GER20706-2014-2

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar

Informações da disciplina

Plano de aula

Cronograma
Aula Data Horas Conteúdo Recursos
1 31/7 4 Introdução. O processo de Boot e instalação de software. Lab. Redes 1
2 7/8 4 Instalação de aplicativos com APT-GET. RAID. Lab. Redes 1
3 14/8 4 Sistema de arquivos LVM. Contas de usuários e grupos. Lab. Redes 1
4 21/8 4 Cotas em disco. Agendamento de tarefas administrativas com o uso de crontab. Lab. Redes 1
5 28/8 4 Políticas de backups. Shell scripts para automatizar tarefas. Lab. Redes 1
6 4/9 4 Shell scripts para automatizar tarefas. Lab. Redes 1
7 11/9 4 1a avaliação individual prática e teórica. Configuração da interface de rede. Apelidos de IP. Lab. Redes 1
8 18/9 4 Montagem de sub-redes e configuração dos roteadores + NAT. DNS. Lab. Redes 1
9 25/9 4 DNS. Servidor web. Lab. Redes 1
10 2/10 4 Servidor web. Servidor de e-mail. Lab. Redes 1
11 9/10 4 Webmail. Servidor SMB. Servidor NFS. Lab. Redes 1
12 16/10 4 Servidor DHCP. Servidor FTP. Servidor SSH. Lab. Redes 1
13 23/10 4 2a avaliação individual prática e teórica. Servidor Proxy/Cache com Squid. Lab. Redes 1
14 30/10 4 Firewall. Lab. Redes 1
15 6/11 4 VPN. Protocolo SNMP – Simple Network Management Protocol. MRTG. Lab. Redes 1
16 13/11 4 Nagios, monitoramento de serviços. Cacti, monitoramento de redes. Lab. Redes 1
17 20/11 4 3a avaliação individual prática e teórica. Lab. Redes 1
18 27/11 4 Recuperação de conteúdo Lab. Redes 1
19 4/12 4 Recuperação de conteúdo Lab. Redes 1
20 11/12 4 Reavaliação Lab. Redes 1
TOTAL 80

Material auxiliar

Aulas

Aula 01 (07/08): Apresentação da Disciplina, Processo de Boot, Instalação de Software e RAID

Apresentação da Disciplina

Roteiro
  1. Auto apresentação
  2. Apresentação da Wiki
  3. Apresentação do modelo de aulas a ser adotado -- laboratório
  4. Visão geral de Gerência de Redes
    1. Ementa e referências bibliográficas
    2. Explanar os três blocos da disciplina: servidor, serviços, segurança e monitoramento de redes
  5. Avaliação
    1. Teórica
    2. Prática
    3. Recuperação de conteúdo e reavaliações
  6. Curso_Superior_de_Tecnologia_em_Sistemas_de_Telecomunicações_(páginas_das_disciplinas)
  7. Conceituação das máquinas virtuais e seu uso
    1. Motivo de uso no laboratório

O boot

Roteiro

O processo de inicialização do sistema operacional, chamado de boot. Tradicionalmente no Unix System V isto se faz com a definição de níveis de execução (runlevels) e uma tabela que descreve que processos ou serviços devem existir em cada nível. Os níveis de execução são:

  1. Monousuário (single-user), ou administrativo: usado para manutenção do sistema, admite somente o login do superusuário. Não inicia serviços de rede.
  2. Multiusuário com rede (parcial): admite logins de usuários, mas não ativa acesso a recursos de rede (como sistemas de arquivo remotos)
  3. Multiusuário com rede plena
  4. Não usado
  5. Multiusuário com rede plena e ambiente gráfico: ativa também o ambiente gráfico X11
  6. Reinício do sistema (reboot)

As distribuições Linux em geral adotam a inicialização no estilo Unix System V. No entanto, o Ubuntu usa um outro processo chamado de upstart. Esse serviço de inicialização confere maior flexibilidade e mesmo simplicidade à definição de que serviços devem ser executados. O upstart não usa o conceito de níveis de execução, mas devido à sua flexibilidade ele pode emular esse estilo de inicialização. Para o upstart, um serviço deve ser iniciado ou parado dependendo de uma combinação de eventos, sendo que um evento indica a ocorrência de uma etapa da inicialização.

O upstart é implementado pelo processo init (programa /sbin/init), que é o primeiro processo criado pelo sistema operacional. Quer dizer, logo após terminar a carga e inicialização do kernel, este cria um processo que executa o programa /sbin/init. O upstart lista o subdiretório /etc/init e procura arquivos com extensão .conf. Cada arquivo desses descreve um serviço a ser controlado pelo upstart. Por exemplo, o serviço tty2 é escrito no arquivo tty2.conf:

# tty2 - getty
#
# This service maintains a getty on tty2 from the point the system is
# started until it is shut down again.

start on runlevel [23]
start on runlevel [!23]

respawn
exec /sbin/getty -8 38400 tty2

Abaixo segue o significado de cada linha:

  • start on runlevel [23]: o serviço deve ser iniciado quando ocorrerem os eventos "runlevel 2" ou "runlevel 3"
  • stop on runlevel [!23]: o serviço deve ser parado quando ocorrer qualquer evento "runlevel X", sendo X diferente de 2 e 3
  • respawn: o serviço deve ser reiniciado automaticamente caso termine de forma anormal
  • exec /sbin/getty -8 38400 tty2: a ativação do serviço implica executar o /sbin/getty -8 38400 tty2

Em linhas gerais, a descrição do serviço informa quando ele deve ser ativado (start), quando deve ser parado (stop), o tipo de execução (respawn para reinício automático, ou task para uma única execução), e que ação deve ser executada para ativar o serviço (exec para executar um programa, ou script .. end script para executar uma sequência de comandos de shell). Maiores detalhes podem ser lidos na página de manual do init.

Um exemplo de criação de serviço no upstart

Atividade

  1. Analisar alguns serviços no /etc/init/ e verificar o conteúdo dos upstarts. Tentar replicar a ideia para o faxineiro.
  2. Criar um serviço chamado faxineiro, para remover dos diretórios temporários (/var/tmp) todos os arquivos.
  3. Configurar esse novo serviço para executar no boot, logo após o serviço mountall.
  4. Reiniciar o sistema para testá-lo (executar reboot)

Resposta

Foi proposta a criação de um serviço chamado faxineiro, para remover dos diretórios temporários (/tmp e /var/tmp).

  1. Criar o arquivo /etc/init/faxineiro.conf
  2. Adicionar o seguinte conteúdo a esse arquivo:
    start on startup
    script
    rm -rf /tmp/*
    rm -rf /var/tmp/*
    end script
    
  3. Reiniciar o sistema para testá-lo (executar reboot)

Instalação de software

Roteiro

A instalação de software pode ser feita de diversas formas, dentre as quais serão destacadas três:

  • Com utilitário apt-get: busca o software de um repositório de rede e o instala; dependências (outros softwares necessários) são automaticamente instaladas. Esses softwares buscados da rede estão no formato dpkg (Debian Package).

Exemplo de uso do apt-get:

    • Instalar o navegador de texto lynx
    • Testar o navegador lynx
lynx http://www.ifsc.edu.br/
    • Remover o lynx
  • Diretamente com utilitário dpkg: instala um software que está contido em um arquivo no formato dpkg.

Exemplo de uso:

    • Obter os pacotes Debian para o lynx
wget ftp://ftp.cn.debian.org/ubuntu-old-releases/ubuntu/pool/main/l/lynx-cur/lynx_2.8.7pre6-1_all.deb
wget ftp://mirror.linux.org.au/ubuntu/pool/main/l/lynx-cur/lynx-cur_2.8.7pre6-1_i386.deb
    • Instalar os pacotes
    • Testar o lynx
lynx ...
    • Remover os pacotes instalados


  • A partir do código fonte: busca-se manualmente na rede o código fonte do software desejado, que deve então ser compilado e instalado. Esta opção se aplica quando não existe o software no formato dpkg, ou a versão disponível em formato dpkg foi compilada de uma forma que não atende os requisitos para seu uso em seu servidor.

RAID

Roteiro

RAID (Redundant Array of Independent Disks) se destina a combinar discos de forma a incrementar o desempenho de entrada e saída e, principalmente, segurança dos dados contra defeitos em discos. RAID pode ser provido via software ou hardware (melhor este último). O Linux possui implementação por software em seu kernel, e neste HOWTO há uma descrição resumida.

Há vários níveis RAID, que correspondem a diferentes combinações de discos e partições. São eles:

  • LINEAR: concatena discos ou partições, mas não provê acréscimos de desempenho, nem de segurança dos dados (pelo contrário ! se um disco falhar, perdem-se todos os dados ...).
  • RAID 0 (ou striping): combina discos ou partições de forma alternada, para distribuir os acessos entre eles (aumentar desempenho). Porém, se um disco falhar perdem-se todos os dados. Requer um mínimo de dois discos.
    RAID 0.png
  • RAID 1 (ou mirroring): combina discos ou partições para espelhar dados (segurança). Requer o dobro de discos necessários para guardar os dados (ex: se há dois discos com dados, são necessários outros dois para espelhamento). Se todos os discos falharem, é possível continuar a operar usando os discos espelhados. Requer no mínimo dois discos.
    RAID 1.png
  • RAID 4 e 5: combina discos ou partições para ter redundância de dados (segurança), usando um esquema baseado em paridade. Se um disco falhar, é capaz de continuar operando (porém com desempenho reduzido até que esse disco seja reposto). RAID 4 na prática não se usa, pois apresenta um gargalo no disco onde residem os blocos de paridades. Requer no mínimo três discos.
    RAID 4.png RAID 5.png
  • RAID 6: combina discos ou partições para ter redundância de dados (segurança), usando um esquema baseado em paridade de forma duplicada. Isto garante que os dados se preservam mesmo que dois discos se danifiquem. Requer no mínimo quatro discos (pois há dois discos adicionais para paridades).
    RAID 6.png
  • RAID 10: combina RAID 1 e RAID 0, criando um volume com espelhamento (RAID 1), e depois fazendo o striping (RAID 0). Requer no mínimo quatro discos.
    RAID 10.png
  • RAID 01: combina RAID 0 e RAID 1, criando um volume com striping (RAID 0), e depois fazendo o espelhamento (RAID 1). Requer no mínimo quatro discos.
    RAID 01.png

Criação de um volume RAID no Linux:

  1. Usar o comando mdadm --create --verbose /dev/md0 --level=NIVEL_RAID --raid-devices=NUM_PARTICOES PARTICAO_1 PARTICAO_2 ...
    • NIVEL_RAID pode ser linear, 0, 1, 4, 5, 6, 10, mp, faulty (mais comuns são 0, 1 e 5).
    • NUM_PARTICOES é a quantidade de partições usadas no volume.
    • As partições são identificadas com o caminho (pathname) do dispositivo correspondente no Linux. Ex: a primeira partição do primeiro disco SCSI ou SATA é /dev/sda1, a segunda partição desse disco é /dev/sda2, a primeira partição do segundo disco SCSI ou SATA é /dev/sdb1, e assim por diante.
    • /dev/md0 é o caminho do dispositivo que corresponde ao volume RAID a ser criado. O primeiro volume RAID é /dev/md0, o segundo é /dev/md1, e assim por diante.
  2. Formatar o volume RAID: mkfs.ext4 -j /dev/md0
  3. Uma vez testado o volume RAID, sua configuração pode ser salva para posterior uso: mdadm --detail --scan >> /etc/mdadm/mdadm.conf
    • Isto é importante para que o volume possa ser ativado automaticamente no próximo boot.

Para ativar um volume já criado, basta executar mdadm --assemble caminho_do_volume. Ex: mdadm --assemble /dev/md0, mdadm --assemble /dev/md1.

Atividade:

  1. Dica: crie uma cópia de sua máquina virtual (snapshot - ferramenta do VirtualBox) antes de executar o roteiro, caso dê problemas a recuperação é muito simples.
  2. Crie duas partições de mesmo tamanho no disco /dev/sdb usando o cfdisk. Marque-as como sendo do tipo Linux RAID (fdisk t = "fd").
  3. Crie um volume RAID nível 1 com essas partições. Formate-o e monte-o em /mnt. Qual o tamanho total dele ?
  4. Desmonte e Pare o volume existente, com mdadm -S /dev/md0
  5. Crie um volume RAID nível 0 com essas partições. Formate-o e monte-o em /mnt. Qual o tamanho total dele ?
  6. Desmonte e Pare o volume existente, com mdadm -S /dev/md0
  7. Crie um volume RAID nível 5 com essas partições. Formate-o e monte-o em /mnt. Qual o tamanho total dele ?
  8. Desmonte e Pare o volume existente, com mdadm -S /dev/md0

Desafio

  1. Crie dois novos discos (virtuais) no VirtualBox, no diretório do aluno (vai ser apagado no reboot da máquina) e associe a sua máquina virtual. Isto deverá ser feito com a máquina virtual desligada.
  2. Crie uma partição em cada disco virtual, ocupando o tamanho total.
  3. Crie duas partições de mesmo tamanho no disco /dev/sd? usando o cfdisk. Marque-as como sendo do tipo Linux RAID (fdisk t = "fd").
  4. Crie um volume RAID nível 1 com essas partições. Formate-o e monte-o em /mnt.
  5. Copie, crie uma série de arquivos ou diretórios nesta partição.
  6. Desligue a máquina virtual e desassocie um dos discos.
  7. Religue a máquina e verifique se os dados estão intactos.

