nos PV e a ordem em que elas são alocadas aos LV - é normal inclusive PE de diferentes PV serem alocadas ao mesmo LV. Dentro de cada LV cada PE é chamada de LE (Logical Extent). A figura abaixo relaciona as PE com as LE dos LV:

Lvm1-linux.png
Diagrama para LVM versão 1 (LVM1) no Linux.

Criação do LVM no Linux

A sequência de criação de um VG e seus LV é a seguinte:

  1. Criar partições físicas do tipo 8E (Linux LVM), que serão usadas para serem os PV
  2. Preparar essas partições para serem usadas como PV, usando o comando lvm pvcreate caminho_partição (ex: lvm pvcreate /dev/sdb1)
  3. Criar o VG, usando o comando lvm vgcreate nome_vg pv1 [pv2 ...] (ex: lvm vgcreate meu_vg /dev/sdb1 /dev/sdb2)
  4. Criar os LV, com o comando lvm lvcreate nome_vg -L tamanho_LV -n nome_LV (ex: lvm lvcreate meu_vg -L 512M -n teste)
  5. Formatar os LV (ex: mke4fs -j /dev/meu_vg/teste, para formatar com sistema de arquivos ext4)

Abaixo segue um exemplo de uma sequência de comandos relacionados com LVM, desde o particionamento de um disco até o redimensionamento de um LV existente:

# Prepara as partições (devem ser do tipo 8E (Linux LVM)
fdisk /dev/sdb

# Prepara essas duas partições para serem usadas como volumes físicos
lvm pvcreate /dev/sdb1
lvm pvcreate /dev/sdb2

# Cria o volume group "vg"
lvm vgcreate vg /dev/sdb1 /dev/sdb2

# Cria dentro do volume group "vg" um volume lógico "dados" com 512 MB iniciais
lvm lvcreate vg -L 512M -n dados

# Cria dentro do volume group "vg" um volume lógico "teste" com 256 MB iniciais
lvm lvcreate vg -L 256M -n teste

# Mostra informações sobre todos os volumes lógicos
lvm lvs

# Mostra detalhes sobre o volume lógico "dados", que pertence ao volume group "vg"
lvm lvdisplay /dev/vg/dados

# Formata o volume lógico "dados" com sistema de arquivos do tipo "ext4"
mkfs.ext4 -j /dev/vg/dados

# Formata o volume lógico "teste" com sistema de arquivos do tipo "xfs"
mkfs.xfs /dev/vg/teste

# Monta o Volume Lógico dados em /mnt
mount /dev/vg/dados /mnt

# Confererência
df -h

# Aumenta em 100 MB o tamanho do volume lógico "dados"
lvm lvresize -L +100M /dev/vg/dados

# Aumenta o sistema de arquivos contido no volume lógico "dados", para adaptá-lo ao seu novo tamanho
resize2fs /dev/vg/dados

Questões importantes:

  1. O que é LVM, e qual sua relação com os discos físicos ?
  2. Para que usar LVM (o que se ganha com seu uso) ?
  3. Existe algum problema que possa ocorrer com o uso do LVM ? Por exemplo, se um disco apresentar defeito ?

RAID + LVM

Roteiro

LVM não proporciona proteção dos dados ... pelo contrário. Por combinar volumes físicos para serem usados em volumes lógicos, e pela forma como faz a alocação de espaço (em que os LE dos volumes lógicos podem apresentar um mapeamento arbitrário e fora de sequência aos PE dos volumes físicos), na verdade o LVM amplia a chance de dores de cabeça no evento de um defeito em um disco. Por isto é fundamental que a segurança dos dados seja provida por outra técnica, sendo o mais recomendado RAID.

RAID combina discos ou partições de forma a incrementar o desempenho e/ou segurança dos dados, conforme visto anteriormente. Um volume RAID (ou array RAID), composto de múltiplos discos, se apresenta como se fosse um único disco. Para usá-lo de forma a prover segurança de dados para o LVM, o volume RAID deve ser usado como volume físico do LVM. Além disto, dado o objetivo do uso do RAID, devem-se usar os níveis RAID 1, RAID 5, RAID 6 ou RAID 10 (melhor os dois primeiros). Fazendo isto, os volumes LVM estarão menos vulneráveis a falhas de hardware.

Usuários e grupos

Roteiro

Capítulos 16 e 17 da apostila.

Criação de contas de usuários e de grupos, e seu uso para conferir permissões de acesso a arquivos, diretórios e recursos do sistema operacional. Apostila, páginas 61 a 65.

Um usuário no Linux (e no Unix em geral) é definido pelo seguinte conjunto de informações:

  • Nome de usuário (ou login): um apelido que identifica o usuário no sistema
  • UID (User Identifier): um número único que identifica o usuário
  • GID (Group Identifier): o número do grupo primário do usuário
  • Senha (password): senha para verificação de acesso
  • Nome completo (full name): nome completo do usuário
  • Diretório inicial (homedir): o subddiretório pessoal do usuário, onde ele é colocado ao entrar no sistema
  • Shell: o programa a ser executado quando o usuário entrar no sistema

As contas de usuários, que contêm as informações acima, podem ficar armazenadas em diferentes bases de dados (chamadas de bases de dados de usuários). Dentre elas, a mais simples é composta pelo arquivo /etc/passwd:

root:x:0:0:root:/root:/bin/bash
sshd:x:71:65:SSH daemon:/var/lib/sshd:/bin/false
suse-ncc:x:105:107:Novell Customer Center User:/var/lib/YaST2/suse-ncc-fakehome:/bin/bash
wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
news:x:9:13:News system:/etc/news:/bin/bash
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
roberto:x:1001:100:Roberto de Matos:/data1/roberto:/bin/bash

Acima um exemplo de arquivo /etc/passwd

Cada linha desse arquivo define uma conta de usuário no seguinte formato:

nome de usuário:senha:UID:GID:Nome completo:Diretório inicial:Shell

O campo senha em /etc/passwd pode assumir os valores:

  • x: significa que a senha se encontra em /etc/shadow
  • *: significa que a conta está bloqueada
  • senha encriptada: a senha de fato, porém encriptada usando algoritmo hash MD5 ou crypt. Porém usualmente a senha fica armazenada no arquivo /etc/shadow.

O arquivo /etc/shadow armazena exclusivamente as informações relativas a senha e validade da conta. Nele cada conta possui as seguintes informações:

  • Nome de usuário
  • Senha encriptada (sobrepõe a senha que porventura exista em /etc/passwd)
  • Data da última modificação da senha
  • Dias até que a senha possa ser modificada (validade mínima da senha)
  • Dias após que a senha deve ser modificada
  • Dias antes da expiração da senha em que o usuário deve ser alertado
  • Dias após a expiração da senha em que a conta é desabilitada
  • Data em que a conta foi desabilitada

Um exemplo do arquivo /etc/shadow segue abaixo:

root:$2a$05$8IZNUuFTMoA3xv5grggWa.oBUBfvrE4MfgRDTlUI1zWDXGOHi9dzG:13922::::::
suse-ncc:!:13922:0:99999:7:::
uucp:*:13922::::::
wwwrun:*:13922::::::
roberto:$1$meoaWjv3$NUhmMHVdnxjmyyRNlli5M1:14222:0:99999:7:::

Exercício: quando a senha do usuário roberto irá expirar ?

Um grupo é um conjunto de usuários definido da seguinte forma:

  • Nome de group (group name): o nome que identifica o grupo no sistema
  • GID (Group Identifier): um número único que identifica o grupo
  • Lista de usuários: um conjunto de usuários que são membros do grupo

Assim como as contas de usuários, os grupos ficam armazenados em bases de dados de usuários, sendo o arquivo /etc/group a mais simples delas:

root:x:0:
trusted:x:42:
tty:x:5:
utmp:x:22:
uucp:x:14:
video:x:33:roberto
www:x:8:roberto
users:x:100:
radiusd:!:108:
vboxusers:!:1000:

Os membros de um grupo são os usuários que o têm como grupo primário (especificado na conta do usuário em /etc/passwd), ou que aparecem listados em /etc/group.

