Mudanças entre as edições de "Equações Telegráficas - Equações da Onda Viajante"

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar
Linha 52: Linha 52:
 
A equação de uma onda de tensão cossenoidal e descrita por:
 
A equação de uma onda de tensão cossenoidal e descrita por:
  
<math>v(z,t) = v(z) cos(wt+\phi (z))</math> (7)
 
  
v(z) e <math>\phi (z)</math> são funções apenas da posição z
+
:::::<math>v(z,t) = v(z) \cos(wt+\phi (z))</math> (7)
 +
 
 +
 
 +
v(z) e <math>\phi (z)</math> são funções apenas da posição z.
  
 
Considerando a identidade de Euler [ <math>e^{j\psi} = cos \psi + jsen \psi</math>], podemos reescrever a equação (7) como:
 
Considerando a identidade de Euler [ <math>e^{j\psi} = cos \psi + jsen \psi</math>], podemos reescrever a equação (7) como:
  
<math>\Re\left \{ e^{j\psi}\right \}= cos \psi</math> (8)
+
 
 +
:::::<math>\Re\left \{ e^{j\psi}\right \}= cos \psi</math> (8)
 
 
 
 
  
<math>v(z,t) = v(z) cos(wt+ \phi\phi (z)) = \Re \left \{v(z) e^{j(wt+\phi(z))}\right \}</math>
+
 
<math>=\Re\left \{v(z)e^{+j \phi(z)} e^{jwt}\right \}</math> (9)
+
:::::<math>v(z,t) = v(z) cos(wt+ \phi\phi (z)) = \Re \left \{v(z) e^{j(wt+\phi(z))}\right \}</math>
 +
 
 +
 
 +
 
 +
:::::<math>=\Re\left \{v(z)e^{+j \phi(z)} e^{jwt}\right \}</math> (9)
 +
 
  
 
Da representação de função complexa:
 
Da representação de função complexa:
  
<math>V(z)= v(z) e^{-j\phi(z)}</math>  (10)
+
 
 +
:::::<math>V(z)= v(z) e^{-j\phi(z)}</math>  (10)
 +
 
  
 
Portanto:
 
Portanto:
  
<math>v(z)=|V(z)|</math> (11)
 
  
<math>\phi(z)= arg \left \{V(z)\right \}</math> (12)
+
:::::<math>v(z)=|V(z)|</math> (11)
 +
 
 +
 
 +
:::::<math>\phi(z)= arg \left \{V(z)\right \}</math> (12)
 +
 
  
  
A análise feita considerando uma onda de tensão tem seu equivalente em termos de uma onda de corrente.
+
A análise feita considerando uma onda de tensão tem sua equivalente em termos de uma onda de corrente.
  
 
=== Equação da onda viajante ===
 
=== Equação da onda viajante ===

Edição das 08h54min de 8 de setembro de 2015

A figura 1 mostra uma seção infinitesimal de uma linha de transmissão sendo submetida a uma tensão e percorrida por uma corrente. A partir da análise das tensões e correntes instantâneas dessa seção chegaremos nas equações da onda viajante na linha de transmissão.


Modelo distribuido com corrente e tensao instantaneas.png

Figura 1: Seção infinitesimal de uma linha de transmissão. fonte: WENTWORTH, Stuart M. Eletromagnetismo Aplicado: Abordagem Antecipada das Linhas de Transmissão. Bookman, 2009.

A partir de Kirchhoff para a malha temos:


(1)


E de Kirchhoff para o nó a :


(2)


Dividindo as equações (1) E (2) por e fazendo :


(3)


(4)


Os limites nas equações (4) e (5) correspondem a definição de derivada, portanto podemos escrever as equações telegráficas:


(5)


(6)


Solução das equações telegráficas via uma função harmônica no tempo (sinusoidal)

Vamos obter a solução para as equações telegráficas a partir de uma solução harmônica no tempo, isto é, vamos considerar que a tensão v(z,t) é cossenoidal.

A equação de uma onda de tensão cossenoidal e descrita por:


(7)


v(z) e são funções apenas da posição z.

Considerando a identidade de Euler [ ], podemos reescrever a equação (7) como:


(8)



(9)


Da representação de função complexa:


(10)


Portanto:


(11)


(12)


A análise feita considerando uma onda de tensão tem sua equivalente em termos de uma onda de corrente.

Equação da onda viajante

Lembrando que:


e

temos que:



portanto:

da segunda solução


Utilizando a notação de função complexa e substituindo v(z,t) e i(z,t) nas equações telegráficas (5) e (6):


(14)

(15)


Derivando a função primeira equação telegráfica (14) em função de z


(16)

e substituindo pela segunda equação telegráfica (15) temos:


(16)

fazendo


(17)

A equação (17) é uma equação diferencial linear homogênea de segunda ordem. Uma solução para esta equação é uma equação exponêncial, como:

(18)


onde A e são constantes arbitrárias.


Derivando duas vezes a equação (18) em função de z temos:

e a equação (17) pode ser reescrita como:

ou

ou

Uma solução para essa equação é , portanto:

Retornando para a representação no tempo:

Substituindo A por uma constante mais significativa

(19)

A equação (19) corresponde a uma onda de tensão se propagando na direção +z com amplitude em z=0 de


Da segunda solução temos:

(20)


A equação (20) corresponde a uma onda de tensão se propagando na direção -z com amplitude em z=0 de


A resposta completa da equação (18) é a equação da onda viajante no tempo, a qual é obtida pela soma das soluções individuais da equação diferencial:

Uma análise equivalente poderia ser realizada para i(z,t) obtendo: