ModelSim® Reference Manual

Software Version 6.3g
May 2008

© 1991-2008 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://www.mentor.com/terms_conditions/trademarks.cfm

Table of Contents

Chapter 1
Syntax and CoNVENtIiONS. i e 11
Documentation CoNVENLIONSottt e e et 11
Fileand Directory Pathnames 12
Design ObjeCt NaMESottt e e e e 12
Object Name SyntaXxot 12
SystemVerilog Scope Resolution Operatorvviiii e 13
SPECHTYING NaMES. . .. 14
Escaping Bracketsand Spacesin Array Slices. 15
Environment Variablesand Pathnames 16
Name Case SENSITIVITYo e 16
Extended ldentifiersot 16
Wildcard CharaCters.o e e 17
Filtering Wildcard Matching for CertainCommands., 17
Simulator Variables. 18
Simulation TIMe UNItS.o e 18
ArgUMENT FILES. . . . 19
Command SNOMCULS. oot e e e e e e e 20
Command History ShortCULS oo ettt 20
NUumbering ConVeNntions et e e e e e 21
VHDL Numbering ConventionS.ottt e e et e 21
Verilog Numbering Conventions oot 22
GUI_eXpression format.ou it e e 23
EXPressioN TYPING . .o e ettt e e e e e e 23
EXPressSioN SYNtaX.ottt 24
Signal and Subelement Naming Conventions. i, 29
Grouping and PreCedenCe. oot 29
Concatenation of Signalsor Subelements. i 29
Record Field Members 31
Searching for Binary Signal ValuesintheGUI 31

Chapter 2
COMMANGS. . . .ottt e e e 33
00 41
add dataflow o 42
A0 LISt . o 44
A0 MEMOTY . .. 48
A WalCh . .o 50
B0 WAV . . . 51
add cmdnelp. e 57
AlIBS. . 58
batch mode. 59
ModelSim Reference Manual, v6.3g 3

May 2008

Table of Contents

DO, . 60
bookmark add Wave o 61
bookmark delEtEWaVEot e 62
PooKmark QOtO WaVE. oo e 63
booOKMArK [ISE WAV, e e e 64
D 65
. o 69
ChaNge. . .o e 70
CONfIQUI. . . ot e e 72
AatASEt AlIaS. . . o oottt e 77
Aatasel ClEar.t 78
Aatasel ClOSEt 79
dataset CONfIgo 80
(0721 7= << 10 81
(0721 7= < <. = 82
JalaSEt O PN, . ..ot 83
AataSEl FENAME. ottt e e e e e 84
Aatasel rESTAItottt 85
AataSEl SAVE 86
dataset SNAPSNOLo 87
B, . .o 89
AESCIIDE. . ottt e e 90
disablebp. . .. 91
Q0. o 92
ANV S . . 93
AUMPIOGBA . . . 9
<o 70 1 95
<o 96
BNl . . 97
BNVITONMIENE . . ettt e e e e e e e e 98
BXAMINIE. o o et 100
BXI. o et e 104
IO . 105
fINA INfIIES. . o e 110
FINA INSOUICE . . . e e e e e e e e e e e e 111
oM TIME . . . oo 112
FOMCE . . 113
NE D . . 117
NS OrY . .. 118
LAY OUL. . . . e 119
[Og . o e 120
[SNIft . .ot 122
[SUDII St . . o et 123
MEM COMPAIE . . . o ettt et et e e e e e et e e e e et e e et e et 124
MEM ISPl .. oo 125
MEM LIS, et e e e 127
MEM L0, . . . 128
[T 0172 Y/ 131
MNEM SEAICN ottt e 133

ModelSim Reference Manual, v6.3g
May 2008

Table of Contents

messages Clearfilter. 136
MeSsages Setfilter e 137
MO S M. . .o e 138
0] 0] o < 139
NOLOQ . . e 140
NOLEPAA . . ot e 142
MOV B . .« o ot e e e e e e e e 143
MOWNEN . e 144
ONBIEAK . . . ottt 145
ONEIADEITOr. . . e 147
L] 1= ¢ (o) 148
PAUSE . . . ot 149
PIrECISION . . ottt ettt e e e e e e e e 150
01 1 P 151
0] 0] 1= oX P 152
PWA . L 154
QUIBHLY . 155
GUIT o 156
LA X .« ottt 157
FadiX dEfiNE. . .o 159
FA0iX NAMIES. . . ottt e e e 161
FAIX ISt o e e e 162
FAdIX QBB . . . e e 163
FEAAETS. . o oo 164
15070 165
FES AL, . . . 167
FESUIME. . . ottt ettt 169
TUN . 170
TUNSLALUS o o 172
SEBAICNIOg . . . oo 174
LS 176
<. (= 017/ 177
STt . o e 178
761,72 179
M AL . . . oottt 180
AU . . .ottt e 182
SO . o 183
o 184
SUP P S, . o . vttt e e e 185
10 186
TN e e 187
L= o 11 S 190
transCript file. . o 191
LS 1124 0 |1 192
UNSELENV . . .o 193
VOO A . . .o e 194
VCA CheCKPOINTo e e e 196
VOO COMMENE . . o oo e e e e e e e e e e e e 197
VA QUMPPOITS. .« . . oottt e e e e e e e e e e e e e 198
ModelSim Reference Manual, v6.3g 5

May 2008

Table of Contents

ved dUmMPPOItSall. . . . 200
ved dumpportsflush. . ..o e 201
ved dumpportslimit. 202
ved dumppOrtSoff .« ..o 203
VCA AUMPPOITSON. & . o ettt ettt e e e e e e e e e e e e 204
VA FIlE . 205
VCA FIlES. . . 207
VCA TIUSN .« .o e 209
VOO lTMIE . L e e 210
VOO Off . o e e 211
VOO ON . e e e e 212
VCA2WIT . 213
AV {00 1 1 1P 214
VAE . e 224
VAT o 226
VENIC Y L. .« oottt e 229
AV 2= 1 (S 231
VOEBNCOMP .« v oe e et et e et et e e e et e e e e 233
VB . o o 235
VIFEUA COUNL & . .o e e e e e e e e e e e e e e e 237
VIRt dEfiNE. . . . oo e 238
VIRtUAl BB . . . o e 239
VIFUAl dESCIIDE . . . e 240
Virtual eXpand 241
VIFtUAl TUNCLION e e 242
VIRtUA NIAE . . . 245
VIFTUA [0 . ..o 246
VIrtual NONIDE 248
VIFTUE NOLOQ .« . oo e e 249
VIFTUAl TEOION. .« . .o e e e 251
VIFTUA SAVE . . . o oo 252
VIFUA SNOW. . et e e 253
virtual Signal 254
VirtUal By P .« oo 257
VI o 259
VIOg . o 261
VINBKE © 272
140170 274
V25 T2 2 275
VSIMKIN O . .t e e 298
VSIM BreaK . .. 299
RV 20 [o< 300
71T 1Y 301
W L o 304
W . . et 311
W 200 . oo 312
W2V O . . . 314
WM . . 315
W ECOVEY . . . o 319

ModelSim Reference Manual, v6.3g
May 2008

Table of Contents

WL T OrMaL. . . . oo e 320
W ISt L 322
WL PrEfErENCES. . . . o 323
W TEON T . . . o e 324
W EIMING. . . .o e e 326
L SR o 327
W ISl . . oot e 328
WIHTE WAV, « . . ot ittt e e e e e e e e e e e e e e e 330
I ndex

End-User License Agreement

ModelSim Reference Manual, v6.3g 7
May 2008

List of Examples

Example 1-1. SystemV erilog Scope Resolution Operator Example. 13

ModelSim Reference Manual, v6.3g
May 2008

List of Figures

Figure 2-1. find infilesExample 110
Figure2-2. find insource Example. 111

ModelSim Reference Manual, v6.3g
May 2008

List of Tables

Table 1-1. Conventions for Command Syntax, 11
Table 1-2. Examplesof ObjeCct Namest e e 15
Table 1-3. Wildcard Charactersin HDL Object Names, 17
Table 1-4. WildcardFilter Values e 18
Table 1-5. Keyboard Shortcuts for Command History 20
Table 1-6. VHDL Number Conventions: Style1, 21
Table 1-7. VHDL Number Conventions: Style2 22
Table 1-8. Verilog Number Conventionst 22
Table 1-9. Constants Supported for GUI Expresssionscccovvnun... 24
Table 1-10. Array Constants Supported for GUI EXpresssions 25
Table 1-11. Variables Supported for GUI EXpresssionscoviviinnnnn... 25
Table 1-12. Array Variables Supported for GUI Expresssions 26
Table 1-13. Operators Supported for GUI EXPresssionscovuvinnenen... 27
Table 1-14. Casting Conversions Supported for GUI Expresssions 28
Table 1-15. VHDL Logic ValuesUsedinGUI Search 32
Table 1-16. Verilog Logic ValuesUsed inGUI Search 32
Table2-1. Supported Commandsovir it e 33
Table 2-2. runStatus Command SEateSo v i 172
Table 2-3. runStatus -full Command Information 172
Table 2-4. Warning Message Categoriesfor vcom-nowarn 220
Table2-5. Design Unit Properties e 226
Table 2-6. Warning Message Categoriesfor viog-nowarn 267
Table 2-7. Wave Window Commandsfor Cursorccoiiiinninnen.nn. 301
Table 2-8. Wave Window Commandsfor Zoomingc.coviin... 301
Table 2-9. Wave Window Commands for Controlling Display 301
ModelSim Reference Manual, v6.3g 10

May 2008

Chapter 1
Syntax and Conventions

Documentation Conventions
This manual uses the following conventions to define Model Sim™ command syntax.

Table 1-1. Conventions for Command Syntax

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a
user-defined argument; do not enter the bracketsin
commands

[] sguare brackets generally indicate an optional item; if

the brackets surround several words, all must be
entered as a group; the brackets are not entered?

{ } braces indicate that the enclosed expression contains
one or more spaces yet should be treated as asingle
argument, or that the expression contains square
brackets for an index; for either situation, the braces
are entered

an ellipsisindicates items that may appear more than
once; the ellipsisitself does not appear in commands

| the vertical bar indicates a choice between items on
either side of it; do not include the bar in the command

monospaced type monospaced type is used in command examples

comments included with commands are preceded by
the number sign (#); useful for adding comments to
DO files (macros)

1. One exception to thisruleiswhen you are using Verilog syntax to designate an array
dice. For example,

add wave { vector1[4:0]}

The square bracketsin this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets asa Tcl command.

Note
Neither the prompt at the beginning of aline nor the <Enter> key that endsalineis

shown in the command examples.

ModelSim Reference Manual, v6.3g 11
May 2008

Syntax and Conventions
File and Directory Pathnames

File and Directory Pathnames

Severa Model Sim commands have arguments that point to files or directories. For example, the
-y argument to vlog specifies the Verilog source library directory to search for undefined
modules. Spacesin file pathnames must be escaped or the entire path must be enclosed in
quotes. For example:

vlog top.v -y C:/Documents\ and\ Settings/projects/dut

or

vlog top.v -y "C:/Documents and Settings/projects/dut”

Design Object Names

Design objects are organized hierarchically. Each of the following objects createsanew level in
the hierarchy:

* VHDL — component instantiation statement, block statement, and package
* Verilog— module instantiation, named fork, named begin, task and function

» SystemVerilog — class, package, program, and interface

Object Name Syntax

The syntax for specifying object namesin ModelSim is as follows:

[<dat aset Nanme><dat aset Separ at or >] [<pat hSepar at or >] [<hi er ar chi cal Pat h>]
<obj ect Nane>[<el enent Sel ecti on>]

where

» datasetName — isthelogical name of the WLF file in which the object exists. The
currently active simulation isthe “sim” dataset. Any loaded WLF file isreferred to by
the logical name specified when the WLF file was |oaded. Refer to the chapter
“Recording Simulation Results With Datasets” in the User’s Manual for more
information.

» datasetSeparator — isthe character used to terminate the dataset name. The default is
":", though a different character (other than ’\') may be specified as the dataset separator
viathe DatasetSeparator variable in the modelsim.ini file. The defaultis™:'. This
character must be different than the pathSeparator character.

» pathSeparator — isthe character used to separate hierarchical object names. Normally,
'I"isused for VHDL and "." isused for Verilog, although other characters (except '\') may
be specified via the PathSeparator variable in the modelsim.ini file. This character must
be different than the datasetSeparator. Neither . or '/ can be used when referring to the
contents of a SystemV erilog package or class.

12 ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
File and Directory Pathnames

* hierarchicalPath — isaset of hierarchical instance names separated by a path
separator and ending in a path separator prior to the objectName. For example,
[top/proc/clk.

» objectName — isthe name of an object in adesign.
» eementSelection — indicates some combination of the following:

o Array indexing— Single array elements are specified using either parentheses ()"
or square brackets "[]" around a single number.

o Array slicing— Slices (or part-selects) of arrays are specified using either
parentheses " ()" or square brackets "[]" around arange specification. A range istwo
numbers separated by one of the following: " to ", " downto ", ":". See Escaping

Brackets and Spacesin Array Slices for important information about using square
brackets in Model Sim commands.

o Record field selection — A record field is specified using a period "." followed by
the name of the field.

SystemVerilog Scope Resolution Operator

SystemVerilog offers the scope resolution operator "::’ for accessing classes within a package
and static data within a class. The example below shows various methods of using this operator
aswell as alternatives using standard hierarchical references.

Example 1-1. SystemVerilog Scope Resolution Operator Example

package myPackage;
cl ass packet;
static int a[0:1] = {1, 2};
int b[0:1];
int c;

functi on new;
b[0] = S;
b[1] = 4;
c = a[0];
endf uncti on
endcl ass
endpackage : nyPackage

nodul e top;
myPackage: : packet nmy = new
int nyint = ny.a[1];
endnodul e

The following examine examples access data from the class packet.

exani ne nyPackage: : packet::a
examne /top/ny.a

ModelSim Reference Manual, v6.3g 13
May 2008

Syntax and Conventions
File and Directory Pathnames

Both of the above commands return the contents of the static array a within class packet.

exam ne nyPackage: : packet:: a(0)
exam ne /top/ny.a(0)

Both of the above commands return the contents of the first element of the static array a
within class packet.

examne /top/ny.b

Return the contents of the instance-specific array b.
exam ne /top/ ny. b(0)
Return the contents of the first element of the instance-specific array b.

When referring to the contents of a package or class, you cannot use the standard path
Separators‘.’ or ‘/’.

Specifying Names

We distinguish between four "types' of object names. ssimple, relative, fully-rooted, and
absolute.

A simple name does not contain any hierarchy. It is simply the name of an object (e.g., clk or
data[3:0]) in the current context.

A relative name does not start with a path separator and may or may not include a dataset name
or a hierarchical path (e.g., ul/data or view:clk). A relative name s relative to the current
context in the current or specified dataset.

A fully-rooted name starts with a path separator and includes a hierarchical path to an object
(e.g., /top/ul/clk).Thereis a specia case of afully-rooted name where the top-level design unit
name can be unspecified (e.g., /ul/clk). In this case, the first top-level instance in the designis
assumed.

An absolute name is an exactly specified hierarchical name containing a dataset name and a
fully rooted name (e.g., sim:/top/ul/clk).

The current dataset is used when accessing objects where a dataset name is not specified as part
of the name. The current dataset is determined by the dataset currently selected in the Structure
window or by the last dataset specified in an environment.

The current context in the current or specified dataset is used when accessing objects with
relative or simple names. The current context is either the current process, if any, or the current
instance if there is no current process or the current processis not in the current instance. The
situation of the current process not being in the current instance can occur, for example, by
selecting a different instance in the Structure tab or by using the environment to set the current
context to a different instance.

14 ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
File and Directory Pathnames

Table 1-2 contains examples of various ways of specifying object names.

Table 1-2. Examples of Object Names

Object Name Description

clk specifies the object clk in the current context

Itop/clk specifies the object clk in the top-level design unit.

ltop/blockl/u2/clk | specifiesthe object clk, two levels down from the top-level
design unit

block1/u2/clk specifies the object clk, two levels down from the current
context

array sig[4] specifies an index of an array object

{array sig(1to 10)} | specifiesadlice of an array object in VHDL ; see Escaping
Brackets and Spaces in Array Slices for more information

{mysignal[31:0] } specifiesadlice of an array object in Verilog; see Escaping
Brackets and Spacesin Array Slices for more information

record_sig.field specifiesafield of arecord

Escaping Brackets and Spaces in Array Slices

Because ModelSim is a Tcl-based tool, you must use curly braces ('{}’) to "escape" square
brackets and spaces when specifying array slices. For example:

toggl e add {data[3:0]}
toggle add {data(3 to 0)}

For complete details on Tcl syntax, refer to Tcl Command Syntax.

Further Details

As aTcl-based tool, Model Sim commands follow Tcl syntax. One problem people encounter
with Model Sim commands is the use of square brackets ('[]’) or spaces when specifying array
dlices. As shown on the previous page, square brackets are used to specify slices of arrays (e.g.,
data[3:0]). However, in Tcl, square brackets signify command substitution. Consider the
following example:

set aluinputs [find -in alu/*]

Model Sim evaluates the find command first and then sets variable aluinputs to the result of the
find command. Obviously you don’t want this type of behavior when specifying an array dlice,
so you would use curly brace escape characters:

add wave {/s/abc/data_in[10:1]}

ModelSim Reference Manual, v6.3g 15
May 2008

Syntax and Conventions
File and Directory Pathnames

Y ou must also use the escape charactersif using VHDL syntax with spaces:

add wave {/s/abc/data_in(10 downto 1)}

Environment Variables and Pathnames

Y ou can substitute environment variables for pathnamesin any argument that requires a
pathname. For example:

vlog -v $lib_path/undl

Assuming you have defined $lib_path on your system, viog will locate the source library file
undl and search it for undefined modules. Refer to Environment Variables for more
information.

Note
D Environment variable expansion does not occur in files that are referenced viathe -f

argument to vcom, vlog, or vsim.

Name Case Sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not case sensitive
except for extended identifiersin VHDL 1076-1993 or later. In contrast, all Verilog names are
case sensitive.

Names in Model Sim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive.

Extended Identifiers

The following are supported formats for extended identifiers for any command that takes an
identifier.
{\ext ident!\ }

Note that trailing space before closing brace is required

\\ext\ ident\!\\
Al non-al pha characters escaped

16 ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
Wildcard Characters

Wildcard Characters

Wildcard characters can be used in HDL object names in some simulator commands. Table 1-3
shows the conventions for allowable wildcard characters.

Table 1-3. Wildcard Characters in HDL Object Names
Character Syntax | Description

* matches any sequence of characters
? matches any single character
[matches any one of the enclosed

characters; a hyphen can be used to
specify arange (for example, az, A-Z,
0-9); can be used only with the find
command

Filtering Wildcard Matching for Certain Commands

By default certain commands do not add all objects that match awildcard pattern. For example,
the add wave command doesn’'t add VHDL variables or Verilog memories by default because
this can use alot of RAM.

For example, "add log -r *" will not log process variables, even if you change the WildcardFilter
preference variable, because the filter only appliesto variablesin packages and design units. To
use wildcards for other variables, you must specify an explicit path to the processin the log
command, such as "add log /proc_test/p1/*".

Note
D A wildcard character will never match a path separator. For example, /dut/* will match

/dut/siga and /dut/clk. However, /dut* won’t match either of those.

WildcardFilter Preference Variable

The WildcardFilter preference variable alows you to specify the object types to exclude when
performing wildcard matches. The settings will be applied only to variablesin packages and
design units. See “Filtering Wildcard Matching for Certain Commands” for more information.

Y ou can view the current settings by entering the following at the command prompt:

> set WldcardFilter

which, returns a space separated list of the current values. The default setting returns:

> set WldcardFilter
Variabl e Constant Ceneric Paranmeter SpecParam Menory Cel | | nternal

ModelSim Reference Manual, v6.3g 17
May 2008

Syntax and Conventions
Simulator Variables

Y ou can change the settings by specifying a space-separated list of values enclosed in double-
quotes ().