Gerenciamento de usuários e grupos

Para gerenciar usuários e grupos podem-se editar diretamente os arquivos /etc/passwd, /etc/shadow e /etc/group, porém existem utilitários que facilitam essa tarefa:

  • useradd ou adduser: adiciona um usuário
    • Ex: useradd -c "Roberto de Matos" -m roberto : cria o usuário roberto com nome completo "Roberto de Matos"
    • Ex: useradd -c "Roberto de Matos" -g users -u 5000 -d /usuarios/roberto -s /bin/tcsh -m roberto : cria o usuário roberto com nome completo "Roberto de Matos", UID 5000, grupo users, diretório inicial /usuarios/roberto e shell /bin/tcsh
  • userdel: remove um usuário
    • Ex: userdel roberto : remove o usuário roberto, porém preservando seu diretório home
    • Ex: userdel -r roberto : remove o usuário roberto, incluindo seu diretório home
  • usermod: modifica as informações da conta de um usuário
    • Ex: usermod -u 5001 roberto : modifica o UID do usuário roberto
    • Ex: usermod -g wheel roberto : modifica o GID do usuário roberto
    • Ex: usermod -G users,wheel roberto : modifica os grupos secundários do usuário roberto
    • Ex: usermod -d /contas/roberto roberto : modifica o diretório inicial do usuário roberto (mas não copia os arquivos ...)
  • groupadd: adiciona um grupo
    • Ex: groupadd -g 4444 ger: cria o grupo ger com GID 4444
  • groupdel: remove um grupo
    • Ex: groupdel ger: remove o grupo ger
  • groupmod: modifica um grupo
    • Ex: groupmod -g 5555 ger: modifica o GID do grupo ger
    • Ex: groupmod -A roberto ger: adiciona o usuário roberto ao grupo ger
    • Ex: groupmod -R roberto ger: remove o usuário roberto do grupo ger

Esses utilitários usam os arquivos /etc/login.defs e /etc/default/useradd para obter seus parâmetros padrão. O /etc/adduser.conf tem o mesmo intuito mas é seta exclusivamente os parâmetros do comando adduser. O arquivo /etc/login.defs contém uma série de diretivas e padrões que serão utilizados na criação das próximas contas de usuários. Seu principal conteúdo é:

MAIL_DIR dir # Diretório de e-mail
PASS_MAX_DAYS	99999 #Número de dias até que a senha expire
PASS_MIN_DAYS	0 #Número mínimo de dias entre duas trocas senha
PASS_MIN_LEN 5	#Número mínimo de caracteres para composição da senha
PASS_WARN_AGE 7 #Número de dias para notificação da expiração da senha
UID_MIN 500 #Número mínimo para UID
UID_MAX 60000 #Número máximo para UID
GID_MIN 500 #Número mínimo para GID
GID_MAX 60000 #Número máximo para GID
CREATE_HOME yes #Criar ou não o diretório home

Como o login.defs o arquivo /etc/default/useradd contém padrões para criação de contas. Seu principal conteúdo é:

GROUP=100 #GID primário para os usuários criados 
HOME=/home #Diretório a partir do qual serão criados os “homes”
INACTIVE=-1 #Quantos dias após a expiração da senha a conta é desativada
EXPIRE=AAAA/MM/DD #Dia da expiração da conta
SHEL=/bin/bash #Shell atribuído ao usuário.
SKEL=/etc/skel #Arquivos e diretórios padrão para os novos usuários.
GROUPS=video,dialout
CREATE_MAIL_SPOOL=no

O /etc/adduser.conf também possui uma série de padrões que funcionam especificamente para o comando adduser:

DSHELL=/bin/bash #Shell atribuído ao usuário.
DHOME=/home #Diretório a partir do qual serão criados os “homes”
SKEL=/etc/skel #Arquivos e diretórios padrão para os novos usuários.
FIRST_UID=1000 #Número mínimo para UID
LAST_UID=29999 #Número máximo para UID
FIRST_GID=1000 #Número mínimo para GID
LAST_GID=29999 #Número máximo para GID
QUOTAUSER="" #Se o sistema de cotas estiver funcional, pode atribuir quota ao usuário criado.

Permissões

Roteiro

Há uma maneira de restringir o acesso aos arquivos e diretórios para que somente determinados usuários possam acessá-los. A cada arquivo e diretório é associado um conjunto de permissões. Essas permissões determinam quais usuários podem ler, e escrever (alterar) um arquivo e, no caso de ser um arquivo executável, quais usuários podem executá-lo. Se um usuário tem permissão de execução para um diretório, significa que ele pode realizar buscas dentro daquele diretório, e não executá-lo como se fosse um programa.

Quando um usuário cria um arquivo ou um diretório, o LINUX determina que ele é o proprietário (owner) daquele arquivo ou diretório. O esquema de permissões do LINUX permite que o proprietário determine quem tem acesso e em que modalidade eles poderão acessar os arquivos e diretórios que ele criou. O super-usuário (root), entretanto, tem acesso a qualquer arquivo ou diretório do sistema de arquivos.

O conjunto de permissões é dividido em três classes: proprietário, grupo e usuários. Um grupo pode conter pessoas do mesmo departamento ou quem está trabalhando junto em um projeto. Os usuários que pertencem ao mesmo grupo recebem o mesmo número do grupo (também chamado de Group Id ou GID). Este número é armazenado no arquivo /etc/passwd junto com outras informações de identificação sobre cada usuário. O arquivo /etc/group contém informações de controle sobre todos os grupos do sistema. Assim, pode -se dar permissões de acesso diferentes para cada uma destas três classes.

Quando se executa ls -l em um diretório qualquer, os arquivos são exibidos de maneira semelhante a seguinte:

> ls -l
total 403196
drwxr-xr-x 4 odilson admin 4096 Abr 2 14:48 BrOffice_2.1_Intalacao_Windows/
-rw-r--r-- 1 luizp admin 113811828 Out 31 21:28 broffice.org.2.0.4.rpm.tar.bz2
-rw-r--r-- 1 root root 117324614 Dez 27 14:47 broffice.org.2.1.0.rpm.tar.bz2
-rw-r--r-- 1 luizp admin 90390186 Out 31 22:04 BrOo_2.0.4_Win32Intel_install_pt-BR.exe
-rw-r--r-- 1 root root 91327615 Jan 5 21:27 BrOo_2.1.0_070105_Win32Intel_install_pt-BR.exe
>

As colunas que aparecem na listagem são:

  1. Esquema de permissões;
  2. Número de ligações do arquivo;
  3. Nome do usuário dono do arquivo;
  4. Nome do grupo associado ao arquivo;
  5. Tamanho do arquivo, em bytes;
  6. Mês da criação do arquivo; Dia da criação do arquivo;
  7. Hora da criação do arquivo;
  8. Nome do arquivo;

O esquema de permissões está dividido em 10 colunas, que indicam se o arquivo é um diretório ou não (coluna 1), e o modo de acesso permitido para o proprietário (colunas 2, 3 e 4), para o grupo (colunas 5, 6 e 7) e para os demais usuários (colunas 8, 9 e 10).

Existem três modos distintos de permissão de acesso: leitura (read), escrita (write) e execução (execute). A cada classe de usuários você pode atribuir um conjunto diferente de permissões de acesso. Por exemplo, atribuir permissão de acesso irrestrito (de leitura, escrita e execução) para você mesmo, apenas de leitura para seus colegas, que estão no mesmo grupo que você, e nenhum acesso aos demais usuários. A permissão de execução somente se aplica a arquivos que podem ser executados, obviamente, como programas já compilados ou script shell. Os valores válidos para cada uma das colunas são os seguintes:

  • 1 d se o arquivo for um diretório;-se for um arquivo comum;
  • 2,5,8 r se existe permissão de leitura;-caso contrário;
  • 3,6,9 w se existe permissão de alteração;-caso contrário;
  • 4,7,10 x se existe permissão de execução;-caso contrário;

A permissão de acesso a um diretório tem outras considerações. As permissões de um diretório podem afetar a disposição final das permissões de um arquivo. Por exemplo, se o diretório dá permissão de gravação a todos os usuários, os arquivos dentro do diretório podem ser removidos, mesmo que esses arquivos não tenham permissão de leitura, gravação ou execução para o usuário. Quando a permissão de execução é definida para um diretório, ela permite que se pesquise ou liste o conteúdo do diretório.

