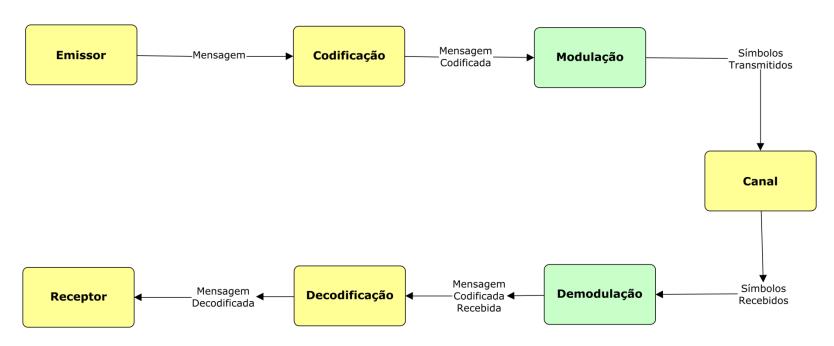
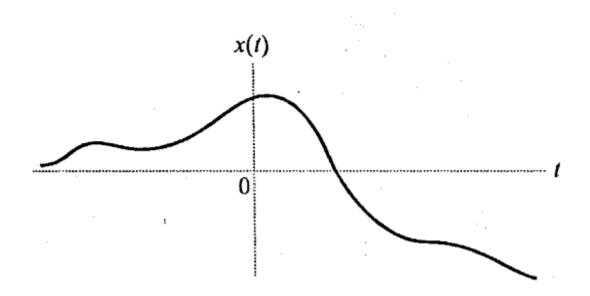
Princípios de Telecomunicações

PRT60806

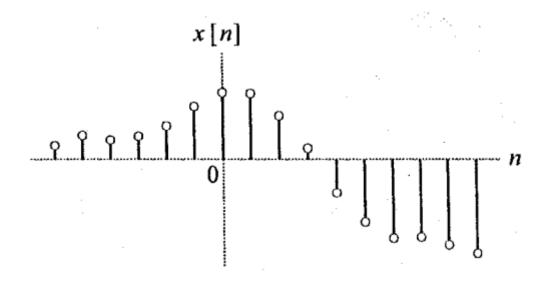
Aula 19: Modulação por Código de Pulso (PCM)


Professor: Bruno Fontana da silva

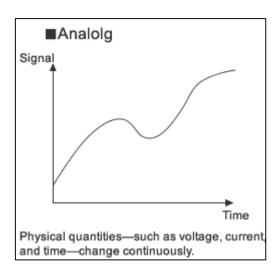
2014


Bloco de Comunicação Genérico

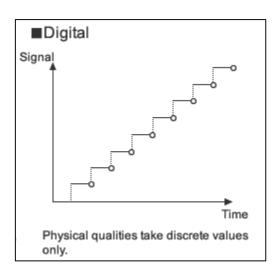
Emissor – sinais analógicos x sinais digitais


Sinais Contínuos

• Possuem um valor definido a qualquer instante de tempo (sinais de tempo contínuo).


Sinais Discretos

 Possuem valores definidos apenas em alguns instantes de tempo (sinais de tempo discreto).


Sinais Analógicos

Seus valores variam por uma faixa contínua de possibilidades (sinais de amplitude contínua).

Sinais Digitais

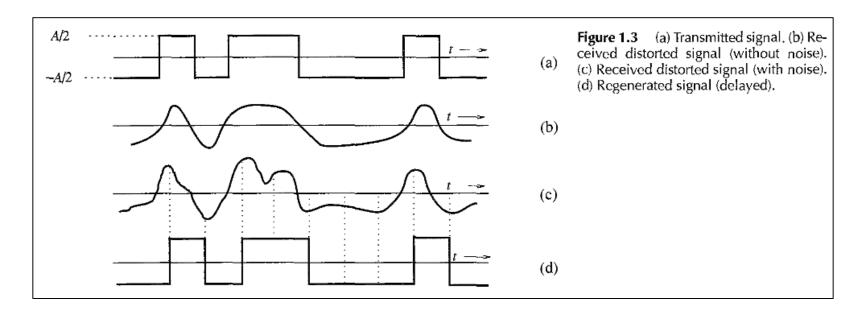
Possui um número limitado, finito, de possíveis valores (**\$inai\$ de amplitude di\$creta**).

Classificação dos Sinais

(amplitude)

Digital

Analógico


Amplitude Amplitude e Discreta e Tempo Tempo Discretos Contínuo **Amplitude Amplitude** e Contínua e Tempo Tempo Contínuos Discreto

(tempo)

Contínuo

Discreto

1. O sinal digital é mais resiliente ao ruído (dentro de certos limites) em relação ao sinal analógico.

2. O uso de estações repetidoras permite a reconstrução de sinais digitais, regenerando sua forma de onda e transmitindo novos pulsos livres de ruído.

Sinais analógicos, ao serem contaminados com ruído, não podem ser simplesmente amplificados e sua reconstrução é mais complexa.

3. Implementação digital em hardware é flexível e permite o uso de microprocessadores, multiplexadores digitais, circuitos integrados de larga escala, etc.

4. Sinais digitais podem ser codificados para atingirem taxas de erro tão pequenas quanto desejável, alta fidelidade e segurança.

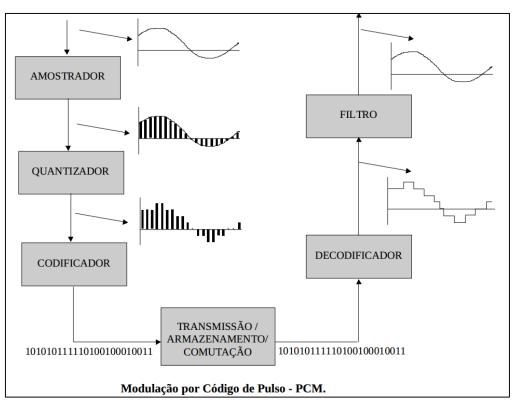
5. Comunicação digital é mais eficiente que a analógica no balanço da troca entre razão sinal-ruído e banda ocupada.

6. Armazenamento digital é relativamente simples e barato, permitindo fácil busca e acesso remoto.

- 7. Reprodução de sinais digitais é altamente fidedigna e não se deteriora com o tempo.
- 8. Custo x performance: decaindo, aumentando a cada 2/3 anos.

Princípio da conversão analógico/digital

PCM: CODIFICAÇÃO POR MODULAÇÃO DE PUL\$O



Converção Analógico - Digital (A/D)

Muitos sinais são obtidos em sua **natureza analógica** (sinais de voz, sinais de áudio de instrumentos, intensidade de luz para fotografias, etc.).

Por diversos motivos (comunicação, transmissão, armazenamento) encontra-se a necessidade de converter sinais analógicos para o domínio digital, a fim de utilizá-los em sistemas digitais.

Conversão Analógico — Digital (A/D) e Digital — Analógico (D/A)

Etapas de conversão A/D e D/A na modulação por código de pulso.

No conversor A/D, há 3 etapas:

- 1) Amostragem
- 2) Quantização
- 3) Codificação

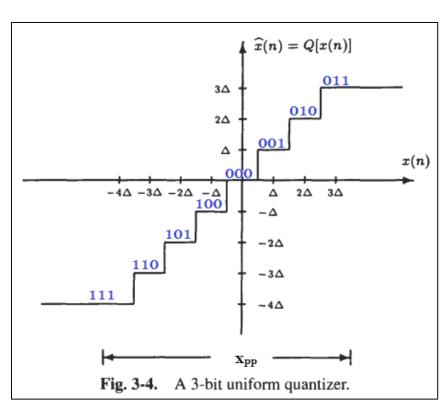
1) Amostragem ou Discretização

A amostragem ou discretização (sampling) consiste em obter um valor do sinal em diferentes instantes de tempo.

Em geral a amostragem é linear com uma frequência de amostragem (ou período de amostragem) fixa $T_s = \frac{1}{f_s}$.

Para que a reconstrução do sinal seja possível, a frequência de amostragem deve ser **no mínimo o dobro da banda do sinal**. Para sinais banda base, isso significa o dobro da maior frequência presente no espectro.

2) Quantização


O sinal amostrado deve ser limitado em amplitude

de
$$A_{\min}$$
 até A_{\max} $(v_{pp} = A_{\max} - A_{\min})$.

Essa faixa de amplitudes deve ser dividida em L intervalos uniformemente espaçados, cuja largura será $\Delta v = \frac{v_{pp}}{L}$.

O centro dos intervalos é o valor quantizado do sinal.

2) Quantização

Exemplo de quantizador de n = 3 bits com L = 8 níveis de quantização.

O valor binário $(000)_2$ foi atribuído à amplitude zero, valor central de um dos intervalos de quantização. Portanto, a faixa do sinal considerado irá variar de $-4\Delta v$ até $3\Delta v$.