For example:

set WldcardFilter "signal constant conpare net reg"
Table 1-4 lists al the legal values for WildcardFilter.
Table 1-4. WildcardFilter Values

Alias Memory Reg
Cellinternalt NamedEvent Signa
Compare Net SpecParam
Constant None? Time
Generic Parameter Variable
Integer Red

1. Appliesto signals in cells, where a cell is defined as 1) a module
withina‘celldefine, 2) aVerilog modulereferenced asalibrary viathe
-v or -y compiler options, or 3) amodule containing a specify block.
2. Thisvalue disables al filtering.

The WildcardFilter variable applies to the commands add dataflow, add list, add memory, add
watch, add wave, find, and log.

Simulator Variables

Model Sim variables can be referenced in simulator commands by preceding the name of the
variable with the dollar sign ($) character. Model Sim uses global variables for simulator state
variables, simulator control variables, simulator preference variables, and user-defined
variables. Refer to “ Simulator State Variables’ in the User's Manual for more information on
variables.

The report command returns alist of current settings for either the simulator state or simulator
control variables.

Simulation Time Units

Y ou can specify the time unit for delaysin all smulator commands that have time arguments.
For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time unitsin a Model Sim command need not be the same.

18 ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
Argument Files

Unless you specify otherwise asin the examples above, simulation time is always expressed
using the resolution units that are specified by the UserTimeUnit variable.

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

Argument Files

Y ou can load additional arguments into some commands by using argument files, which are
specified with the -f argument. The following commands support the -f argument:

vl og vcom vsim

The -f <filename> argument specifies afile that contains additional command line arguments.
The following sections outline some syntax rules for argument files.

» Single Quotes — allows you to group arbitrary characters so that no character
substitution occurs within the quotes, such as environment variable expansion or
escaped characters.

+acc=r n+' \ mynodul e’
//does not treat the ‘\’' as an escape character

» Double Quotes — allows you to group arbitrary characters so that Tcl-style backslash
substitution and environment variable expansion is performed.

+acc=r n+"\\ nynodul e\ \ $VAR"
/] escapes the path separators (\) and substitues
/'l your value of ‘$VAR

» Unguoted — the following are notes on what occurs when some information is not
quoted:

o Tcl backsash substitution — any unquoted backslash (\) will be treated as an escape
character.

+acc=rn\\ nynodul e
/'l the leading '\' is considered an escape character

o Environment variable expansion — any unquoted environment variable, such as
$envname, will be expanded. Y ou can also use curly bracesin your environment
variable, such as ${ envname} .

+acc=r n\\ $MODULE
/1l the leading '\' is considered an escape character and the
/'l variable $MODULE i s expanded

* Newline Character — you can specify arguments on separate lines in the argument file,
with the newline characters treated as space characters. Thereisno need to put '\' at the
end of each line.

ModelSim Reference Manual, v6.3g 19
May 2008

Syntax and Conventions
Command Shortcuts

* Comments — Comments within the argument files follow these rules:
o All textin aline beginning with // to its end is treated as a comment.

o All text bracketed by /* ... */ istreated as a comment.

Command Shortcuts

* You may abbreviate command syntax, but there’ s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
Model Sim does not alow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

* Multiple commands may be entered on onelineif they are separated by semi-colons (;).
For example:

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

Y ou probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command History Shortcuts

Y ou can review simulator command history or rerun previous commands by using keyboard
shortcuts at the Model Sim/VSIM prompt. Table 1-5 contains alist of these shortcuts.

Table 1-5. Keyboard Shortcuts for Command History

Shortcut Description

1 repeats the last command

In repeats command number n; nisthe VSIM prompt
number (e.g., for this prompt: VSIM 12>, n =12)
labc repeats the most recent command starting with "abc"
Axyzhab™ replaces "xyz" in the last command with "ab"
up and down arrows| scrollsthrough the command history with the keyboard
arrows
20 ModelSim Reference Manual, v6.3g

May 2008

Syntax and Conventions
Numbering Conventions

Table 1-5. Keyboard Shortcuts for Command History

Shortcut Description

click on prompt left-click once on a previous ModelSim or VSIM
prompt in the transcript to copy the command typed at
that prompt to the active cursor

his or history shows the last few commands (up to 50 are kept)

Numbering Conventions
Numbers in Model Sim can be expressed in either VHDL or Verilog style. Y ou can use two
styles for VHDL numbers and one for Verilog.

VHDL Numbering Conventions
There are two types of VHDL number styles:

VHDL Style 1
[-1 [radix #] value [#]

Table 1-6. VHDL Number Conventions: Style 1

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

isadelimiter between the radix and the value; the first # sign is required
if aradix isused, the second is always optional

A ‘-’ can also be used to designate a"don’t care” element when you search for asignal value or
expression in the List or Wave window. If you want the ‘-’ to beread asa"don’t care” element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to -0110--. If you don’t include the double quotes, ModelSim
will read the ‘-’ as a negative sign. For example:

16#FFca23#
2#11111110
-23749

ModelSim Reference Manual, v6.3g 21
May 2008

Syntax and Conventions
Numbering Conventions

VHDL Style 2

base "val ue"

Table 1-7. VHDL Number Conventions: Style 2

Element Description
base specifies the base; binary: B, octal: O, hex: X; required
"value" specifies digitsin the appropriate base with optional underscore
separators; default is decimal; required
For example:
B"11111110"
X' FFca23"

Searching for VHDL Arrays in the Wave and List Windows

Searching for signal values in the Wave or List window may not work correctly for VHDL
arrays if the target valueisin decimal notation. Y ou may get an error that the value is of
incompatible type. Since VHDL does not have aradix indicator for decimal, the target value
may get misinterpreted as a scalar value. Prefixing the value with the Verilog notation 'd should
eliminate the problem, even if the signal isVHDL.

Verilog Numbering Conventions
Verilog numbers are expressed in the style:

[-1 size] [base] value

Table 1-8. Verilog Number Conventions

Element Description

- indicates a negative number; optional

size the number of bitsin the number; optional

base specifiesthe base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘dor ‘D, hex: ‘h
or ‘H; optional

value specifies digits in the appropriate base with optional underscore separators,

default is decimal; required

A ‘-’ can also be used to designate a"don’t care” element when you search for asignal value or
expression in the List or Wave windows. If you want the ‘-’ to beread asa"don’t care” element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to 7'b-0110--. If you don’t include the double quotes,
ModelSim will read the ‘-’ as a negative sign. For example:

22 ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
GUI_expression_format

"b11111110 8" bl11111110
"Hf f ca23 21’ Hif ca23
-23749

GUI _expression_format

The GUI_expression_format is an option of several simulator commands that operate within the
ModelSim GUI environment. The expressions help you locate and examine objects within the
List and Wave windows (expressions may also be used through the Edit > Sear ch menu in both
windows). The commands that use the expression format are:

configure, examine, searchlog, virtual function, virtual signal

Expression Typing

GUI expressions are typed. The supported types consist of the following scalar and array types.

Scalar Types

The scalar types are as follows:. boolean, integer, real, time (64-bit integer), enumeration, and
signal state. Signal states are represented by the nine VHDL std_logic states. 'U’ ' X’ 0" '1" ' Z
"W 'L’ 'H’ and’-.

Verilog states 0, 1, X, and z are mapped into these states and the Verilog strengths are ignored.
Conversion is done automatically when referencing Verilog nets or registers.

Array Types

The supported array types are signed and unsigned arrays of signal states. Thiswould
correspond to the VHDL std logic_array type. Verilog registers are automatically converted to
these array types. The array type can be treated as either UNSIGNED or SIGNED, asin the
IEEE std_logic_arith package. Normally, referencing asignal array causesit to be treated as
UNSIGNED by the expression evaluator; to cause it to be treated as SIGNED, use casting as
described below. Numeric operations supported on arrays are performed by the expression
evaluator viaModel Sim’ s built-in numeric_standard (and similar) package routines. The
expression evaluator selects the appropriate numeric routine based on SIGNED or UNSIGNED
properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals may be
used in the expression as long as some variable of that enumeration type is referenced in the
expression. Thisisuseful for sub-expressions of the form:

(/ menory/ state == readi ng)

ModelSim Reference Manual, v6.3g 23
May 2008

Syntax and Conventions
GUI_expression_format

Expression Syntax

GUI expressions generally follow C-language syntax, with both VHDL-specific and Verilog-
specific conventions supported. These expressions are not parsed by the Tcl parser, and so do
not support general Tcl; parentheses should be used rather than braces. Procedure calls are not
supported.

A GUI expression can include the following elements: Tcl macros, constants, array constants,
variables, array variables, signal attributes, operators, and casting.

Tcl Macros

Macros are useful for pre-defined constants or for entire expressions that have been previously
saved. The substitution is done only once, when the expression isfirst parsed. Macro syntax is:

$<name>

Substitutes the string value of the Tcl global variable <name>.

Constants
Table 1-9. Constants Supported for GUI Expresssions
Type Values
boolean value truefase TRUE FALSE
integer [0-9]+
real number ;]| nt>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+|-][O-
+
time integer or real optionally followed by time unit
enumeration VHDL user-defined enumeration literal
single bit constants expressed as any of the following:
01xXzZUHLW'U'X''0'l"’'Z "W 'L’ 'H '~ 1'b01'bl

24 ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
GUI_expression_format

Array Constants, Expressed in Any of the Following Formats

Table 1-10. Array Constants Supported for GUI Expresssions
Type Values

VHDL # notation | <int>#<alphanum>[#]
Example: 16#abcl23#

VHDL bitstring "(UIX[O[2|Z]W|LH]-)*"
Example: "11010X11"

Verilog notation [-][<int>]" (b|B|o|O|d|D|h|H) <a phanum>

(where <alphanum> includes 0-9, a-f, A-F, and ’-")

Example: 12'hc9l (Thisisthe preferred notation because it removes the
ambiguity about the number of bits.)

Based notation ox..., 0X..., 0o..., 00...,0b..., OB...
Model Sim automatically zero fills unspecified upper bits.