A modificação das permissões de acesso a arquivos e diretórios pode ser feita usando-se os utilitários:

  • chmod: muda as permissões de acesso (também chamado de modo de acesso). Somente pode ser executado pelo dono do arquivo ou pelo superusuário
    • Ex: chmod +x /home/usuario/programa : adiciona para todos os usuários a permissão de execução ao arquivo /home/usuario/programa
    • Ex: chmod -w /home/usuario/programa : remove para todos os usuários a permissão de escrita do arquivo /home/usuario/programa
    • Ex: chmod o-rwx /home/usuario/programa : remove todas as permissões de acesso ao arquivo /home/usuario/programa para todos os usuários que não o proprietário e membros do grupo proprietário
    • Ex: chmod 755 /home/usuario/programa : define as permissões rwxr-xr-x para o arquivo /home/usuario/programa
  • chown: muda o proprietário de um arquivo. Somente pode ser executado pelo superusuário.
    • Ex: chown roberto /home/usuario/programa: faz com que o usuário roberto seja o dono do arquivo
  • chgrp: muda o grupo dono de um arquivo. Somente pode ser executado pelo superusuário.
    • Ex: chgrp users /home/usuario/programa: faz com que o grupo users seja o grupo dono do arquivo /home/usuario/programa

Há também o utilitário umask, que define as permissões default para os novos arquivos e diretórios que um usuário criar. Esse utilitário define uma máscara (em octal) usada para indicar que permissões devem ser removidas. Exemplos:

  • umask 022: tira a permissão de escrita para group e demais usuários
  • umask 027: tira a permissão de escrita para group, e todas as permissões para demais usuários

Atividades:

Roteiro LVM
  1. Com o cfdisk, crie duas novas partições no início do espaço livre do disco, uma de tamanho de 512 MB e a outra de 1GB. Formate-as com sistema de arquivos ext4.
  2. Crie um grupo de volume LVM (VG) com nome GerVg, contendo as duas partições criadas no item 1. Esse VG deverá ter tamanho total de 1512 MB.
  3. Crie 4 volumes lógicos, "dados", "home", "teste", "softwares", respectivamente com 300 , 400, 100 e 500 MB, dentro do VG.
  4. Formate os volumes lógicos.
  5. Monte as novas partições em /dados, /usuarios, /nada e /soft, respectivamente.
  6. Aumente o tamanho de "home" em 500 MB, redimensionando o sistema de arquivos apropriadamente (e sem desmontá-lo).
Roteiro LVM + RAID
  1. Usando dois discos físicos com 4 GB cada, combine RAID e LVM para criar um Volume Group que aproveite todo o espaço disponível e esteja protegido contra defeitos em um dos discos.
  2. Crie dois sistemas de arquivos do tipo EXT4 dentro desse Volume Group:
    • Um com 1GB, a ser montado em /dados
    • Outro com 2 GB, a ser montado em /usuarios
  3. Simule um defeito em um dos discos e verifique se esses sistemas de arquivos continuam disponíveis:
    • Se o Linux estiver rodando em um computador real, remova a alimentação de um dos discos
    • Se estiver rodando com VirtualBox, desligue a máquina virtual, remova um dos discos virtuais, e então a reinicie
Roteiro usuários e grupos
  1. Crie o grupo turma.
  2. Crie o diretório /home/contas.
  3. Faça cópia dos arquivos a serem alterados: /etc/login.defs e /etc/default/useradd.
  4. Faça com que o diretório home dos usuários, a serem criados a partir de agora, seja por padrão dentro de /home/contas.
  5. Faça com que os usuários sejam criados com o seguinte perfil, por padrão:
    1. Expiração de senha em 15 dias a partir da criação da conta;
    2. Usuário possa alterar senha a qualquer momento;
    3. Data do bloqueio da conta em 7 dias após a expiração da senha.
    4. Inicie os avisos de expiração da senha 4 dia antes de expirar.
    5. Iniciar a numeração de usuários (ID) a partir de 1500.
  6. Crie um usuário com o nome de manoel, pertencente ao grupo turma.
  7. Dê ao usuário manoel a senha mane123.
  8. Acrescente ao perfil do usuário seu nome completo e endereço: Manoel da Silva, R. dos Pinheiros, 2476666.
  9. Verifique o arquivo /etc/passwd.
  10. Mude, por comandos, o diretório home do manoel de /home/contas/manoel para /home/manoel.
  11. Mude o login do manoel para manoelsilva.
  12. Logue como manoelsilva.
  13. Recomponha os arquivos originais do item 3.
Roteiro permissionamento

Permissionamento de arquivos e grupos de usuários

  1. Crie a partir do /home 3 diretórios, um com nome aln (aluno), outro prf (professor) e o último svd (servidor).
  2. Crie 3 grupos com os mesmos nomes acima.
  3. Crie 3 contas pertencentes ao grupo aln: aluno1, aluno2, aluno3. Estas contas deverão ter seus diretórios homes criados por comando dentro do diretório /home/aln/. Por exemplo para o aluno1 teremos /home/aln/aluno1.
  4. Crie 3 contas pertencentes ao grupo prf: prof1, prof2, prof3. Estas contas deverão ter seus diretórios homes criados por comando dentro do diretório /home/prf/.
  5. Crie 3 contas pertencentes ao grupo svd: serv1, serv2, serv3. Estas contas deverão ter seus diretórios homes criados por comando dentro do diretório /home/svd/.
  6. Os diretórios dos alunos, e todo o seu conteúdo, devem ser visíveis e editáveis aos membros do próprio grupo, visíveis mas não apagáveis a todos os demais usuários da rede.
  7. Já os diretórios dos professores e servidores, devem ser mutuamente visíveis, mas não apagáveis, entre os membros dos grupos professores e servidores mas não deve ser sequer visível aos membros do grupo alunos.

Aula 03 (28/08): Quotas de disco e crontab

Capítulos 18 e 19 da apostila.

Quotas de disco

Roteiro

Quotas de disco servem para limitar o uso de espaço pelos usuários. Ver também Apostila de Gerência de Redes, páginas 68 a 70.

Em servidores não se pode correr o risco de poucos usuários utilizarem tanto espaço de disco que impeça outros usuários de trabalharem. Quer dizer, deve-se implantar algum mecanismo que limite o espaço a ser usado por cada usuário, para evitar que o espaço livre no volume se esgote. Quotas de disco é um mecanismo simples para impor tal limitação, estando disponível em todos os sistemas operacionais usados em servidores.

Os sistemas operacionais Linux oferecem um mecanismo simples para impor quotas. Para cada sistema de arquivos é possível ativar ou não o uso de quotas, e fazer um controle de quota por usuário ou grupo. Os sistemas de arquivos de uso mais difundido, tais como EXT3FS, EXT4FS, XFS, ReiserFS e JFS, suportam o uso de quotas (o que não é o caso de VFAT, usado majoritariamente em pendrives atualmente, por exemplo). O sistema operacional controla diretamente o uso do espaço, evitando que o limite estabelecido seja ultrapassado. Desta forma, se um arquivo estiver sendo gravado e o limite de espaço for atingido, a operação de escrita é abortada com um erro de quota excedida (como resultado, o arquivo ficaria truncado). Mas como essa forma de impor um limite pode ser muito estrita, o sistema de quotas define na verdade dois limites:

  • soft limit: pode ser ultrapassado, no entanto gera um alerta para o usuário. No entanto, se o espaço total usado pelo usuário ficar acima desse limite continuamente por um número predefinido de dias, esse limite se torna estrito (quer dizer, se torna um hard limit).
  • hard limit: não pode ser ultrapassado, gerando um erro de escrita.