Exemplos:

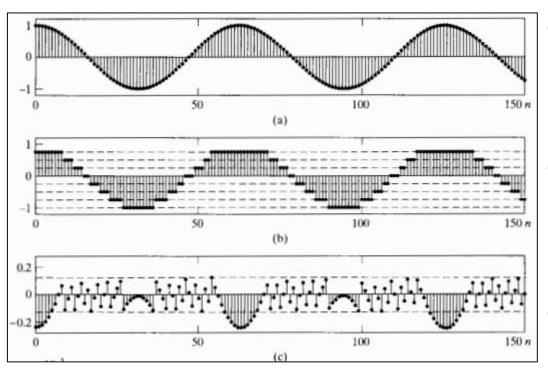
Valores do sinal amostrado no intervalo $\left(-\frac{\Delta v}{2}, +\frac{\Delta v}{2}\right)$ são quantizados em $0 \to (000)_2$.

Valores no intervalo $\left(+\frac{\Delta v}{2}, +\frac{3\Delta v}{2}\right)$ são quantizados em $\Delta v \rightarrow (001)_2$.

Valores no intervalo $\left(-\frac{3\Delta v}{2}, -\frac{\Delta v}{2}\right)$ são quantizados em $-\Delta v \rightarrow (100)_2$.

Ruído de Quantização Linear

Potência do sinal: $S_o = V_{rms}^2$


Potência do ruído de quantização (erro médio quadrático de quantização):

$$N_{q} = \frac{1}{12} \left(\frac{v_{pp}}{L} \right)^{2}$$

Razão ϕ sinal-para-ruído_de_quantização (SNR_{α}):

$$\mathbf{SNR_q} = \frac{\mathbf{S_o}}{\mathbf{N_q}} = 12L^2 \left(\frac{V_{rms}}{V_{pp}}\right)^2$$

Efeito da Quantização e Erro de Quantização

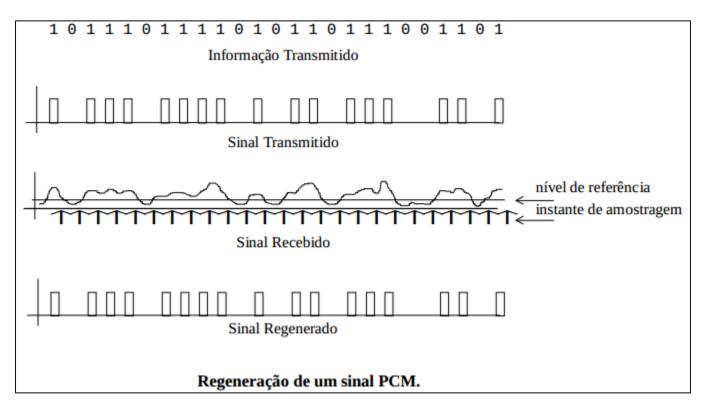
(a) Sinal amostrado sem quantização.

(b) Sinal quantizado com 3 bits (L = 8 níveis de quantização).

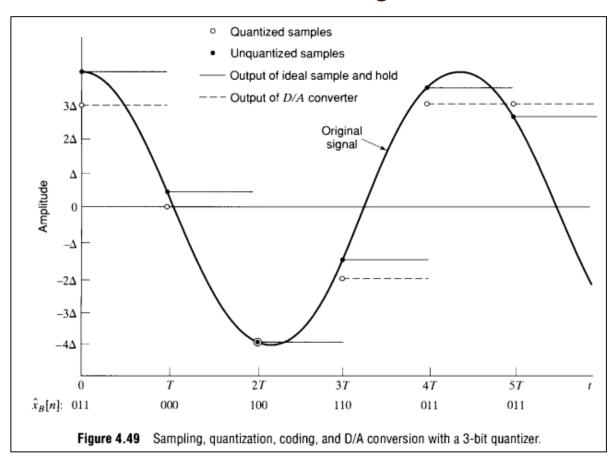
(a) Erro de quantização (3 bits)

3) Codificador Binário

Cada valor quantizado deve ser transformado numa sequência de bits distinta. Uma sequência de n bits pode ser arranjada em 2^n padrões distintos. Portanto, a quantidade de níveis de quantização é dada pela relação:


$$L=2^n$$

Consequentemente, o número de bits necessário para L níveis é:


$$n = \log_2(L)$$

$$\log_2(L) = \frac{\log(L)}{\log(2)} \cong \frac{10}{3} \log_{10}(L)$$

3) Codificador Binário

Ilustração Geral da PCM

Banda do sinal codificado

O sinal analógico que está sendo convertido possui uma banda de $B~{\rm Hz}$. Devido ao teorema da amostragem, é necessário um mínimo de $2B~{\rm amostras}$ por segundo.

Cada amostra possui n bits codificados, portanto a taxa do sinal codificado em bits por segundo (bps) é de n2B bps.

Como conclusão, a largura de banda do canal para transmitir um sinal codificado por PCM deve ser $B_{canal}=nB$.