Variables

Table 1-11. Variables Supported for GUI Expresssions

Variable Type

Nameof asignal | The name may be asimple name, aVHDL or Verilog style extended
identifier, or aVHDL or Verilog style path. The signal must be one of
the following types:

-- VHDL signal of type INTEGER, REAL, or TIME

-- VHDL signal of type std_logic or bit

-- VHDL signal of type user-defined enumeration

-- Verilog net, Verilog register, Verilog integer, or Verilog real

NOW Returns the value of time at the current location in the WLF file asthe
WLF fileis being scanned (not the most recent simulation time).

ModelSim Reference Manual, v6.3g 25
May 2008

Syntax and Conventions
GUI_expression_format

Array variables

Table 1-12. Array Variables Supported for GUI Expresssions

Variable Type

Name of asignal | -- VHDL signals of type bit_vector or std_logic_vector

-- Verilog register

-- Verilog net array

A subrange or index may be specified in either VHDL or Verilog
syntax. Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]

Signal attributes

<name>’ event
<nane>’ri si ng
<nane>'fal ling
<nane>' del ayed()
<name>' hasX

The’ delayed attribute lets you assign adelay to aVHDL signal. To assign adelay toasignal in
Verilog, use “#” notation in a sub-expression (e.g., #-10 /top/signal A).

The hasX attribute lets you search for signals, nets, or registers that contains an X (unknown)
value.

See Examples of Expression Syntax below for further details on ’delayed and " hasX.

26 ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
GUI_expression_format

Operators
Table 1-13. Operators Supported for GUI Expresssions

Operator Description Operator Description
&& boolean and dl/SLL shift left logical
[| boolean or da/lSLA shift left arithmetic
! boolean not srl/SRL shift right logical
== equal sralSRA shift right arithmetic
I= not equal ror/ROR rotate right
=== exact equalt rol/ROL rotate |eft
I== exact not equal + arithmetic add
< less than - arithmetic subtract
<= less than or equal * arithmetic multiply
> greater than / arithmetic divide
>= greater than or equal mod/MOD arithmetic modulus
not/NOT/~ unary bitwiseinversion rem/REM arithmetic remainder
and/AND/& | bitwise and |<vector_expr> | OR reduction
nand/NAND | bitwise nand A<vector_expr>| XOR reduction
or/OR/| bitwise or
nor/NOR bitwise nor
xor/XOR bitwise xor
xnor/XNOR | bitwise xnor

1. This operator is allowed to be compatible with other smulators.

Note

D Arithmetic operators use the std_logic_arith package.

ModelSim Reference Manual, v6.3g

May 2008

27

Syntax and Conventions
GUI_expression_format

Casting

Table 1-14. Casting Conversions Supported for GUI Expresssions
Casting Description
(bool) convert to boolean
(boolean) convert to boolean
(int) convert to integer
(integer) convert to integer
(redl) convert to real
(time) convert to 64-bit integer
(std_logic) convert to 9-state signal value
(signed) convert to signed vector
(unsigned) convert to unsigned vector
(std_logic_vector) convert to unsigned vector

Examples of Expression Syntax

/top/ bus & $bit_mask

This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’ event && (/top/xyz == 16’ hffae)

This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
isequal to hex ffag; otherwiseisfalse.

clk’rising & (mystate == reading) && (/top/u3/addr == 32" habcd1234)

Evaluates to a boolean true when signal clk just changed from low to high and signal
mystate is the enumeration reading and signal /top/u3/addr is equal to the specified
32-bit hex constant; otherwiseis false.

(/top/u3/addr and 32’ hf f000000) == 32’ hac000000

Evaluates to a bool ean true when the upper 8 bits of the 32-bit signal /top/u3/addr equals
hex ac.

/top/ signal A' del ayed(10ns)

This expression returns /top/signal A delayed by 10 ns.
/top/signal A del ayed(10 ns) && /top/signal B

This expression takes the logical AND of a delayed /top/signal A with /top/signal B.

28

ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
GUI_expression_format

virtual function { (#-10 /top/signal A) && /top/signal B}
mySi gnal B_AND Del ayedSi gnal A

Thisevaluates /top/signal A at 10 simulation time steps before the current time, and takes
thelogical AND of the result with the current value of /top/signal B. The '# notation uses
positive numbers for looking into the future, and negative numbers for delay. This
notation does not support the use of time units.

((NOW > 23 us) & & (NOW< 54 us)) && clk’'rising & (node == writing)

Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchl og -expr {dbus' hasX} {0 ns} dbus

Searchesfor an’ X’ indbus. Thisis equivalent to the expression: {dbus(0) == X' ||
dbus(1) == 'X} Thismakesit possible to search for X values without having to
write atype specific literal.

Signal and Subelement Naming Conventions

M odel Sim supports naming conventionsfor VHDL and Verilog signal pathnames, VHDL array
indexing, Verilog bit selection, VHDL subrange specification, and Verilog part selection.

Examplesin Verilog and VHDL syntax:

t op. chi p. vl ogsi g
/top/ chip/vhdl sig
vl ogsi g[3]
vhdl si g(9)

vl ogsi g[5: 2]
vhdl si g(5 downto 2)

Grouping and Precedence

Operator precedence generally follows that of the C language, but we recommend liberal use of
parentheses.

Concatenation of Signals or Subelements

Elements in the concatenation that are arrays are expanded so that each element in the array
becomes atop-level element of the concatenation. But for elementsin the concatenation that are
records, the entire record becomes one top-level element in the result. To specify that the
records be broken down so that their subelements become top-level elementsin the
concatenation, use the concat_flatten directive. Currently we do not support leaving full arrays
as elements in the result. (Please let us know if you need that option.)

ModelSim Reference Manual, v6.3g 29
May 2008

Syntax and Conventions
GUI_expression_format

If the elements being concatenated are of incompatible base types, a VHDL-style record will be
created. The record object can be expanded in the Objects and Wave windows just like an array
of compatible type elements.

Concatenation Syntax for VHDL

<signal O Sli ceNanel> & <signal O Sli ceNanme2> & ...

Concatenation Syntax for Verilog

&{ <si gnal Or Sl i ceNanel>, <signal OrSliceNanme2>, ... }
&{ <count >{<si gnal Or Sl i ceNanel>}, <signal O SliceNanme2>, ... }

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition multipliers
are supported, asillustrated in the second line. The repetition element itself may be an arbitrary
concatenation subexpression.

Concatenation Directives

A concatenation directive (as illustrated below) can be used to constrain the resulting array
range of a concatenation or influence how compound objects are treated. By default, the
concatenation will be created with a descending index range from (n-1) downto O, wherenisthe
number of elementsin the array.

(concat _range 31:0)<concatenati onExpr> # Veril og syntax
(concat _range (31:0))<concatenati onExpr> # Al so Verilog syntax
(concat _range (31 downto 0))<concatenati onExpr> # VHDL synt ax

The concat_range directive completely specifies the index range.

(concat _ascendi ng) <concat enati onExpr >

The concat_ascending directive specifies that the index start at zero and increment
upwards.

(concat _flatten) <concatenati onExpr>

The concat_flatten directive flattens the signal structure hierarchy.

(concat _nofl atten) <concatenati onExpr >

The concat_noflatten directive groups signals together without merging them into one
big array. The signals become elements of arecord and retain their original names.
When expanded, the new signal looks just like a group of signals. The directive can be
used hierarchically with no limits on depth.

(concat _sort_wi | d_ascendi ng) <concat enati onExpr>

The concat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

30 ModelSim Reference Manual, v6.3g
May 2008

Syntax and Conventions
GUI_expression_format

(concat _reverse) <concatenati onExpr>

The concat_rever se directive reverses the bits of the concatenated signals.

Examples of Concatenation

& "nybusbasename*" }

Gathers all signalsin the current context whose names begin with "mybusbasename”,
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, where n is the number of matching signals found. (Note that it currently does not
derive the index name from the tail of the one-bit signal name.)

(concat _range 13:4)&{ "nybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in
descending order.

(concat _ascendi ng) & "nybusbasenane*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by namein
descending order.

(concat _ascendi ng) ((concat _sort_wi | d_ascendi ng) & " mybusbasenane*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by name in ascending
order.

(concat _reverse) (busl & bus?2)

Specifies that the bits of busl and bus2 be reversed in the output virtual signal.

Record Field Members

Arbitrarily-nested arrays and records are supported, but operators will only operate on onefield
at atime. That is, the expression {a == b} where a and b are records with multiple fields, is not
supported. Thiswould have to be expressed as:

{(a.f1 == b.f1) & (a.f2 == b.f2) ...}
Examples:

vhdl sig.fieldl

vhdl si g.fieldl. subfieldl

vhdl sig. (5).field3

vhdl sig.fiel d4(3 downto 0)

Searching for Binary Signal Values in the GUI

When you use the GUI to search for signal values displayed in 4-state binary radix, you should
be aware of how Model Sim maps between binary radix and std_logic. The issue arises because

ModelSim Reference Manual, v6.3g 31
May 2008

Syntax and Conventions
GUI_expression_format

thereisno “un-initialized” valuein binary, while thereisin std_logic. So, ModelSim relies on
mapping tables to determine whether a match occurs between the displayed binary signal value
and the underlying std_logic value.

This matching algorithm applies only to searching using the GUI. It does not apply to VHDL or
Verilog testbenches.

For comparing VHDL std_logic/std_ulogic objects, Model Sim uses the table shown below. An
entry of “0” in the table is “no match”; an entry of “1” isa“match”; an entry of “2” isamatch

only if you set the Tcl variable STDLOGIC_X_ MatchesAnythingto 1. Note that X will match
aU, and - will match anything.

Table 1-15. VHDL Logic Values Used in GUI Search

Search | Matchesasfollows:

Bty 1y Ix o |1 |z w L |H |-
U 1 |1 o Jo Jo J|o Jo o |1
X 1 (1 |2 |2 |2 |2 |2 |2 |1
0 o |2 |1 Jo |o |o |1 |o |1
1 o |2 Jo |1 [o o Jo |1 |1
z o |2 |o Jo |1 |o |o J|o |1
W o |2 |o Jo |o |1 |o |o |1
L o |2 |1 Jo o Jo [1 Jo |z
H o |2 Jo |1 |o o Jo |1 |1
i 1 (1 |1 |1 |1t (1 |t 1 |1

For comparing Verilog net values, Model Sim uses the table shown below. An entry of “2” isa
match only if you set the Tcl variable“VLOG_X_ MatchesAnything” to 1.

Table 1-16. Verilog Logic Values Used in GUI Search

Search | Matchesasfollows:

Entry 0 1 7 X
0 1 0 0 2
1 0 1 0 2
z 0 0 1 2
X 2 2 2 1

32

ModelSim Reference Manual, v6.3g
May 2008

Chapter 2
Commands

The commands here are entered either in macro files or on the command line of the Main
window. Some commands are automatically entered on the command line when you use the
Model Sim graphical user interface.

Note that in addition to the simulation commands documented in this section, you can use the
Tcl commands described in the Tcl man pages (use the Main window menu selection: Help >

Tcl Man Pages).

The following table provides a brief description of each Model Sim command. Command
details, arguments, and examples can be selecting the links in the Command name column.

Table 2-1. Supported Commands

Command name Action

abort halts the execution of a macro file interrupted by a breakpoint or
error

add dataflow adds the specified object to the Dataflow window

add list lists VHDL signals and variables, and Verilog nets and registers,
and their valuesin the List window

add log also known as the log command; see log

add memory opens the specified memory in the MDI frame of the Main
window

add watch adds signals or variables to the Watch window

add wave adds VHDL signals and variables, and Verilog nets and registers
to the Wave window

add_cmdhelp adds an entry to the command-line help; use the help command to
display the help text

alias creates anew Tcl procedure that evaluates the specified
commands

batch_mode returnsalif ModelSim is operating in batch mode, otherwise
returns a0

bd deletes a breakpoint

bookmark add wave adds a bookmark to the specified Wave window

bookmark delete wave del etes bookmarks from the specified Wave window

bookmark goto wave zooms and scrolls a Wave window using the specified bookmark

ModelSim Reference Manual, v6.3g
May 2008

33

Commands

Table 2-1. Supported Commands (cont.)

Command name Action

bookmark list wave displaysalist of available bookmarks

bp sets a breakpoint

change modifies the value of aVHDL variable or Verilog register
variable

configure invokes the List or Wave widget configure command for the
current default List or Wave window

dataset alias assigns an additional name to a dataset

dataset clear clears the current ssmulation WLF file

dataset close closes a dataset

dataset config configures WLF file settings after dataset is open

dataset info reports information about the specified dataset

dataset list lists the open dataset(s)

dataset open opens a dataset and references it by alogical name

dataset rename changes the logical name of an opened dataset

dataset restart unloads specified or current dataset

dataset save saves data from the current WLF file to a specified file

dataset snapshot saves data from the current WLF file at a specified interval

delete removes objects from either the List or Wave window

describe displays information about the specified HDL object

disablebp turns off breakpoints and when commands

do executes commands contained in a macro file

drivers displaysin the Main window the current value and scheduled
future values for all the drivers of a specified VHDL signal or
Verilog net

dumplog64 dumps the contents of the vsim.wif file in a readable format

echo displays a specified message in the Main window

edit invokes the editor specified by the EDITOR environment variable

enablebp turns on breakpoints and when commands turned off by the
disablebp command

environment displays or changes the current dataset and region environment

examine examines one or more objects, and displays current values (or the
values at a specified previous time) in the Main window

34 ModelSim Reference Manual, v6.3g

May 2008

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

exit exits the simulator and the Model Sim application

find displays the full pathnames of al objectsin the design whose
names match the name specification you provide

find infiles searches the specified files and prints to the Transcript pane those
lines from the files that match the specified pattern.

find insource searches all sourcefilesrelated to the current design and prints to
the Transcript pane those lines from the files that match the
specified pattern.

formatTime global format control for all time values displayed in the GUI

force applies stimulusto VHDL signals and Verilog nets

help displaysin the Main window abrief description and syntax for the
specified command

history lists the commands executed during the current session

layout save or load custom GUI layouts

log creates awave log format (WLF) file containing simulation data
for all objects whose names match the provided specifications

Ishift takesaTcl list as an argument and shiftsit in-place one place to
the left, eliminating the left-most element

Isublist returns a sublist of the specified Tcl list that matches the specified

Tcl glob pattern

mem compare

compares the selected memory to areference memory or file

mem display displays the memory contents of a selected instance to the screen

mem list displays aflattened list of all memory instances in the current or
specified context after a design has been elaborated

mem load updates the simulation memory contents of a specified instance

mem save saves the contents of a memory instance to afilein any of the
supported formats: Verilog binary, Verilog hex, and MTI memory
pattern data

mem search finds and prints to the screen the first occurring match of a
specified memory pattern in the specified memory instance

modelsim starts the Model Sim GUI without prompting you to load a design;
valid only for Windows platforms

noforce removes the effect of any active force commands on the selected
object

nolog suspends writing of data to the WLF file for the specified signals

ModelSim Reference Manual, v6.3g
May 2008

35

Commands

Table 2-1. Supported Commands (cont.)

Command name Action

notepad opens asimple text editor

noview closes awindow or set of windows in the Model Sim GUI

nowhen deactivates selected when commands

onbreak specifies command(s) to be executed when running a macro that
encounters a breakpoint in the source code; in effect only during a
run command

onElabError specifies one or more commands to be executed when an error is
encountered during elaboration; in effect only during avsim
command

onerror specifies one or more commands to be executed when aTcl
command in a dofile encounters an error; not dependent on arun
command

pause interrupts the execution of a macro

precision determines how real numbers display in the GUI

printenv echoes to the Main window the current names and values of all
environment variables

project performs common operations on New projects

pwd displays the current directory path in the Main window

quietly turns off transcript echoing for the specified command

quit exits the ssimulator

radix specifies the default radix to be used

radix define creates or modifies a user-defined radix

radix names returnsalist of currently defined radix names

radix list returns the complete definition of aradix

radix delete removes the radix definition from the named radix

report displaysthe value of all simulator control variables, or the value
of any simulator state variables relevant to the current simulation

restart reloads the current dataset if the current dataset is not the active
simulation ("sim") and resets the simulation timeto zero, in effect
acting just like arestart of asimulation

resume resumes execution of a macro file after a pause command or a
breakpoint

run advances the simulation by the specified number of timesteps

36 ModelSim Reference Manual, v6.3g

May 2008

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

searchlog searches one or more of the currently open logfiles for a specified
condition

Setenv sets an environment variable

shift shifts macro parameter values down one place

show lists objects and subregions visible from the current environment

simstats reports performance-rel ated statistics about active simulations

status listsall currently interrupted macros

step steps to the next HDL statement

stop stops simulation in batch files; used with the when command

suppress prevents the specified message(s) from displaying

tb displays a stack trace for the current processin the Transcript
pane

transcript controls echoing of commands executed in a macro file; also
works at top level in batch mode

transcript file Sets or queries the pathname for the transcript file

tssi2mti converts avector filein Technology Standard Events Format
(TSSI) into a sequence of force and run commands

unsetenv deletes an environment variable

ved add adds the specified objects to the VCD file

vcd checkpoint

dumps the current values of all VCD variablesto the VCD file

vcd comment

inserts the specified comment in the VCD file

vcd dumpports

creates aVVCD file that captures port driver data

ved dumpportsall

creates acheckpoint in the VCD file that shows the current values
of all selected ports

ved dumpportsflush

flushes the VCD buffer to the VCD file

ved dumpportslimit

specifies the maximum size of the VCD file

vcd dumpportsoff

turns off VCD dumping and records all dumped port values as x

vcd dumpportson

turns on VCD dumping and records the current values of al
selected ports

ved file

specifies the filename and state mapping for the VCD file created
by avcd add command

ModelSim Reference Manual, v6.3g
May 2008

37

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

vcd files specifies filenames and state mapping for the VCD files created
by the vcd add command; supports multiple VCD files

vcd flush flushes the contents of the VCD file buffer to the VCD file

ved limit specifies the maximum size of the VCD file

vcd off turns off VCD dumping and records all VCD variable values as x

vcd on turns on VCD dumping and records the current values of all VCD
variables

ved2wlf translates VCD filesinto WLF files

vcom compiles VHDL design units

vdel deletes a design unit from a specified library

vdir lists the contents of adesign library

vencrypt encrypts Verilog code contained within encryption envelopes

verror prints a detailed description of a message number

vgencomp writes a Verilog module’'s equivalent VHDL component
declaration to standard output

view opens aModel Sim window and bringsit to the front of the display

virtual count

counts the number of currently defined virtuals that were not read
in using amacro file

virtual define prints the definition of avirtual signal or function in the form of a
command that can be used to re-create the object
virtual delete removes the matching virtuals

virtual describe

prints a complete description of the data type of one or more
virtual signals

virtual expand

produces alist of all the non-virtual objects contained in the
virtual signal(s)

virtual function

creates anew signal that consists of logical operations on existing
signals and simulation time

virtual hide causes the specified real or virtual signalsto not be displayed in
the Objects window
virtual log causes the sim-mode dependent signals of the specified virtual

signals to be logged by the simulator

virtual nohide

redisplays avirtual previously hidden with virtual hide

virtual nolog

stops the logging of the specified virtual signals

38

ModelSim Reference Manual, v6.3g
May 2008

Commands

Table 2-1. Supported Commands (cont.)

Command name Action

virtual region creates a new user-defined design hierarchy region

virtual save saves the definitions of virtualsto afile

virtual show lists the full path names of all the virtuals explicitly defined

virtual signad creates anew signal that consists of concatenations of signals and
subelements

virtual type creates a new enumerated type

vlib creates adesign library

viog compiles Verilog design units and SystemV erilog extensions

vmake creates a makefile that can be used to reconstruct the specified
library

vmap defines a mapping between alogical library name and a directory

vsim loads a new design into the simulator

vsim<info> returns information about the current vsim executable

vsim_break stop the current simulation before completion

vsource specifies an alternative file to use for the current sourcefile

wave commands for manipulating cursors, for zooming, and for
adjusting the wave display view in the Wave window

when instructs Model Sim to perform actions when the specified
conditions are met

where displays information about the system environment

wlf2log trandates aModel Sim WLF file to a QuickSim |1 logfile

wlif2vcd trandatesaModelSim WLF fileto aVCD file

wlfman outputs information about or a new WLF file from an existing
WLFfile

wlfrecover attempts to repair an incomplete WLF file

write format records the names and display optionsin afile of the objects
currently being displayed in the List or Wave window

write list records the contents of the List window in alist output file

write preferences saves the current GUI preference settingsto a Tcl preferencefile

write report prints a summary of the design being simulated

write timing prints timing information about the specified instance

ModelSim Reference Manual, v6.3g
May 2008

39

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

write transcript

writes the contents of the Main window transcript to the specified

file
write tssi records the contents of the List window ina“TSS| format” file
write wave records the contents of the Wave window in PostScript format
40 ModelSim Reference Manual, v6.3g

May 2008

Commands
abort

abort
This command halts the execution of amacro file interrupted by a breakpoint or error.

