Mudanças entre as edições de "CEL18702 2016 2 AULA07"

De MediaWiki do Campus São José
Ir para navegação Ir para pesquisar
Linha 7: Linha 7:
 
com dez nós terá nove tensões desconhecidas e nove equações; um circuito com N nós terá N-1  
 
com dez nós terá nove tensões desconhecidas e nove equações; um circuito com N nós terá N-1  
 
tensões incógnitas e N-1 equações.
 
tensões incógnitas e N-1 equações.
</blockquote
+
</blockquote>
 
 
  
 
=Condutância=
 
=Condutância=

Edição das 14h18min de 3 de outubro de 2016

Análise Nodal

Na aula anterior estudamos circuitos resistivos utilizando análise nodal. Agora vamos transformar as resistências em condutâncias e resolver esses mesmos circuitos da mesma forma, só que retirando a questão das frações das equações.

Nota: Um circuito com três nós terá duas tensões incógnitas e duas equações; um circuito com dez nós terá nove tensões desconhecidas e nove equações; um circuito com N nós terá N-1 tensões incógnitas e N-1 equações.

Condutância

Vamos abrir um parênteses para falar sobre condutância. A ideia é que os circuitos fiquem em "termos" de multiplicação e não de divisão. A Figura 1 mostra um exemplo que permite escrever as equações de nós por inspeção direta em função da tensão dos nós.


Fig57 CEL18702.png

Figura 1 - Exemplos de circuito resistivo x condutivo.

ou

Fórmula matemática da condutância

Para calcular a condutância de um determinado condutor, temos que saber o valor da sua resistência. Assim, e sabendo que a condutância é o inverso da resistência, chegamos à seguinte fórmula:

Se tivermos por exemplo, um condutor em que a resistência seja igual a 10Ω, substituímos o R de resistência por 10Ω e obtemos o seguinte cálculo:

Então


Logo com este cálculo concluímos que um condutor com uma resistência de 10Ω, tem uma condutância de 0,1 siemens.


Exemplo 1

Tomemos esse exemplo para o qual faremos a mesma análise do dos exercícios anteriores. O exemplo que se segue é de um circuito com um único par de nós possuindo também fontes dependentes:


Fig31 CEL18702.png

Figura 1 - Aplicação da lei dos nós a um circuito com fontes dependentes.


Como se pode verificar, a tensão aplicada sobre a condutância de 5 está também aplicada sobre todos os elementos do circuito. Considerando que a corrente sobre as condutâncias estão com a seta dirigida para o nó inferior e aplicamos a lei dos nós.

Podemos agora determinar as correntes sobre as condutâncias assim como a potência fornecida ou consumida por cada um dos elementos.

Na condutância 5


Na condutância 6


Na condutância 10


Potência fornecida pela fonte de 3mA


Potência fornecida pela fonte de 13mA


Potência fornecida pela fonte dependente

Por último, fazemos o balanço das potências

Exemplo 2

Utilizando análise nodal encontre as tensões nos nós do circuito e encontre as correntes em todos os resistores.

Fig36 CEL18702.png
Resolvendo o Circuito
Definindo os nós do circuito ().
Fig36b CEL18702.png


Percebe-se que a condutância de 2 está curtocircuitada, portanto, não será considerada no sistema.

Outra definição importante é que devemos atribuir o sinal da corrente que chega e que sai do nó. Podendo ser positivas as correntes que chegam no nó e negativas as correntes que saem do nó. Lembrando, não há nenhum problema em arbitrar essas corrente de forma contrária, tendo como resultados os valores com troca de sinal.


Solução

...

[2] ...


Solução

...



<< <> >>