Abaixo pode-se ver um exemplo do uso de disco pelo usuário roberto, em um sistema de arquivos com quotas ativadas. Nesse caso, roberto está usando em torno de 30 MB dentro do sistema de arquivos contido no dispositivo /dev/sdb2, e que está montado em /usuarios. O uso total atual está na coluna blocos (1 kB cada), soft limit aparece na coluna quota e o hard limit está em limite:

roberto@ger:~$ quota -v roberto
Sistema de arquivos  blocos   quota  limite   grace arquivos   quota  limite   grace
      /dev/sdb2      30724   100000  150000                2       0       0      
roberto@ger:~$ ls -l /usuarios/roberto/teste
total 30720
-rw-r--r-- 1 roberto roberto 62914560 2010-02-28 19:32 teste

Além disto, note-se que há outras colunas reportadas acima, tais como grace e arquivos. A coluna grace informa quantos dias o usuário ainda tem de prazo, caso esteja acima do soft limit, antes que ele se torne um hard limit (normalmente iniciando com 7 dias). Além disso, é possível limitar também a quantidade de arquivos por ele mantidos. A coluna arquivos informa quantos arquivos e diretórios um usuário possui, e as colunas que a sucedem informam seus limites.

A decisão de que limites devem ser impostos aos usuários é de grande importância, pois devem-se conciliar as necessidades desses usuários e a quantidade de espaço em disco disponível para eles. Uma política para uso de espaço seria dividir a capacidade total do volume pela quantidade de usuários. Porém sabe-se que usuários têm diferentes práticas de uso dos recursos de rede, incluindo as áreas de armazenamento de arquivos. Muitos usuários fazem pouco uso do espaço disponível, enquanto outros realmente aproveitam tudo que lhes for alocado. Assim, uma outra política seria definir um limite individual maior, mesmo que a soma dos limites de usuários exceda a capacidade total do volume. Não é incomum que a soma das quotas individuais seja o dobro ou mais do espaço total existente. Cabe ao administrador o bom senso e, principalmente, o conhecimento sobre o padrão de uso de seus usuários, para melhor definir as quotas e assim o aproveitamento dos discos dos servidores.

Por fim, quotas não implicam nenhuma reserva de espaço em disco para os usuários.

Implantação de quotas

Vários passos são necessários para implantar quotas em um sistema de arquivos. Em primeiro lugar, deve-se certificar de que os utilitários necessários para sua configuração estejam instalados:

apt-get install quota
# mostra a man page do utilitário quota
man quota

Cada sistema de arquivos onde se desejam ativar quotas deve ser montado com a opção quota. Assim, a linha do arquivo /etc/fstab correspondente a um sistema de arquivos desses deve ser similar a:

/dev/sdb2 /usuarios  ext4   defaults,quota   0 1

Ao montar o sistema de arquivos pela primeira vez, devem-se tanto atualizar manualmente as informações permanentes sobre quotas (mantidas em um arquivo aquota.user, que fica na raiz do sistema de arquivos), quanto ativar manualmente as quotas:

# Monta o sistema de arquivos /usuarios (só funciona assim por que ele está descrito em /etc/fstab)
mount /usuarios
# Atualiza as informações sobre quotas: isto varre todo o sistema de arquivos para contabilizar quanto espaço cada usuário   possui, e grava 
# o resultado no arquivo aquota.user
quotacheck -f /usuarios
# Ativa as quotas no sistema de arquivos
quotaon -v /usuarios
# Gera uma listagem das quotas dos usuarios
repquota -v /usuarios

Uma vez estando o sistema de arquivos definido com a opção quota, as quotas serão ativadas automaticamente no boot do sistema. O procedimento acima é necessário somente na implantação das quotas.

Uma vez estando as quotas ativadas, podem-se editar as quotas de usuaŕios com o utilitário edquota.

edquota roberto

Esse utilitário executa um editor de texto comum para editar as quotas, e então grava o resultado no arquivo aquota.user. O editor de texto executado é aquele indicado na variável de ambiente EDITOR (ex: nano, vim, ...). Abaixo pode-se ver o editor vi sendo chamado para editar as quotas:

Edquota2.png

Uma prática comum para automatizar a edição de quotas (e fazê-la de forma não-interativa) é definir alguns usuários que servem como perfis (ex: aluno, professor, funcionario), e definir as quotas para cada um deles. Assim , cada novo usuário que for criado pode ter suas quotas copiadas a partir de um desses perfis, usando-se edquota -p:

# copia as quotas do usuário professor para roberto
edquota -p professor roberto

Outra forma de definir quotas de forma não-interativa (bom para shell scripts ou outros programas que automatizem o gerenciamento de usuários) é com o utilitário setquota. Com esse programa devem-se informar diretamente na linha de comando os limites tanto de espaço em disco quanto de arquivos:

# Define quotas para o usuário roberto:
# espaço em disco: soft limit = 100 MB, hard limit = 150 MB
# quantidade de arquivos: ilimitado
setquota -u roberto 100000 150000 0 0 /usuarios

Finalmente, os usuários que excederam seus soft limit podem ser alertado por email pelo utilitário warnquota. Esse programa pode ser executado periodicamente pelo agendador de tarefas (ex: diariamente).

Sumário de utilitários sobre quotas

  • quota: visualização de quotas
  • quotaon: ativação de quotas em sistemas de arquivos (executado normalmente no boot)
  • quotacheck: verificação dos dados sobre quotas (contidos no arquivo aquota.user)
  • edquota: edição de quotas de usuários e grupos
  • setquota: outro utilitário para editar quotas
  • repquota: relatório de quotas de todos os usuários
  • warnquota: alerta usuários com quotas excedidas

Agendamento de tarefas - crontab

Roteiro

Agendamento de tarefas administrativas com crontab. Apostila de Gerência de Redes, capítulo 19.

O cron é um programa de agendamento de tarefas. Com ele pode-se fazer a programação para execução de qualquer programa numa certa periodicidade ou até mesmo em um exato dia, numa exata hora. Um uso comum do cron é o agendamento de tarefas administrativas de manutenção do seu sistema, como por exemplo, análise de segurança w backup. Estas tarefas são programadas para, todo dia, toda semana ou todo mês, serem automaticamente executadas através da crontab e um script shell comum. A configuração do cron geralmente é chamada de crontab.

Os sistemas Linux possuem o cron na instalação padrão. A configuração tem duas partes: uma global, e uma por usuário. Na global, controlada pelo root, o crontab pode ser configurado para executar qualquer tarefa de qualquer lugar, como qualquer usuário. Já na parte por usuário, cada usuário tem seu próprio crontab, sendo restringido apenas ao que o usuário pode fazer (e não tudo, como é o caso do root).

Uso do crontab

Para configurar um crontab por usuário, utiliza-se o comando crontab, junto com um parâmetro, dependendo do que se deseja fazer. Abaixo uma relação:

  • crontab -e: Edita a crontab atual do usuário logado
  • crontab -l: Exibe o atual conteúdo da crontab do usuário
  • crontab -r: Remove a crontab do usuário

Se você quiser verificar os arquivos crontab dos usuários, você precisará ser root. O comando crontab coloca os arquivos dos usuários no diretório /var/spool/cron/crontabs . Por exemplo, a crontab do usuário aluno estará no arquivo /var/spool/cron/crontabs/aluno.

Existe também uma crontab global, que fica no arquivo /etc/crontab, e só pode ser modificado pelo root. Vamos estudar o formato da linha do crontab, que é quem vai dizer o que executar e quando. Vamos ver um exemplo:

30 12,22 * * *  /home/aluno/scripts/backup.sh >/dev/null 2>&1

A linha é dividida em campos separados por tabs ou espaço:

Campo Função
1o Minuto
2o Hora
3o Dia do mês
4o Mês
5o Dia da semana
6o Programa a ser executrado

Todos estes campos, sem contar com o 6o., são especificados por números. Veja a tabela abaixo para os valores destes campos:

Campo Função
Minuto 0-59
Hora 0-23
Dia do mês 1-31
Mês 1-12
Dia da semana 0-6 (0=domingo, 6=sábado)

Além destes temos também alguns parâmetros ativos:

@reboot = run at boot and reboot only

@yearly = run at midnight Jan 1 each year (equiv to 0 0 1 1 *)

@annually = run at midnight Jan 1 each year (equiv to 0 0 1 1 *)

@monthly = run at midnight on the first day of each month (equiv to 0 0 1 * *)

@weekly = run at midnight each Sunday (equiv to 0 0 * * 0)

@daily = run at midnight each day (equiv to 0 0 * * *)

@ midnight = run at midnight each day (equiv to 0 0 * * *)

@ hourly = run on the first second of every hour (equiv to 0 * * * *)


Então o que nosso primeiro exemplo estava dizendo? A linha está dizendo: "Execute o comando /root/scripts/backup.sh às 12:30 h e às 22:30h, todos os dias".