When macros are nested, you may choose to abort the last macro only, abort a specified number
of nesting levels, or abort all macros. Y ou can specify this command within a macro to return
early.

Syntax
abort [<n> | all]

Arguments
o <>

(optional) Aninteger, greater than 0, that specifies the number of nested macro levelsto
abort, where the default value of is 1.

o il
(optional) A literal that instructs the tool to abort all levels of nested macros.

See also
onbreak onElabError onerror
ModelSim Reference Manual, v6.3g 41

May 2008

Commands
add dataflow

add dataflow

The add dataflow command adds the specified process, signal, net, or register to the Dataflow
window. Wildcards are allowed.

Syntax
add dataflow <abject> ... { [-in] [-out] [-inout] | [-ports] } [-internal]

[-nofilter] [-recursive]
<object> ...

(required) A string, which is repeatable in a space separated list, that specifies a process,
signal, net, or register that you want to add to the Dataflow window, where wildcards are
allowed. Refer to the section “Filtering Wildcard Matching for Certain Commands” for
wildcard usage as it pertains to the add commands.

-in

(optional) A literal that specifiesto add ports of mode IN.

-inout

(optional) A literal that specifies to add ports of mode INOUT.
-internal

(optional) A literal that specifiesto add internal (non-port) objects.
-nofilter

(optional) A literal that specifies that the WildcardFilter Tcl preference variable be ignored
when finding signals or nets.

TheWildcardFilter Tcl preference variable identifies typesto ignore when matching objects
with wildcard patterns.

-out
(optional) A literal that specifies to add ports of mode OUT.
-ports

(optional) A literal that specifiesto add all ports. This switch has the same effect as
specifying -in, -out, and -inout together.

-recursive

(optional) A literal that specifies that the scope of the search is to descend recursively into
subregions. If omitted, the search is limited to the selected region.

Y ou can specify -r as an dias to this switch.

42

ModelSim Reference Manual, v6.3g
May 2008

Commands
add dataflow

See also

Dataflow Window WildcardFilter
Preference Variable

Examples

* Add all objectsin the design to the datafl ow window.

add dataflow -r /*

* Add al objectsin the region to the dataflow window.

add dat afl ow *

ModelSim Reference Manual, v6.3g
May 2008

43

Commands
add list

add list

The add list command adds the following objects and their values to the List window:
* VHDL signals and variables

* Verilog nets and registers
* User-defined buses

If you do not specify aport mode, such as-in or -out, add list displaysall objectsin the selected
region with names matching the object name specification.

See “Filtering Wildcard Matching for Certain Commands’ for wildcard usage as it pertainsto
the add commands.
Syntax
add list [-radix <type> | -<radix_type>] [-width <integer>] [-allowconstants] [-depth <level>]
{[-in] [-inout] [-out] | [-ports]} [-internal] [-label <name>] [-nodelta] [-trigger | -notrigger]
[-recursive] {<object> ... | <object_name>{sig ...}}
Arguments
e <object> ...

(required) A string, which is repeatable in a space-separated list, that specifies the name(s)
of the object to be listed, where wildcards are allowed. Refer to the section “Filtering
Wildcard Matching for Certain Commands” for wildcard usage as it pertains to the add
commands.

Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.

Y ou can add variables aslong as they are preceded by the process name. For example:
add list myproc/intl
* <object_name>{sig ...}

(required) A group of arguments, enclosed in braces ({ }), that creates a user-defined bus
with the specified object name containing the specified signals (sig) concatenated within the
user-defined bus.

sig— A space-separated list of signals, enclosed in braces ({ }), that areincluded in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

For example:
add list {mybus {a b y}}
+ -alowconstants

For use with wildcard searches. (optional) A switch that specifies that constants matching
the wildcard search should be added to the List window.

44 ModelSim Reference Manual, v6.3g
May 2008

Commands
add list

This command does not add constants by default because they do not change.
e -depth <level>

(optional) A switch and argument pair that restricts a recursive search, as specified with
-recursive, to acertain level of hierarchy.

<level> — an integer greater than or equal to zero.
For example, if you specify -depth 1, the command descends only one level in the hierarchy.
* -in
For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto include ports of mode IN if they match the object specification.
e -inout

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto include ports of mode INOUT if they match the object specification.

e -internd

For use with wildcard searches. (optional) A switch that specifies that the scope of the
searchisto include internal objects (non-port objects) if they match the object specification.
VHDL variables are not selected.

¢ -label <name>

(optional) A switch and argument pair that specifies an alternative signal name to be
displayed as a column heading in the listing.

<name> — specifies the label to be used at the top of the column. Y ou must enclose
<name> in braces ({ }) if it includes any whitespace.

This alternative nameis not valid in aforce or examine command.
¢ -nodelta

(optional) A switch that specifies that the delta column not be displayed when adding
signalsto the List window. Identical to configurelist -delta none.

e -out

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto include ports of mode OUT if they match the object specification.

s -ports

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto include all ports. This switch has the same effect as specifying -in, -out, and
-inout together.

o -radix <type> | -<radix_type>

(optional) A choice between switches that specify the radix for the objects that follow in the
command. Valid entries (or any unigue abbreviations) are:

-radix binary -binary

ModelSim Reference Manual, v6.3g 45
May 2008

Commands
add list

-radix ascii -ascli
-radix unsigned -unsigned
-radix decimal -decimal
-radix octal -octal
-radix hex -hex
-radix symbolic -symbolic
-radix time -time
-radix default -default

If no radix is specified for an enumerated type, the default representation is used.

If you specify aradix for an array of aVHDL enumerated type, Model Sim converts each
signal valueto 1, 0, Z, or X.

Y ou can change the default radix for the current simulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

-recursive

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto descend recursively into subregions. If omitted, the search islimited to the
selected region. Y ou can use the -depth argument to specify how far down the hierarchy to
descend. You can use "-r" as an adias to this switch.

-trigger | -notrigger
(optional) A choice of switches that specify whether objects should be updated in the List
window when the objects change value.

-width <integer>
(optional) A switch and argument pair that specifies the column width in characters.

Examples

» Listall objectsin the design.

add list -r /*

» Listall objectsin the region.
add list *

o Listal input portsin the region.
add list -in *

» Display aList window containing three columns headed a, sig, and array_sig(9 to 23).

46

ModelSim Reference Manual, v6.3g
May 2008

Commands
add list

add list a -label sig /top/lower/sig {array_sig(9 to 23)}
List clk, a, b, ¢, and d only when clk changes.
add list clk -notrigger a b c d

Listsclk, a, b, ¢, and d every 100 ns.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk a b c d

Creates a user-defined bus named "mybus"’ consisting of three signals; the busis
displayed in hex.

add list -hex {mybus {nsb {opcode(8 downto 1)} data}}

Liststhe object vecl using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vecd in decimal.

add list vecl -hex vec2 -dec vec3 vec4d

See also
add wave log Extended WildcardFilter
Identifiers Preference Variable
ModelSim Reference Manual, v6.3g 47

May 2008

Commands
add memory

add memory

The add memory command displays the contents and sets the address and data radix of the
specified memory in the MDI frame of the Main window.

See “Filtering Wildcard Matching for Certain Commands’ for wildcard usage as it pertainsto
the add commands.

Syntax

add memory [-addressradix { decimal | hex}] [-dataradix <type>] [-wordsperline <num>]

<object_name> ...

Arguments

-addressradix { decimal | hex}
(optional) A switch and argument pair that specifies the address radix for the memory
display.
decimal — (default) setsthe radix to decimal. Y ou can abbreviate this argument to "d".
hex — sets the radix to hexidecimal. Y ou can abbreviate thisto "h".
-dataradix <radix_type>
(optional) A switch and argument pair that specifies the dataradix for the memory display.
If you do not specify this switch, the command uses the global default radix.
<type> — Valid entries (or any unigue abbreviations) are:
-binary
-unsigned
-decimal
-octal
-hex
-symbolic
-default

If you do not specify aradix is specified for an enumerated type, the command uses the
symbolic representation.

Y ou can change the default radix for the current ssmulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file. Changing the default radix does not change the radix of the currently-
displayed memory. Use the add memory command to re-add the memory with the desired
radix, or change the display radix from the Memory window Properties dialog.

48

ModelSim Reference Manual, v6.3g
May 2008

Commands
add memory

* -wordsperline <num>

(optional) A switch and argument pair that specifies how many words are displayed on each
line in the memory window.

By default, the information displayed will wrap based on the width of the window.
e <object_name> ...

(required) A string, which is repeatable in a space-separated list, that specifies the
hierarchical path of the memory to be displayed.

Wildcard characters are alowed. (Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.)

See also
Memory Panes WildcardFilter
Preference Variable
ModelSim Reference Manual, v6.3g 49

May 2008

Commands
add watch

add watch

The add watch command adds signals and variables to the Watch window in the Main window.
See “Filtering Wildcard Matching for Certain Commands’ for wildcard usage as it pertainsto
the add commands.

Syntax
add watch <object_name> ... [-radix <type>]

Arguments
* <object_name> ...

(required) A string, which is repeatable in a space-separated list, that specifies the name of
the object to be added.

Wildcard characters are alowed. (Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.)