Aula 02 (21/08): LVM e contas de usuários e grupos

LVM

Capítulo 15 da apostila.

Roteiro

Armazenamento com Gerenciador de Volumes Lógicos (LVM). Ver páginas 57 e 58 da apostila.

Há um HOWTO com informação adicional sobre LVM no Linux, e outro com uma definição mais geral na Wikipedia.

LVM combina volumes físicos (ou PV, de Physical Volume), tais como discos, partições e volumes RAID, em uma abstração chamada grupo de volumes (ou VG, de Volume Group). Um VG funciona como um grande disco virtual, que pode ser dividido em volumes lógicos (LV, de Logical Volume). Cada LV pode ser usado para conter um sistema de arquivos, memória virtual (área de swap), ou qualquer outra finalidade de armazenamento (ex: área de dados de um banco de dados Oracle). A figura abaixo mostra a relação entre esses componentes, com exemplos de utilização dos LV:

Lvm-lg.gif
Diagrama do LVM (obtido no Linux DevCenter)

Um resumo dos componentes do LVM segue abaixo:

  • VG: Volume Group, que representa um disco lógico
  • PE: Physical Extent, ou uma subdivisão do PV (são todas de mesmo tamanho), que funciona como unidade de alocação de espaço
  • LE: Logical Extent, o equivalente ao PE, porém no contexto do LV
  • PV: Physical Volume, ou uma partição física
  • LV: Logical Volume, ou uma partição lógica criada dentro do VG

Em sua estrutura interna, o LVM divide cada PV em pequenas partições chamadas de PE (Physical Extent). Um tamanho típico para as PE é de 4 MB. Essas PE são usadas para alocar espaço para os LV, porém não há nenhuma relação entre a ordem física das PE nos PV e a ordem em que elas são alocadas aos LV - é normal inclusive PE de diferentes PV serem alocadas ao mesmo LV. Dentro de cada LV cada PE é chamada de LE (Logical Extent). A figura abaixo relaciona as PE com as LE dos LV:

Lvm1-linux.png
Diagrama para LVM versão 1 (LVM1) no Linux.

Criação do LVM no Linux

A sequência de criação de um VG e seus LV é a seguinte:

  1. Criar partições físicas do tipo 8E (Linux LVM), que serão usadas para serem os PV
  2. Preparar essas partições para serem usadas como PV, usando o comando lvm pvcreate caminho_partição (ex: lvm pvcreate /dev/sdb1)
  3. Criar o VG, usando o comando lvm vgcreate nome_vg pv1 [pv2 ...] (ex: lvm vgcreate meu_vg /dev/sdb1 /dev/sdb2)
  4. Criar os LV, com o comando lvm lvcreate nome_vg -L tamanho_LV -n nome_LV (ex: lvm lvcreate meu_vg -L 512M -n teste)
  5. Formatar os LV (ex: mke4fs -j /dev/meu_vg/teste, para formatar com sistema de arquivos ext4)

Abaixo segue um exemplo de uma sequência de comandos relacionados com LVM, desde o particionamento de um disco até o redimensionamento de um LV existente:

# Prepara as partições (devem ser do tipo 8E (Linux LVM)
fdisk /dev/sdb

# Prepara essas duas partições para serem usadas como volumes físicos
lvm pvcreate /dev/sdb1
lvm pvcreate /dev/sdb2

# Cria o volume group "vg"
lvm vgcreate vg /dev/sdb1 /dev/sdb2

# Cria dentro do volume group "vg" um volume lógico "dados" com 512 MB iniciais
lvm lvcreate vg -L 512M -n dados

# Cria dentro do volume group "vg" um volume lógico "teste" com 256 MB iniciais
lvm lvcreate vg -L 256M -n teste

# Mostra informações sobre todos os volumes lógicos
lvm lvs

# Mostra detalhes sobre o volume lógico "dados", que pertence ao volume group "vg"
lvm lvdisplay /dev/vg/dados

# Formata o volume lógico "dados" com sistema de arquivos do tipo "ext4"
mkfs.ext4 -j /dev/vg/dados

# Formata o volume lógico "teste" com sistema de arquivos do tipo "xfs"
mkfs.xfs /dev/vg/teste

# Monta o Volume Lógico dados em /mnt
mount /dev/vg/dados /mnt

# Confererência
df -h

# Aumenta em 100 MB o tamanho do volume lógico "dados"
lvm lvresize -L +100M /dev/vg/dados

# Aumenta o sistema de arquivos contido no volume lógico "dados", para adaptá-lo ao seu novo tamanho
resize2fs /dev/vg/dados

Questões importantes:

  1. O que é LVM, e qual sua relação com os discos físicos ?
  2. Para que usar LVM (o que se ganha com seu uso) ?
  3. Existe algum problema que possa ocorrer com o uso do LVM ? Por exemplo, se um disco apresentar defeito ?