Vamos analisar mais alguns exemplos:

1,21,41 *       *       *       *       echo "Meu crontab rodou mesmo!"

Aqui está dizendo: "Executar o comando do sexto campo toda hora, todo dia, nos minutos 1, 21 e 41".

30      4       *       *       1       rm -rf /tmp/*

Aqui está dizendo: "Apagar todo conteúdo do diretório /tmp toda segunda-feira, as 4:30 da manhã."

45      19      1,15    *       *       /usr/local/bin/backup

Aqui está dizendo: "Executar o comando 'backup' todo dia 1 e 15 às 19:45.".

E assim pode-se ir montando inúmeros jeitos de agendamento possível. No arquivo do crontab global, o sexto campo pode ser substituído pelo nome do usuário, e um sétimo campo adicionado com o programa para a execução, como mostrado no exemplo a seguir:

*/5 * * * * root /usr/bin/mrtg /etc/mrtg/mrtg.cfg

Aqui está dizendo: "Executar o mrtg como usuário root, de 5 em 5 minutos sempre."

0      19-23/2      *    *       *       /root/script

Aqui está dizendo: “Executar o 'script' entre as 19 e 23 de 2 em duas horas.”

Atividade:

Roteiro Quotas
  1. Configure o Linux para permitir o uso de quotas de usuários no “/home”.
  2. Estabeleça para os usuários do tipo alunos a seguinte quota: blocos (soft = 500 e hard = 1000).
  3. Estabeleça para os usuários do tipo professores e servidores a seguinte quota: blocos (soft = 600 e hard = 800).
  4. Logue como estes usuários e crie ou copie vários arquivos dentro de seus homes e verifique as mensagens de estouro de quotas de usuários.
  5. Crie um usuário chamado operador, e defina que sua quota é ilimitada. Crie arquivos para esse usuário, e verifique se há alguma restrição do sistema de quotas.
  6. Em um servidor se deseja limitar que alunos no total não excedam 100 MB, e professores e servidores estejam limitados a 200 MB. Quer dizer, todos os alunos juntos não podem execeder esse limite, assim como profesores e funcionários. Pesquise como implementar isto com o sistema de quotas do Linux (dica: veja quotas para grupos).
Roteiro crontab
  1. Crie uma regra cron que faça o backup (tar zipado) de todo o /etc para ser executada todos os dias às 02h30min. Adicione comentários no arquivo indicando a tarefa a ser executada.
  2. Crie uma regra cron para que seja feita uma limpeza total do /tmp todos os domingos as 03 h. Faça comentários no crontab para que outros usuários entendam o que foi feito.
  3. Crie uma regra cron para que seja eliminado o usuário visitante, bem como seu diretório home, todo dia 1° de janeiro as 00 h 30 min. Faça comentários.
  4. Crie uma regra cron para que seja criado novamente o usuário visitante todo dia 1° de janeiro a 01 h 00 min. Faça comentários.
  5. Agende o comando date para escrever/adicionar sua saída ao arquivo /root/date a cada minuto.
  6. Pressuponha que o script /root/abacaxi.sh exista, agende o mesmo para ser executado:
    1. De dois em dois dias às 11 h e 55 min.
    2. Todo dia 5 às 3 h e 50 min.
    3. No dia 14 de cada mês entre as 8 e 18 h, de hora em hora.

Aula 04 (04/09): Políticas de backup e Shell Scripts para automatizar tarefas

Backups

Capítulo 20 da apostila.

Shell scripts

Shell Scripts

Capítulo 21 da apostila.

  • Shell scripts: programas interpretados pelo shell (no nosso caso, bash)
  • Estrutura de um shell script:
    #!/bin/bash
    # Este programa diz alo
    echo "Alo $LOGNAME, tenha um bom dia!"
    
  • Variáveis:
    • Definição de variáveis
      • Passando parâmetros/variáveis para o script
        #!/bin/bash
        echo Entre com o parâmetro
        read par
        echo O parâmetro passado é $var
        
    • Mostrando o valor de variáveis
      #!/bin/bash
      
      dir=/home/aluno
      desktop=$dir/Desktop
      
      echo Seu diretorio home é $dir
      echo Sua área de trabalho do ambiente gráfico fica no diretório $desktop
      
      • Forma alternativa de mostrar valores de variáveis:
        #!/bin/bash
        
        dir=/home/aluno
        desktop=${dir}/Desktop
        
        echo Seu diretorio home é ${dir}
        echo Sua área de trabalho do ambiente gráfico fica no diretório ${desktop}
        
        Repare nas chaves em volta do nome da variável. Isto é particularmente necessário quando se deseja delimitar o nome da variável, como no exemplo abaixo:
        #!/bin/bash
        
        basedir=/home/aluno
        
        # a sentença abaixo funciona como esperado
        echo aluno1 tem diretório home ${basedir}1  
        
        # ... mas esta a seguir não !
        echo aluno1 tem diretório home $basedir1
        
    • Argumentos de execução do shell
      #!/bin/bash
      
      echo Quantidade de argumentos: $#
      echo Os argumentos são: $*
      echo Nome do script: $0
      echo Primeiro argumento: $1
      echo Segundo argumento: $2
      
    • Mostrando parte do conteúdo de uma variável (o equivalente a substrings):
      #!/bin/bash
      
      letras=abcdefghjijklmnopqrstuvwxyz
      
      echo Todas as letras: ${letras}
      echo Quantidade de caracteres na variável letras: ${#letras}
      echo a primeira letra: ${letras:0:1}
      echo 5 primeiras letras: ${letras:0:5}
      echo a última letra: ${letras:${#letras}-1}
      echo 5 últimas letras: ${letras:${#letras}-5:${#letras}}  
      echo ... ou ... ${letras:${#letras}-5}
      echo a primeira metade das letras: ${letras:0:${#letras}/2}
      echo a segunda metade das letras: ${letras:${#letras}/2}
      
    • Idem acima, mas passando as letras como parâmetro do script:
      #!/bin/bash
      
      letras=$1
      
      echo Todas as letras: ${letras}
      echo Quantidade de caracteres na variável letras: ${#letras}
      echo a primeira letra: ${letras:0:1}
      echo 5 primeiras letras: ${letras:0:5}
      echo a última letra: ${letras:${#letras}-1}
      echo 5 últimas letras: ${letras:${#letras}-5:${#letras}}  
      echo ... ou ... ${letras:${#letras}-5}
      echo a primeira metade das letras: ${letras:0:${#letras}/2}
      echo a segunda metade das letras: ${letras:${#letras}/2}
      
    • Tratando variáveis que podem estar indefinidas ou vazias:
      #!/bin/bash
      
      x=ok
      
      echo Variavel x=${x}
      
      # Mostra o valor "vazia", porque y é uma variável indefinida, mas não altera y
      echo Variavel y=${y:-vazia}
      echo Variavel y=${y}
      
      # Mostra o valor "vazia", porque y é uma variável indefinida, e faz com que y="vazia"
      echo Variavel y=${y:=vazia}
      echo Variavel y=${y}
      