Variables must be preceded by the process name. For example,
add watch myproc/intl

e -radix <type>
(optional) A switch and argument pair that specifies a user-defined radix.
If you do not specify this switch, the command uses the global default radix.
<type>— Valid entries (or any unique abbreviations) are:
-binary
-ascll
-unsigned
-decimal
-octal
-hex
-symbolic
-time
-default

See also

Watch Pane WildcardFilter
Preference Variable

50 ModelSim Reference Manual, v6.3g
May 2008

Commands
add wave

add wave
The add wave command adds the following objects to the Wave window:
* VHDL signals and variables

* Verilog nets and registers
* Dividers and user-defined buses.

If no port mode is specified, add wave will display all objectsin the selected region with names
matching the object name specification.

See “Filtering Wildcard Matching for Certain Commands’ for wildcard usage as it pertainsto
the add commands.
Syntax

add wave [-allowconstants] [-clampanalog {0 | 1}] [-color <standard_color _name>]
[-depth <level>] [-expand <signa_name>] [-<format>]
[-group <group_name> [<sig_namel> ...]] [-height <pixels>]
{ [-in] [-inout] [-out] | [-ports]} [-internal] [-max <real_num>] [-min <real_num>]
[-noupdate] [-position <location>]
[-radix <type> | -<radix_type>] [-recursive] [-time]
[[-divider [<divider_name> ...]...] | [-1abel <name> | { <object_name> {sig ...}}] ...]

Arguments
+ -alowconstants

For use with wildcard searches. (optional) A switch that specifies that constants matching
the wildcard search should be added to the Wave window.

By default, constants are ignored because they do not change.
e -clampanalog {0 | 1}

(optional) A switch and argument pair that clamps the display of an analog waveform to the
values specified by -max and -min. Specifying avalue of 1 prevents the waveform from
extending above the value specified for -max or below the value specified for -min.

0 — not clamped
1 — (default) clamped
e -color <standard_color_name>
(optional) A switch and argument pair that specifies the color used to display awaveform.
<standard_color_name> — Y ou can use either of the following:
standard X Window color name — enclose 2-word names in quotes ("), for example:

-color "light blue"

rgb value — for example:

ModelSim Reference Manual, v6.3g 51
May 2008

Commands
add wave

-col or #357f77

-depth <level>

(optional) A switch and argument pair that restricts arecursive search, as specified with
-recursive to a specified level of hierarchy.

<level> — an integer greater than or equal to zero. For example, if you specify -depth 1,
the command descends only one level in the hierarchy.

-divider [<divider_name> ...]
(optional) A switch and argument pair that adds a divider to the Wave window.

<divider_name> ... — A string, which is repeatable in a space separated list, that
specifies the name of the divider, which appears in the pathnames column.

When you specify more than one <divider_name>, the command creates adivider for
each name.

Y ou cannot begin a name with a hyphen (-).

Y ou can begin a name with a space, but you must enclose the name within quotes (")
or braces ({ })

If you do not specify this argument, the command inserts an unnamed divider.
-expand <signal_name>

(optional) A switch and argument pair that instructs the command to expand a compound
signal immediately, but only one level down.

<signal_name> — a string that specifies the name of the signal. This string can include
wildcards.

-<format>

(optional) A switch that specifies the display format of the objects. The switches are:
-literal — Literal waveforms are displayed as a box containing the object value.
-logic— Logic signalsmay be U, X,0,1,Z, W, L, H, or *-.
-analog-step — Analog-step changes to the new time before plotting the new Y.
-analog-inter polated — Analog-interpolated draws a diagonal line.
-analog-backstep — Analog-backstep plots the new Y before moving to the new time.

The Y -axis range of analog signals is bounded by -max and -min switches. Refer to
“Formatting the Wave Window” for more information.

-group <group_name> [<sig_namel> ...]

(optional) A switch and argument group that creates a wave group with the specified
group_name.

<group_name> — a string that specifies the name of the group. Y ou must enclose this
argument in quotes (") or braces ({ }) if it contains any white space.

52

ModelSim Reference Manual, v6.3g
May 2008

Commands
add wave

<sig_name> ... — astring, which isrepeatable in a space separated list, that specifiesthe
signals to add to the group. This command creates an empty group if you do not
specify any signal names.

e -height <pixels>
(optional) A switch and argument pair that specifies the height, in pixels, of the waveform.
* -in
For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto include ports of mode IN if they match the object_name specification.
e -inout

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto include ports of mode INOUT if they match the object_name specification.

¢ -internd

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto include internal objects (non-port objects) if they match the object_name
specification.

+ -|label <name>

(optional) A switch and argument pair that specifies an alternative name for the signal being
added. For example,

add wave -label c clock

adds the clock signal, labeled as"c".
This alternative nameis not valid in aforce or examine command.
* -max <real_num>

(optional) A switch and argument pair that specifies the maximum Y -axis data value to be
displayed for an analog waveform. Used in conjunction with the -min switch; the value you
specify for -max must be greater than the value you specify for -min.

e -min<rea_num>

(optional) A switch and argument pair that specifies the minimum Y -axis data value to be
displayed for an analog waveform. Used in conjunction with the -max switch; the value you
specify for -min must be less than the value you specify for -max.

For example, if you know the Y -axis data for a waveform varies between 0.0 and 5.0, you
could add the waveform with the following command:

add wave -analog -nin O -max 5 -height 100 ny_signal

Note
Although you can still use the -offset and -scale switches, the -max and -min switches are

provided as an easier way to define upper and lower limits of an analog waveform.

ModelSim Reference Manual, v6.3g 53
May 2008

Commands
add wave

-noupdate

(optional) A switch that prevents the Wave window from updating when a series of add
wave commands are executed in series.

<object_name> ...

(required) A string, which is repeatable in a space separated list, that specifies the names of
objects to be included in the Wave window. Wildcard characters are allowed. Note that the
WildcardFilter Tcl preference variable identifies types to ignore when matching objects
with wildcard patterns.

Variables may be added if preceded by the process name. For example,
add wave nyproc/intl

{<object_name>{sig...}}

(required) A group of arguments, enclosed in braces ({ }), that creates a user-defined bus
with the specified object name containing the specified signals (sig) concatenated within the
user-defined bus.

sig — A space-separated list of signals, enclosed in braces ({ }), that are included in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

Note

Y ou can also select Wave > Combine Signals (when the Wave window is selected) to
create a user-defined bus.

-out

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto include ports of mode OUT if they match the object_name specification.

-ports

For use with wildcard searches. (optional) A switch that specifies that the scope of the
listing isto include ports of modes IN, OUT, or INOUT.

-position <location>
(optional) A switch and argument pair that specifies where the command adds the signals.
<location> — can be any of the following:
top — adds the signals to the beginning of the list of signals.
bottom | end — adds the signals the end of the list of signals.

before | above — adds the signals to the location before the first selected signal in the
wave window.

after | below — adds the signals to the location after the first selected signal in the
wave window.

<integer> — adds the signals beginning at the specified point in the list of signals.

54

ModelSim Reference Manual, v6.3g
May 2008

Commands
add wave

o -radix <type> | -<radix_type>

(optional) A choice between switches that specify the radix for the objects that follow in the
command. Valid entries (or any unigue abbreviations) are:

-radix binary -binary
-radix asclii -ascli
-radix unsigned -unsigned
-radix decimal -decimal
-radix octal -octal
-radix hex -hex
-radix symbolic -symbolic
-radix time -time
-radix default -default

If no radix is specified for an enumerated type, the default representation is used.

If you specify aradix for an array of aVHDL enumerated type, Model Sim converts each
signal valueto 1, 0, Z, or X.

Y ou can change the default radix for the current ssmulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

e -recursive

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search isto descend recursively into subregions.

If you do not specify this switch, the search islimited to the selected region. Y ou can use the
-depth argument to specify how far down the hierarchy to descend.

e -time

Usetimeastheradix for Verilog objectsthat are register-based types (register vectors, time,
int, and integer types).

Examples

» Display an object named out2. The object is specified as being alogic object presented
in gold.

add wave -logic -color gold out2
» Display auser-defined, hex formatted bus named address.
add wave -hex {address {a_7 a 6 a 5 a4 a3 a?2ala0}}

» Waveall objectsin the region.

ModelSim Reference Manual, v6.3g 55
May 2008

Commands
add wave

add wave *

* Waveadl input portsin the region.

add wave -in *

» Create a user-defined bus named "mybus"' consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vectorl is of type std_logic_vector (7 downto 1). The
busisdisplayed in hex.

add wave -hex {mybus {scalarl vectorl scal ar2}}

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}

add wave {vector3[1]}

add wave {vector3(4 downto 0)}
add wave {vector3[4:0]}

» Add the object vecl to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

add wave vecl -hex vec2 -dec vec3 vec4

* Add adivider with the name "-Example-". Note that for this to work, the first hyphen of
the name must be preceded by a space.

add wave -divider " -Exanple- "
e Add an unnamed divider.
add wave -divider

add wave -divider ""
add wave -divider {}

See also
add list log Extended
Identifiers
WildcardFilter Concatenation
Preference Variable Directives
56 ModelSim Reference Manual, v6.3g

May 2008

Commands
add_cmdhelp

add_cmdhelp

The add_cmdhelp command adds the specified command name, description, and command

arguments to the command-line help. Y ou can then access the information using the help
command.

To delete an entry, invoke the command with an empty command description and arguments.
See examples.

Syntax

add_cmdhelp { <command_name>} {<command_description>} {<command_arguments>}
Arguments

e {<command _name>}

(required) A string, enclosed in braces ({ }), that specifies the command name that will be
entered as an argument to the help command. The command_name must not interfere with
an aready existing command_name.

+ {<command_description>}
(required) A string, enclosed in braces ({ }), that specifies a description of the command.
e {<command arguments>}

(required) A space-separated list of arguments, enclosed in braces ({ }), for the command. If
the command doesn’t have any arguments, enter {}.

Examples
* Add acommand named "date" with no arguments.
add_cndhel p date {Displays date and tine.} {}
VSI M> hel p date

Di spl ays date and ti ne.
Usage: date

* Add the change date command.
add_cndhel p {change date} {Mddify date or tine.} {-tine|-date <arg>}
VS| M> hel p change date
Modi fy data or tine.
Usage: change date -tine|-date <arg>

» Deletes the change date command from the command-line help.

add_cndhel p {change date} {} {}

ModelSim Reference Manual, v6.3g 57
May 2008

Commands
alias

alias

The alias command displays or creates user-defined aliases. Any arguments passed on
invocation of the alias will be passed through to the specified commands.