Usuários e grupos

Roteiro

Capítulos 16 e 17 da apostila.


Criação de contas de usuários e de grupos, e seu uso para conferir permissões de acesso a arquivos, diretórios e recursos do sistema operacional. Apostila, páginas 61 a 65.

Um usuário no Linux (e no Unix em geral) é definido pelo seguinte conjunto de informações:

  • Nome de usuário (ou login): um apelido que identifica o usuário no sistema
  • UID (User Identifier): um número único que identifica o usuário
  • GID (Group Identifier): o número do grupo primário do usuário
  • Senha (password): senha para verificação de acesso
  • Nome completo (full name): nome completo do usuário
  • Diretório inicial (homedir): o subddiretório pessoal do usuário, onde ele é colocado ao entrar no sistema
  • Shell: o programa a ser executado quando o usuário entrar no sistema

As contas de usuários, que contêm as informações acima, podem ficar armazenadas em diferentes bases de dados (chamadas de bases de dados de usuários). Dentre elas, a mais simples é composta pelo arquivo /etc/passwd:

root:x:0:0:root:/root:/bin/bash
sshd:x:71:65:SSH daemon:/var/lib/sshd:/bin/false
suse-ncc:x:105:107:Novell Customer Center User:/var/lib/YaST2/suse-ncc-fakehome:/bin/bash
wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
news:x:9:13:News system:/etc/news:/bin/bash
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
roberto:x:1001:100:Roberto de Matos:/data1/roberto:/bin/bash

Acima um exemplo de arquivo /etc/passwd

Cada linha desse arquivo define uma conta de usuário no seguinte formato:

nome de usuário:senha:UID:GID:Nome completo:Diretório inicial:Shell

O campo senha em /etc/passwd pode assumir os valores:

  • x: significa que a senha se encontra em /etc/shadow
  • *: significa que a conta está bloqueada
  • senha encriptada: a senha de fato, porém encriptada usando algoritmo hash MD5 ou crypt. Porém usualmente a senha fica armazenada no arquivo /etc/shadow.

O arquivo /etc/shadow armazena exclusivamente as informações relativas a senha e validade da conta. Nele cada conta possui as seguintes informações:

  • Nome de usuário
  • Senha encriptada (sobrepõe a senha que porventura exista em /etc/passwd)
  • Data da última modificação da senha
  • Dias até que a senha possa ser modificada (validade mínima da senha)
  • Dias após que a senha deve ser modificada
  • Dias antes da expiração da senha em que o usuário deve ser alertado
  • Dias após a expiração da senha em que a conta é desabilitada
  • Data em que a conta foi desabilitada

Um exemplo do arquivo /etc/shadow segue abaixo:

root:$2a$05$8IZNUuFTMoA3xv5grggWa.oBUBfvrE4MfgRDTlUI1zWDXGOHi9dzG:13922::::::
suse-ncc:!:13922:0:99999:7:::
uucp:*:13922::::::
wwwrun:*:13922::::::
roberto:$1$meoaWjv3$NUhmMHVdnxjmyyRNlli5M1:14222:0:99999:7:::

Exercício: quando a senha do usuário roberto irá expirar ?

Um grupo é um conjunto de usuários definido da seguinte forma:

  • Nome de group (group name): o nome que identifica o grupo no sistema
  • GID (Group Identifier): um número único que identifica o grupo
  • Lista de usuários: um conjunto de usuários que são membros do grupo

Assim como as contas de usuários, os grupos ficam armazenados em bases de dados de usuários, sendo o arquivo /etc/group a mais simples delas:

root:x:0:
trusted:x:42:
tty:x:5:
utmp:x:22:
uucp:x:14:
video:x:33:roberto
www:x:8:roberto
users:x:100:
radiusd:!:108:
vboxusers:!:1000:

Os membros de um grupo são os usuários que o têm como grupo primário (especificado na conta do usuário em /etc/passwd), ou que aparecem listados em /etc/group.

Gerenciamento de usuários e grupos

Para gerenciar usuários e grupos podem-se editar diretamente os arquivos /etc/passwd, /etc/shadow e /etc/group, porém existem utilitários que facilitam essa tarefa:

  • useradd ou adduser: adiciona um usuário
    • Ex: useradd -c "Roberto de Matos" -m roberto : cria o usuário roberto com nome completo "Roberto de Matos"
    • Ex: useradd -c "Roberto de Matos" -g users -u 5000 -d /usuarios/roberto -s /bin/tcsh -m roberto : cria o usuário roberto com nome completo "Roberto de Matos", UID 5000, grupo users, diretório inicial /usuarios/roberto e shell /bin/tcsh
  • userdel: remove um usuário
    • Ex: userdel roberto : remove o usuário roberto, porém preservando seu diretório home
    • Ex: userdel -r roberto : remove o usuário roberto, incluindo seu diretório home
  • usermod: modifica as informações da conta de um usuário
    • Ex: usermod -u 5001 roberto : modifica o UID do usuário roberto
    • Ex: usermod -g wheel roberto : modifica o GID do usuário roberto
    • Ex: usermod -G users,wheel roberto : modifica os grupos secundários do usuário roberto
    • Ex: usermod -d /contas/roberto roberto : modifica o diretório inicial do usuário roberto (mas não copia os arquivos ...)
  • groupadd: adiciona um grupo
    • Ex: groupadd -g 4444 ger: cria o grupo ger com GID 4444
  • groupdel: remove um grupo
    • Ex: groupdel ger: remove o grupo ger
  • groupmod: modifica um grupo
    • Ex: groupmod -g 5555 ger: modifica o GID do grupo ger
    • Ex: groupmod -A roberto ger: adiciona o usuário roberto ao grupo ger
    • Ex: groupmod -R roberto ger: remove o usuário roberto do grupo ger

Esses utilitários usam os arquivos /etc/login.defs e /etc/default/useradd para obter seus parâmetros padrão. O /etc/adduser.conf tem o mesmo intuito mas é seta exclusivamente os parâmetros do comando adduser. O arquivo /etc/login.defs contém uma série de diretivas e padrões que serão utilizados na criação das próximas contas de usuários. Seu principal conteúdo é:

MAIL_DIR dir # Diretório de e-mail
PASS_MAX_DAYS	99999 #Número de dias até que a senha expire
PASS_MIN_DAYS	0 #Número mínimo de dias entre duas trocas senha
PASS_MIN_LEN 5	#Número mínimo de caracteres para composição da senha
PASS_WARN_AGE 7 #Número de dias para notificação da expiração da senha
UID_MIN 500 #Número mínimo para UID
UID_MAX 60000 #Número máximo para UID
GID_MIN 500 #Número mínimo para GID
GID_MAX 60000 #Número máximo para GID
CREATE_HOME yes #Criar ou não o diretório home

Como o login.defs o arquivo /etc/default/useradd contém padrões para criação de contas. Seu principal conteúdo é:

GROUP=100 #GID primário para os usuários criados 
HOME=/home #Diretório a partir do qual serão criados os “homes”
INACTIVE=-1 #Quantos dias após a expiração da senha a conta é desativada
EXPIRE=AAAA/MM/DD #Dia da expiração da conta
SHEL=/bin/bash #Shell atribuído ao usuário.
SKEL=/etc/skel #Arquivos e diretórios padrão para os novos usuários.
GROUPS=video,dialout
CREATE_MAIL_SPOOL=no

O /etc/adduser.conf também possui uma série de padrões que funcionam especificamente para o comando adduser:

DSHELL=/bin/bash #Shell atribuído ao usuário.
DHOME=/home #Diretório a partir do qual serão criados os “homes”
SKEL=/etc/skel #Arquivos e diretórios padrão para os novos usuários.
FIRST_UID=1000 #Número mínimo para UID
LAST_UID=29999 #Número máximo para UID
FIRST_GID=1000 #Número mínimo para GID
LAST_GID=29999 #Número máximo para GID
QUOTAUSER="" #Se o sistema de cotas estiver funcional, pode atribuir quota ao usuário criado.

Permissões

Roteiro

Há uma maneira de restringir o acesso aos arquivos e diretórios para que somente determinados usuários possam acessá-los. A cada arquivo e diretório é associado um conjunto de permissões. Essas permissões determinam quais usuários podem ler, e escrever (alterar) um arquivo e, no caso de ser um arquivo executável, quais usuários podem executá-lo. Se um usuário tem permissão de execução para um diretório, significa que ele pode realizar buscas dentro daquele diretório, e não executá-lo como se fosse um programa.