    • Variáveis predefinidas: LOGNAME, HOME, PATH, MAIL, EDITOR, PAGER, SHELL, TERM, HOST, ...
    • Captura do resultado da execução de comandos
      #!/bin/bash
      
      resultado=$(ls $HOME | wc -l)
      
      echo Existem $resultado arquivos ou diretórios em $HOME
      
    • Expressões aritméticas:
      #!/bin/bash
      
      x=1
      y=3
      
      # Abaixo apenas concatena os valores de x e y
      echo x + y = ${x} + ${y}
      
      # Abaixo faz a soma de x e y
      echo x + y = $((${x} + ${y}))
      
    • Idem acima com variáveis obtidas pelos parâmetros:
      #!/bin/bash
      
      x=$1
      y=$2
      
      # Abaixo apenas concatena os valores de x e y
      echo x + y = ${x} + ${y}
      
      # Abaixo faz a soma de x e y
      echo x + y = $((${x} + ${y}))
      
  • Estruturas condicionais:
    • Teste de condição: se condição então ... senão ... fimSe
      #!/bin/bash
      # Este programa também diz alo
      if [ "$LOGNAME" = "root" ]; then
        echo "Alo SENHOR, tenha um bom dia ... e às suas ordens !"
      else
        echo "Alo $LOGNAME, tenha um bom dia."
      fi
      
      • Condições a serem usadas no if ... then ... else se baseiam no programa test. Alguns exemplos:
        x=0
        y=1
        
        # operador -eq: igualdade numerica
        if [ $x -eq 0 ]; then
          echo Variavel x zerada
        fi
        
        # operador -o: OU logico
        if [ $x -eq 1 -o $y -eq 1 ]; then
          echo Uma das variáveis x ou y tem valor diferente de zero 
        fi
        
        # operador -a: E logico
        if [ $x -eq 1 -a $y -eq 1 ]; then
          echo Ambas variáveis x ou y tem valor diferente de zero 
        fi
        
        # operador -le: <= (less or equal)
        if [ $x -le 10 ]; then
          echo Variável x menor ou igual a 10 
        fi
        
        # operador -lt: < (less than)
        if [ $x -lt 10 ]; then
          echo Variável x menor que 10 
        fi
        
        # operador -ge: >= (greater or equal)
        if [ $x -ge 10 ]; then
          echo Variável x maior ou igual a 10 
        fi
        
        # operador -gt: > (greater than)
        if [ $x -gt 10 ]; then
          echo Variável x maior que 10 
        fi
        
        # operador !: NEGACAO
        if [ ! $x -gt 10 ]; then
          echo Variável x menor ou igual a 10 
        fi
        
      • Variações do uso do teste condicional:
        if comando
        then
          comandos executados se "comando" retornar status "ok" (0)
        else
          comandos executados se "comando" retornar status "não ok" (diferente de 0)
        fi
        ## Exemplo de uso:
        #!/bin/bash
        
        if cat /etc/shadow > /dev/null
        then
          echo sou root
        else
          echo sou usuário comum
        fi
        
    • Selecionando entre múltiplos valores:
      #!/bin/bash
      
      x=$1
      
      case $x in
        0)
         echo x=zero
         ;;
        1)
         echo x=um
         ;;
        *)
         echo x desconhecido: $x
         ;;
      esac
      
  • Estruturas de repetição:
  1. for:
    #!/bin/bash
    
    for dir in /home/*; do
      echo Diretório: ${dir}
    done
    
    for x in 1 2 3 4 5; do
      echo x = ${x}
    done
    
    for (( x=1; $x < 5; x=$x+1 )); do
      echo x=$x
    done
    
  2. while:
    #!/bin/bash
    
    # enquanto x <= 5
    while [ ${x} -le 5 ]; do
     echo $x
     x=$(($x+1))
    done
    
    # Mostra os processos do usuario aluno, enquanto ele estiver logado
    while (who | grep aluno > /dev/null); do 
      date
      ps aux | grep aluno
      echo ""
      sleep 5
    done
    

Programas úteis

Os programas utilitários abaixo são comumente usados em shell scripts:

  • basename: mostra o prefixo de um pathname (ex: ao executar dirname /home/aluno/Desktop se obtém /home/aluno)
  • dirname: mostra o último componente de um pathname (ex: ao executar basename /home/aluno/Desktop se obtém Desktop)
  • cut: divide as linhas dos arquivos em colunas, e mostra colunas específicas
  • awk: linguagem de programação, muito útil para filtrar conteúdo de arquivos (ex: cat /etc/passwd | awk -F: '{print $ 1 "\t" $5}')
  • grep: mostra linhas de arquivos que contenham determinada palavra ou padrão de caracteres
  • sort: ordena as linhas de um arquivo
  • paste: combina linhas de arquivos
  • wc: conta linhas, palavras e caracteres
  • tail: mostra as últimas linhas de um arquivo
  • head: mostra as primeiras linhas de um arquivo
  • du: mostra a utilização de disco de um determinado arquivo ou diretório

Atividades:

Roteiro shell scripts
  1. Faça um script que mostre os 5 diretórios que estão ocupando mais espaço no diretório /var/
  2. Modifique o script acima para que a quantidade de diretório mostrada seja parametrizada.
  3. Faça um script mostrando o nome completo do usuário, a partir do argumento "login".
  4. Faça um script mostrando os grupos que o usuário está incluído. Esse script deve consultar os arquivos /etc/group.
  5. Faça um script que utilize um usuário padrão chamado "modelo" para estabelecer cotas a todos os usuários comuns (não do sistema) cadastrados na sua máquina.
  6. Em um diretório existem diversos arquivos compactados com zip, como se pode ver abaixo:
    $ ls
    arq1.zip
    banana.zip
    laranja.zip
    $
    
    Faça um script que descompacte cada arquivo desses em um subdiretório que tenha o nome do arquivo em questão, porém excluída sua extensão (ex: para banana.zip, deve-se descompactá-lo dentro de "banana"). Dica: use o esqueleto de script mostrado abaixo:
    #!/bin/bash
    
    for arq in *.zip; do
      echo $arq
    done
    

Aula 05 (11/09): Configuração de interface de rede, rotas estáticas e NAT

Ver capítulo 22 da apostila.

  • Visão geral de serviços e funções de rede típicos;
  • Configuração de interfaces de rede. Noções de roteamento.

Visão geral de serviços de rede

Rede

Rede-servicos.jpg

  • DHCP: configuração automática de endereços IP em máquinas clientes
  • DNS: serviço de nomes, que associa nomes a endereços IP, entre outras finalidades.
  • LDAP: serviço de diretórios (um banco de dados hierárquico), para guardar informações administrativas, tais como usuários, grupos e contatos de email, usadas por outros serviços de rede.
  • HTTP: acesso a documentos em geral (uso mais notório para acesso a páginas Web)
  • FTP: transferência de arquivos
  • SMTP, IMAP4, POP3, LMTP: protocolos para envio de email e acesso a caixas de entrada
  • NFS e Samba: sistemas de arquivos de rede
  • Web proxy: controle de acesso e cache para acesso a WWW
  • NAT: tradução transparente de endereços IP, para mascarar endereços internos de uma rede (função de rede)
  • Filtro IP: restrições aplicadas a tráfego IP, visando melhorar o nível de segurança (função de rede)
  • SSH: acesso remoto seguro ao shell em um servidor
  • VPN: redes privativas virtuais

Interfaces de rede

Interfaces

Qualquer dispositivo (físico ou lógico) capaz de transmitir e receber datagramas IP. Interfaces de rede ethernet são o exemplo mais comum, mas há também interfaces PPP (seriais), interfaces tipo túnel e interfaces loopback. De forma geral, essas interfaces podem ser configuradas com um endereço IP e uma máscara de rede, e serem ativadas ou desabilitadas. Em sistemas operacionais Unix a configuração de interfaces de rede se faz com o programa ifconfig:

Para mostrar todas as interfaces:

root@gerencia:~> ifconfig -a
dsl0      Link encap:Point-to-Point Protocol
          inet addr:189.30.70.200  P-t-P:200.138.242.254  Mask:255.255.255.255
          UP POINTOPOINT RUNNING NOARP MULTICAST  MTU:1492  Metric:1
          RX packets:34260226 errors:0 dropped:0 overruns:0 frame:0
          TX packets:37195398 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:3
          RX bytes:19484812547 (18582.1 Mb)  TX bytes:10848608575 (10346.0 Mb)

eth1      Link encap:Ethernet  HWaddr 00:19:D1:7D:C9:A9
          inet addr:192.168.1.100  Bcast:192.168.1.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:37283974 errors:0 dropped:0 overruns:0 frame:0
          TX packets:42055625 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:20939614658 (19969.5 Mb)  TX bytes:18284980569 (17437.9 Mb)
          Interrupt:16 Base address:0xc000