Quando um usuário cria um arquivo ou um diretório, o LINUX determina que ele é o proprietário (owner) daquele arquivo ou diretório. O esquema de permissões do LINUX permite que o proprietário determine quem tem acesso e em que modalidade eles poderão acessar os arquivos e diretórios que ele criou. O super-usuário (root), entretanto, tem acesso a qualquer arquivo ou diretório do sistema de arquivos.

O conjunto de permissões é dividido em três classes: proprietário, grupo e usuários. Um grupo pode conter pessoas do mesmo departamento ou quem está trabalhando junto em um projeto. Os usuários que pertencem ao mesmo grupo recebem o mesmo número do grupo (também chamado de Group Id ou GID). Este número é armazenado no arquivo /etc/passwd junto com outras informações de identificação sobre cada usuário. O arquivo /etc/group contém informações de controle sobre todos os grupos do sistema. Assim, pode -se dar permissões de acesso diferentes para cada uma destas três classes.

Quando se executa ls -l em um diretório qualquer, os arquivos são exibidos de maneira semelhante a seguinte:

> ls -l
total 403196
drwxr-xr-x 4 odilson admin 4096 Abr 2 14:48 BrOffice_2.1_Intalacao_Windows/
-rw-r--r-- 1 luizp admin 113811828 Out 31 21:28 broffice.org.2.0.4.rpm.tar.bz2
-rw-r--r-- 1 root root 117324614 Dez 27 14:47 broffice.org.2.1.0.rpm.tar.bz2
-rw-r--r-- 1 luizp admin 90390186 Out 31 22:04 BrOo_2.0.4_Win32Intel_install_pt-BR.exe
-rw-r--r-- 1 root root 91327615 Jan 5 21:27 BrOo_2.1.0_070105_Win32Intel_install_pt-BR.exe
>

As colunas que aparecem na listagem são:

  1. Esquema de permissões;
  2. Número de ligações do arquivo;
  3. Nome do usuário dono do arquivo;
  4. Nome do grupo associado ao arquivo;
  5. Tamanho do arquivo, em bytes;
  6. Mês da criação do arquivo; Dia da criação do arquivo;
  7. Hora da criação do arquivo;
  8. Nome do arquivo;

O esquema de permissões está dividido em 10 colunas, que indicam se o arquivo é um diretório ou não (coluna 1), e o modo de acesso permitido para o proprietário (colunas 2, 3 e 4), para o grupo (colunas 5, 6 e 7) e para os demais usuários (colunas 8, 9 e 10).

Existem três modos distintos de permissão de acesso: leitura (read), escrita (write) e execução (execute). A cada classe de usuários você pode atribuir um conjunto diferente de permissões de acesso. Por exemplo, atribuir permissão de acesso irrestrito (de leitura, escrita e execução) para você mesmo, apenas de leitura para seus colegas, que estão no mesmo grupo que você, e nenhum acesso aos demais usuários. A permissão de execução somente se aplica a arquivos que podem ser executados, obviamente, como programas já compilados ou script shell. Os valores válidos para cada uma das colunas são os seguintes:

  • 1 d se o arquivo for um diretório;-se for um arquivo comum;
  • 2,5,8 r se existe permissão de leitura;-caso contrário;
  • 3,6,9 w se existe permissão de alteração;-caso contrário;
  • 4,7,10 x se existe permissão de execução;-caso contrário;

A permissão de acesso a um diretório tem outras considerações. As permissões de um diretório podem afetar a disposição final das permissões de um arquivo. Por exemplo, se o diretório dá permissão de gravação a todos os usuários, os arquivos dentro do diretório podem ser removidos, mesmo que esses arquivos não tenham permissão de leitura, gravação ou execução para o usuário. Quando a permissão de execução é definida para um diretório, ela permite que se pesquise ou liste o conteúdo do diretório.

A modificação das permissões de acesso a arquivos e diretórios pode ser feita usando-se os utilitários:

  • chmod: muda as permissões de acesso (também chamado de modo de acesso). Somente pode ser executado pelo dono do arquivo ou pelo superusuário
    • Ex: chmod +x /home/usuario/programa : adiciona para todos os usuários a permissão de execução ao arquivo /home/usuario/programa
    • Ex: chmod -w /home/usuario/programa : remove para todos os usuários a permissão de escrita do arquivo /home/usuario/programa
    • Ex: chmod o-rwx /home/usuario/programa : remove todas as permissões de acesso ao arquivo /home/usuario/programa para todos os usuários que não o proprietário e membros do grupo proprietário
    • Ex: chmod 755 /home/usuario/programa : define as permissões rwxr-xr-x para o arquivo /home/usuario/programa
  • chown: muda o proprietário de um arquivo. Somente pode ser executado pelo superusuário.
    • Ex: chown roberto /home/usuario/programa: faz com que o usuário roberto seja o dono do arquivo
  • chgrp: muda o grupo dono de um arquivo. Somente pode ser executado pelo superusuário.
    • Ex: chgrp users /home/usuario/programa: faz com que o grupo users seja o grupo dono do arquivo /home/usuario/programa

Há também o utilitário umask, que define as permissões default para os novos arquivos e diretórios que um usuário criar. Esse utilitário define uma máscara (em octal) usada para indicar que permissões devem ser removidas. Exemplos:

  • umask 022: tira a permissão de escrita para group e demais usuários
  • umask 027: tira a permissão de escrita para group, e todas as permissões para demais usuários

Atividades:

Roteiro LVM
  1. Com o cfdisk, crie duas novas partições no início do espaço livre do disco, uma de tamanho de 512 MB e a outra de 1GB. Formate-as com sistema de arquivos ext4.
  2. Crie um grupo de volume LVM (VG) com nome GerVg, contendo as duas partições criadas no item 1. Esse VG deverá ter tamanho total de 1512 MB.
  3. Crie 4 volumes lógicos, "dados", "home", "teste", "softwares", respectivamente com 300 , 400, 100 e 500 MB, dentro do VG.
  4. Formate os volumes lógicos.
  5. Monte as novas partições em /dados, /usuarios, /nada e /soft, respectivamente.
  6. Aumente o tamanho de "home" em 500 MB, redimensionando o sistema de arquivos apropriadamente (e sem desmontá-lo).
Roteiro usuários e grupos
  1. Crie o grupo turma.
  2. Crie o diretório /home/contas.
  3. Faça cópia dos arquivos a serem alterados: /etc/login.defs e /etc/default/useradd.
  4. Faça com que o diretório home dos usuários, a serem criados a partir de agora, seja por padrão dentro de /home/contas.
  5. Faça com que os usuários sejam criados com o seguinte perfil, por padrão:
    1. Expiração de senha em 15 dias a partir da criação da conta;
    2. Usuário possa alterar senha a qualquer momento;
    3. Data do bloqueio da conta em 7 dias após a expiração da senha.
    4. Inicie os avisos de expiração da senha 4 dia antes de expirar.
    5. Iniciar a numeração de usuários (ID) a partir de 1500.
  6. Crie um usuário com o nome de manoel, pertencente ao grupo turma.
  7. Dê ao usuário manoel a senha mane123.
  8. Acrescente ao perfil do usuário seu nome completo e endereço: Manoel da Silva, R. dos Pinheiros, 2476666.
  9. Verifique o arquivo /etc/passwd.
  10. Mude, por comandos, o diretório home do manoel de /home/contas/manoel para /home/manoel.
  11. Mude o login do manoel para manoelsilva.
  12. Logue como manoelsilva.
  13. Recomponha os arquivos originais do item 3.
Roteiro permissionamento

Permissionamento de arquivos e grupos de usuários

  1. Crie a partir do /home 3 diretórios, um com nome aln (aluno), outro prf (professor) e o último svd (servidor).
  2. Crie 3 grupos com os mesmos nomes acima.
  3. Crie 3 contas pertencentes ao grupo aln: aluno1, aluno2, aluno3. Estas contas deverão ter seus diretórios homes criados por comando dentro do diretório /home/aln/. Por exemplo para o aluno1 teremos /home/aln/aluno1.
  4. Crie 3 contas pertencentes ao grupo prf: prof1, prof2, prof3. Estas contas deverão ter seus diretórios homes criados por comando dentro do diretório /home/prf/.
  5. Crie 3 contas pertencentes ao grupo svd: serv1, serv2, serv3. Estas contas deverão ter seus diretórios homes criados por comando dentro do diretório /home/svd/.
  6. Os diretórios dos alunos, e todo o seu conteúdo, devem ser visíveis e editáveis aos membros do próprio grupo, visíveis mas não apagáveis a todos os demais usuários da rede.
  7. Já os diretórios dos professores e servidores, devem ser mutuamente visíveis, mas não apagáveis, entre os membros dos grupos professores e servidores mas não deve ser sequer visível aos membros do grupo alunos.