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:273050 errors:0 dropped:0 overruns:0 frame:0
          TX packets:273050 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:21564572 (20.5 Mb)  TX bytes:21564572 (20.5 Mb)
root@gerencia:~>

Para configurar uma interface de rede (que fica automaticamente ativada):

root@gerencia:~> ifconfig eth1 192.168.1.100 netmask 255.255.255.0

Para desativar uma interface:

root@gerencia:~> ifconfig eth1 down

Para ativar uma interface:

root@gerencia:~> ifconfig eth1 up

Ao se configurar uma interface de rede, cria-se uma rota automática para a subrede diretamente acessível via aquela interface. Isto se chama roteamento mínimo.

root@gerencia:~> ifconfig eth1 192.168.10.0 netmask 255.255.0.0
root@gerencia:~> netstat -rn
Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
192.168.0.0     0.0.0.0         255.255.0.0     U         0 0          0 eth1
127.0.0.0       0.0.0.0         255.0.0.0       U         0 0          0 lo
root@gerencia:~>

Pode-se associar mais de um endreço a uma mesma interface de rede. Isto se chama IP alias:

root@gerencia:~> ifconfig eth1:0 192.168.1.110 netmask 255.255.255.0
root@gerencia:~> ifconfig eth1:1 192.168.2.100 netmask 255.255.255.0
root@gerencia:~> ifconfig -a
eth1      Link encap:Ethernet  HWaddr 00:19:D1:7D:C9:A9
          inet addr:192.168.1.100  Bcast:192.168.1.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:37295731 errors:0 dropped:0 overruns:0 frame:0
          TX packets:42068558 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:20942258027 (19972.0 Mb)  TX bytes:18294794452 (17447.2 Mb)
          Interrupt:16 Base address:0xc000

eth1:0    Link encap:Ethernet  HWaddr 00:19:D1:7D:C9:A9
          inet addr:192.168.1.110  Bcast:192.168.1.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          Interrupt:16 Base address:0xc000

eth1:1    Link encap:Ethernet  HWaddr 00:19:D1:7D:C9:A9
          inet addr:192.168.2.100  Bcast:192.168.2.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          Interrupt:16 Base address:0xc000
root@gerencia:~>

Configuração no boot

Todo sistema operacional possui alguma forma de configurar suas interfaces de rede, para que sejam automaticamente ativadas no boot com seus endereços IP. Por exemplo, em sistemas Linux Ubuntu (descrito em maiores detalhes em seu manual online).

A configuração de rede se concentra no arquivo /etc/network/interfaces:

# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).

# The loopback network interface
auto lo eth1
iface lo inet loopback
        address 127.0.0.1
        netmask 255.0.0.0

# a interface ethernet eth1
iface eth1 inet static
	address 192.168.1.100
	netmask 255.255.255.0
	gateway 192.168.1.254

# apelido para eth1
iface eth1:0 inet static
       address 192.168.5.100
       netmask 255.255.255.0

No Ubuntu deve-se em primeiro lugar desabilitar um serviço automático de atualização do /etc/resolv.conf, através do comando dpkg-reconfigure resolvconf, escolhendo a primeira opção como yes e as demais opções deixando o padrão. Em seguida edita-se o arquivo /etc/resolv.conf:

nameserver 200.135.37.65
nameserver 8.8.8.8

Esses arquivo é lido pelos scripts ifup e ifdown. Esses scripts servem para ativar ou parar interfaces específicas, fazendo todas as operações necessárias para isto:

# Ativa a interface eth1
ifup eth1

# Desativa a interface eth1
ifdown eth1

Para ativar, desativar ou recarregar as configurações de todas as interfaces de rede:

# desativa todas as interfaces de rede
sudo /etc/init.d/networking stop

# ativa todas as interfaces de rede
sudo /etc/init.d/networking start

# recarrega as configurações de todas as interfaces de rede
sudo /etc/init.d/networking restart

Rotas estáticas

Rotas estáticas

Ver capítulo 23 da apostila.

Rotas estáticas podem ser adicionadas a uma tabela de roteamento. Nos sistemas operacionais Unix, usa-se o programa route:

# adiciona uma rota para a rede 10.0.0.0/24 via o gateway 192.168.1.254
route add -net 10.0.0.0 netmask 255.255.255.0 gw 192.168.1.254

# adiciona uma rota para a rede 172.18.0.0/16 via a interface PPP pp0
route add -net 172.18.0.0 netmask 255.255.0.0 dev ppp0

# adiciona a rota default via o gateway 192.168.1.254
route add default gw 192.168.1.254

# adiciona uma rota para o host 192.168.1.101 via o gateway 192.168.1.253
route add -host 192.168.1.101 gw 192.168.1.253

A tabela de rotas pode ser consultada com o programa netstat:

root@gerencia:~> netstat -rn
Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
10.0.0.0        192.168.1.254   255.255.255.0   U         0 0          0 eth1
192.168.1.101   192.168.1.253   255.255.255.0   UH        0 0          0 eth1
172.18.0.0      0.0.0.0         255.255.0.0     U         0 0          0 ppp0
192.168.1.0     0.0.0.0         255.255.255.0   U         0 0          0 eth1
127.0.0.0       0.0.0.0         255.0.0.0       U         0 0          0 lo
0.0.0.0         192.168.1.254   0.0.0.0         U         0 0          0 eth1

Rotas podem ser removidas também com route:

# remove a rota para 10.0.0.0/24
route delete -net 10.0.0.0 netmask 255.255.255.0

# remove a rota para o host 192.168.1.101
route delete -host 192.168.1.101

Coleta e análise de tráfego

Uma ferramenta básica de análise de tráfego de rede faz a coleta das PDUs por interfaces de rede, revelando as informações nelas contidas. Dois programas bastante populares para essa finalidade são:

  • tcpdump: um analisador de tráfego em modo texto
    lab01:/data/tmp # tcpdump -i dsl0 -ln tcp port 80
    tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
    listening on dsl0, link-type LINUX_SLL (Linux cooked), capture size 96 bytes
    22:14:37.797702 IP 74.125.47.136.80 > 201.35.226.9.21688: F 3660173220:3660173220(0) ack 4262495618 win 122 <nop,nop,timestamp 403588225 348814601>
    22:14:37.836844 IP 201.35.226.9.21688 > 74.125.47.136.80: . ack 1 win 54 <nop,nop,timestamp 348874613 403588225>
    22:14:38.410477 IP 201.35.226.9.21688 > 74.125.47.136.80: F 1:1(0) ack 1 win 54 <nop,nop,timestamp 348874756 403588225>
    22:14:38.770653 IP 74.125.47.136.80 > 201.35.226.9.21688: . ack 2 win 122 <nop,nop,timestamp 403589203 348874756>
    22:14:39.906734 IP 64.233.163.83.80 > 201.35.226.9.23018: P 534213879:534214123(244) ack 1779175654 win 133 <nop,nop,timestamp 2294865159 348870211>
    
  • wireshark: o equivalente em modo gráfico (porém com muitas outras funcionalidades)

Outros programas úteis (ou ao menos interessantes):

  • iptraf: gera estatísticas de tráfego por interfaces de rede
  • iftop: mostra os fluxos em uma interface de rede
  • nstreams: analisa a saída do tcpdump, e revela os fluxos em uma rede
  • driftnet: analisa o tráfego em uma interface, e captura imagens, videos e audio

NAT

NAT

A tradução de endereço de rede (NAT - Network Address Translation), proposta pela RFC 1631 em 1994, é uma função de rede criada para contornar o problema da escassez de endereços IP. Com a explosão no crescimento da Internet, e o mau aproveitamento dos endereços IP (agravado pelo endereçamento hierárquico), percebeu-se que o esgotamento de endereços poderia ser logo alcançado a não ser que algumas medidas fossem tomadas. Esse problema somente seria eliminado com a reformulação do protocolo IP, de forma a aumentar o espaço de endereços, que resultou na proposta do IPv6 em 1998. Porém no início dos anos 1990 a preocupação era mais imediata, e pensou-se em uma solução provisória para possibilitar a expansão da rede porém reduzindo-se a pressão por endereços IP. O NAT surgiu assim como uma técnica com intenção de ser usada temporariamente, enquanto soluções definitivas não se consolidassem. Ainda hoje NAT é usado em larga escala, e somente deve ser deixado de lado quando IPv6 for adotado mundialmente (o que deve demorar).

NAT parte de um princípio simples: endereços IP podem ser compartilhados por nodos em uma rede. Para isto, usam-se endereços IP ditos não roteáveis (também chamados de inválidos) em uma rede, sendo que um ou mais endereços IP roteáveis (válidos) são usados na interface externa roteador que a liga a Internet. Endereços não roteáveis pertencem às subredes 10.0.0.0/8, 192.168.0.0/16 e 172.16.0.0/12, e correspondem a faixas de endereços que não foram alocados a nenhuma organização e, portanto, não constam das tabelas de roteamento dos roteadores na Internet. A figura abaixo mostra uma visão geral de uma rede em que usa NAT:

Nat-exemplo.png

Para ser possível compartilhar um endereço IP, NAT faz mapeamentos (IP origem, port origem, protocolo transporte) -> (IP do NAT, port do NAT, , protocolo transporte), sendo protocolo de transporte TCP ou UDP. Assim, para cada par (IP origem, port origem TCP ou UDP) o NAT deve associar um par (IP do NAT, port do NAT TCP ou UDP) (que evidentemente deve ser único). Assim, por exemplo, se o roteador ou firewall onde ocorre o NAT possui apenas um endeerço IP roteável, ele é capaz em tese de fazer até 65535 mapeamentos para o TCP (essa é a quantidade de ports que ele pode possui), e o mesmo para o UDP. Na prática é um pouco menos, pois se limitam os ports que podem ser usados para o NAT. Note que o NAT definido dessa forma viola a independência entre camadas, uma vez que o roteamento passa a depender de informação da camada de transporte.

NAT no Linux

Ver capítulo 35, seção 4, da apostila.

O NAT no Linux se configura com iptables. As regras devem ser postas na tabela nat, e aplicadas a chain POSTROUTING, como no seguinte exemplo:

iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth0 -j MASQUERADE

A regra acima faz com que todo o tráfego originado em 192.168.1.0/24, e que sai pela interface eth0 deve ser mascarado com o endereço IP dessa interface. Esta regra diz o seguinte: todos os pacotes que passarem (POSTROUTING) por esta máquina com origem de 192.168.1.0/24 e sairem pela interface eth0 serão mascarados, ou seja sairão desta máquina com o endereço de origem como sendo da eth0. O alvo MASQUERADE foi criado para ser usado com links dinâmicos (tipicamente discados ou ADSL), pois os mapeamentos se perdem se o link sair do ar. Para uso mais geral, com links permanentes, deve-se usar o alvo SNAT:

iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth0 -j SNAT --to-source 200.135.37.66

Uma outra possibilidade é mapear para um endereço da rede interna um tráfego originado externamente. Por exemplo, pode haver um servidor na rede interna que precisa ser acessado externamente, porém ele não possui um endereço IP roteável. O NAT no Linux possui a função DNAT que pode fazer essa tarefa:

iptables -t nat -A PREROUTING -p tcp -d 200.135.37.66 --dport 8080 -i eth0 -j DNAT --to-destination 192.168.1.10:80

Nesse exemplo, datagramas com IP destino 200.135.37.66 e contendo um segmento TCP com port 8080 são desviados para o port 80 no IP 192.168.1.10. Quer dizer, o IP de destino desses datagramas é de fato substituído por 192.168.1.10, e o port de destino é mudado para 80.

Note que DNAT é aplicado a chain PREROUTING.

Com estas configurações o cliente acessa qualquer site na internet mas não pode ser acessado. Por isto alguns textos colocam NAT na categoria de técniccas de segurança. Apesar de NAT prover o isolamento entre rede externa e interna, a não ser para os tráfegos mapeados, não se pode usá-lo sozinho como proteção de uma rede. Quer dizer, não se pode prescindir de um bom firewall e políticas de segurança adequadas.

Verificando as tabelas

A ferramenta conntrack permite o monitoramento da tabela ativa, ou seja, é possível visualizar quais as conexões abertas que estão fazendo uso do NAT. Exemplo:

conntrack -L --src-nat

Atividades:

Configurar interface de rede
  1. Verifique a configuração de sua interface de rede eth0 e/ou eth1, na sua máquina virtual. Se necessário corrija-a assim: ip 192.168.3.X, sendo X o número do computador + 100 (exemplo: para o micro 2 X=102), roteador default = 192.168.3.1.
    1. Teste a comunicação do seu computador, fazendo ping 192.168.3.1. Tente pingar outras máquinas da rede.
    2. Tente também pingar o IP 200.135.37.65.
    3. Veja a tabela de rotas, usando netstat -rn.
    4. Verifique a rota seguida pelos datagramas enviados, usando traceroute -n 200.135.37.65.
  2. Configure sua máquina virtual para que a informação de rede, configurada manualmente acima, fique permanente. Quer dizer, no próximo boot essa configuração deve ser ativada automaticamente.
  3. Adicione um IP alias a sua interface eth0 ou eth1. Esse novo IP deve estar na subrede 10.0.0.0.0/24
    1. Tente pingar os computadores de seus colegas, usando ambos endereços: da rede 192.168.3.0/24 e da rede 10.0.0.0/24.
    2. Enquanto acontecem os pings, visualize o tráfego pela interface eth0 ou eth1, usando o programa tcpdump:
      # Mostra o tráfego ICMP que passa pela interface eth1
      tcpdump -i eth1 -ln icmp
      
    3. Pense em uma utilidade para IP alias ...
Coleta de tráfego
  1. Faça um ou mais pings para algum(ns) sítios e, com o uso de parâmetros apropriados, faça com que o tcpdump:
  2. Capture todos os pacotes da rede.
  3. Capture somente os pacotes gerados por sua máquina.
  4. Capture somente pacotes destinados à sua máquina.
  5. Capture pacotes destinados ou originados da máquina 200.135.37.65.
  6. Faça com que os pacotes capturados anteriormente sejam salvos num arquivo, chamado “pacotes_capturados“.
  7. Se desejar instale e capture pacotes com o WireShark.
Tabelas estáticas de roteamento

Diagrama para construir tabelas de roteamento com maquinas virtuais.jpg

  1. Configure as interfaces de rede (uma interface virtual – ip alias) de sua máquina servidora, conforme números de IPs sugeridos na. Todas as máscaras de rede devem ser 255.255.255.0 ou /24. Neste caso o gateway será: 192.168.3.101.
  2. Configure sua máquina virtual servidora para rotear pacotes.
  3. Configure sua máquina virtual cliente para ser seu cliente de rede, conforme Figura.
  4. Montar as tabelas estáticas de roteamento de modo que todas as máquinas tenham acesso entre si (“pingando” ente elas).
  5. Faça testes. Se houver problemas usar tcpdump para monitorar individualmente as interfaces e verificar onde está o problema. Lembre-se que os pacotes devem ter rota de ida e volta, portanto o problema pode ser no seu roteador ou de seu vizinho. Uma boa sequência de testes é:
    1. Pingar entre cliente e roteador.
    2. Do cliente pingar a interface externa do roteador.
    3. Do cliente pingar a máquina do professor. Se funcionar até aqui seu roteador estará corretamente configurado.
    4. Do roteador pingar a interface externa de outro roteador.
    5. Do roteador pingar outro cliente.
    6. Do seu cliente pingar outro cliente.
NAT
  1. Desfaça as tabelas de roteamento e configure a máquina servidora para fazer NAT, nos mesmos moldes do item C).
  2. Faça testes “pingando” para redes externas e para as redes dos colegas.
  3. Qual é a diferença de “comportamento” quando comparado ao cenário das tabelas estáticas de roteamento?