Returns nothing. Existing commands (e.g., run, env, etc.) cannot be aliased.

Syntax
alias [<name> ["<cmds>"]]

Arguments
e <name>
(optional) A string that specifies the new procedure name to be used when invoking the
commands.
e "<cmds>"

(optional) A string, enclosed in quotes ("), that specifies the command or commands to be
evaluated when the aliasisinvoked. Y ou must separate multiple commands with a
semicolon (;).

Examples
o Listall aliases currently defined.
alias
» Listthealias definition for the specified nameif one exists.

al i as <nane>

» CreateaTcl procedure, "myquit”, that when executed, writes the contents of the List
window to the file mylist.save by invoking write list, and quits Model Sim by invoking
quit.

alias nyquit "wite list ./nylist.save; quit -f"

58 ModelSim Reference Manual, v6.3g
May 2008

Commands
batch_mode

batch_mode
The batch_mode command returnsa 1 if ModelSim is operating in batch mode, otherwise it
returnsa . It istypically used as a condition in an if statement.

Syntax
batch_mode

Arguments
None

Examples
Some GUI commands do not exist in batch mode. If you want to write ascript that will work in
or out of batch mode, you can use the batch_mode command to determine which command to
use. For example:
i f [batch_node] {
log /*

} else {
add wave [*

}
See also
“Modes of Operation”

ModelSim Reference Manual, v6.3g 59
May 2008

Commands
bd

bd

The bd command deletes a breakpoint. Y ou must specify afilename and line number or a
specific breakpoint id#. Y ou may specify multiple filename/line number pairs and id#s.

Syntax
bd {{ <filename> <line_number>} | <id_number>} ...

Arguments
o <filename>

(required) A string that specifies the name of the source filein which the breakpoint isto be
deleted. The filename must match the one used previously to set the breakpoint, including
whether you used afull pathname or arelative name.

e <line_number>
(required) A string that specifies the line number of the breakpoint to be deleted.
e <id_number>
(required) A string that specifies the identification number of the breakpoint to be deleted.
If you are deleting a C breakpoint, the identification number will have a"c" prefix.
Examples
» Delete the breakpoint at line 127 in the source file named alu.vhd.
bd al u.vhd 127

» Delete the breakpoint with id# 5.

bd 5

» Delete the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

bd 6 alu.vhd 234

See also

bp onbreak

60 ModelSim Reference Manual, v6.3g
May 2008

Commands
bookmark add wave

bookmark add wave

The bookmark add wave command creates a named reference to a specific zoom range and
scroll position in the specified Wave window. Bookmarks are saved in the wave format file and
are restored when the format file is read.

Y ou can aso interactively add a bookmark through the GUI by selecting the
Wave > Bookmar ks > Bookmar ks menu item.
Syntax
bookmark add wave <label> [[<range_start> [<unit>]] <range_end> [<unit>] [<topindex>]]

Arguments
o <label>
(required) A string that specifies the name for the bookmark.
* [<range_start> [<unit>]] <range_end> [<unit>]

(optional) A group of strings that specify the beginning and end points of the zoom range.
Y ou must enclose these arguments within braces ({ }) or quotation marks ("").

If you do not specify the <range_start> argument the bookmark will begin with zero.
The tool uses your current time unit if you do not specify <unit>.

The complete grouping of <range start> and <range_end> must also be enclosed in braces
({ }) or quotes (" "), for example:

{{100 ns} {10000 ns}}
{10000}
e <topindex>

(optional) An integer that specifies the vertical scroll position of the window. Y ou must
specify azoom range to specify topindex. The number identifies which object the window
should be scrolled to. For example, specifying 20 means the Wave window will be scrolled
down to show the 20th object.

Examples

* Add abookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th object in the
window.

bookmark add wave foo {{10 ns} {1000 ns}} 20

See also
bookmark delete bookmark goto bookmark list wave write format
wave wave
ModelSim Reference Manual, v6.3g 61

May 2008

Commands
bookmark delete wave

bookmark delete wave
The bookmark delete wave command del etes bookmarks from the specified Wave window.

Y ou can aso interactively delete a bookmark through the GUI by selecting the
Wave > Bookmar ks > Bookmar ks menu item.

Syntax
bookmark delete wave { <label> | -all |

Arguments
o <label>

(required) A string that specifies the name of the bookmark to delete. Y ou must specify this
argument unless you specify -all.

o -l
(optional) A switch that specifies that all bookmarks in the window be deleted.
Examples
+ Dédetethe bookmark named "foo" from the current default Wave window.

booknmar k del ete wave foo

* Dedlete al bookmarks from the Wave window named "wavel".

bookmar k del ete wave -all -w ndow wavel
See also
bookmark add wave bookmark goto bookmark list wave write format
wave
62 ModelSim Reference Manual, v6.3g

May 2008

Commands
bookmark goto wave

bookmark goto wave

The bookmark goto wave command zooms and scrolls a Wave window using the specified
bookmark.

Y ou can aso interactively navigate between bookmarks through the GUI by selecting the
Wave > Bookmar ks > Bookmar ks menu item.

Syntax
bookmark goto wave <label>

Arguments
o <label>
(required) A string that specifies the bookmark to go to.

See also

bookmark add wave bookmark delete bookmark list wave write format
wave

ModelSim Reference Manual, v6.3g 63
May 2008

Commands
bookmark list wave

bookmark list wave

The bookmark list wave command displays alist of available bookmarks in the Transcript
pane.

Syntax
bookmark list wave
See also
bookmark add wave bookmark delete bookmark goto write format
wave wave
64 ModelSim Reference Manual, v6.3g

May 2008

Commands

bp
bp
The bp or breakpoint command either sets afile-line breakpoint or returnsalist of currently set
breakpoints.
Syntax

Setting an HDL breakpoint
bp <filename> <line_number> [-id <id_number>] [-disabl€]

[-cond <condition_expression>] [<command>...]

Querying a breakpoint

bp [-query <filename> [<line_number> ...]]

Arguments

<filename>

(required for an HDL breakpoint) A string that specifies the name of the sourcefileinwhich
to set the breakpoint.

<line_number>

(required for an HDL breakpoint) A string that specifies the line number at which the
breakpoint is to be set.

-id <id_number>

(optional) A switch and argument pair that attempts to assign this id number to the
breakpoint. The command returns an error if the id number you specify is already used.

Note

Ids for breakpoints are assigned from the same pool as those used for the when command.
So, even if you haven't used an id number for a breakpoint, it’spossibleit is used for a
when command.

-disable

(optional) A switch that sets the breakpoint to a disabled state. Y ou can enable the
breakpoint later using the enablebp command. This command enables breakpoints by
default.

-cond <condition_expression>

(optional) A switch and argument pair that specifies condition(s) that determine whether the
breakpoint is hit. Y ou must enclose the condition expression within quotation marks ().

If the condition is true, the simulation stops at the breakpoint. If false, the smulation
bypasses the breakpoint. A condition cannot refer to aVHDL variable (only asignal).

NOTE: You can also specify this expression by choosing Tools > Breakpoints... from the
main menu and using the Modify Breakpoints dialog box. Refer to Modifying File-Line
Breakpointsin the User’s Manual for more information.

ModelSim Reference Manual, v6.3g 65
May 2008

Commands
bp

The condition can be an expression with these operators:

Operator
equals ==, =
not equal I= /=
AND &&, AND
OR I, OR

The operands may be object names, signame’ event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1. Theforma BNF syntax is:

condition ::= Nane | { expression }

expression ::= expression AND rel ation
| expression OR relation
| relation

relation ::= Nane = Literal

| Nanme /= Literal

| Name ' EVENT

| (expression)

Literal ::= '<char>'" | "<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals; i.e., Name = Name is not possible.

Y ou can construct a breakpoint such that the simulation breaks when a SystemV erilog Class
is associated with a specific handle, or address:

bp <fil ename> <line_nunber> -cond "thi s==<cl ass_handl e>"
bp <fil ename> <line_nunber> -cond "this!=<class_handl e>"

where you can obtain the class handle with the examine -handle command. The string "this’
isaliteral that refersto the specific line_number.

Y ou can construct a breakpoint such that the simulation breaks when aline number isof a
specific class type or extends the specified class type:

bp <fil enane> <line_nunber> -cond "this | SA <cl ass_type_nanme>"

where class_type nameisthe actual class name, not avariable.
e <command>...

(optional) A string, enclosed in braces ({}) that specifies one or more commands that are to
be executed at the breakpoint. Y ou must separate multiple commands by semicolons (;) or
placed on multiple lines.

NOTE: You can aso specify this command string by choosing Tools > Breakpoints... from
the main menu and using the Modify Breakpoints dialog box. Refer to Modifying File-Line
Breakpoints in the User’s Manual for more information.

66 ModelSim Reference Manual, v6.3g
May 2008

Commands
bp

Any commands that follow arun or step command are ignored. A run or step command
terminates the breakpoint sequence. This rule also applies if you use a macros within the
command string.

If many commands are needed after the breakpoint, you could place them in amacro file.
» -query <filename> [<line_number> ...]

(optional) A switch and argument group that returns information about the breakpoints set
in the specified file. The information returned varies depending on which arguments you
specify. The output contains six pieces of information, for example:

bp -query top.vhd 70
1 1 top.vhd 70 2 1

o {1|0} — Indicates whether a breakpoint exists at the location.
o 1—awaysreportsal

o <file_ name>

o <line_number>

o <id_number>

o {1|0} — Indicates whether the breakpoint is enabled?

If you specify this command with no arguments, it returnsalist of al breakpointsin the
design containing the following information, for example:

bp
bp top.vhd 70;# 2

o bp— an echo of the command
o <file_name>

o <line_number>

o #<id _number>

Examples

» Listall existing breakpointsin the design, including the source file names, line numbers,
breakpoint id#s, and any commands that have been assigned to breakpoints.

bp
» Set abreakpoint in the source file alu.vhd at line 147.
bp al u.vhd 147

» Execute the macro.do macro file when the breakpoint is hit.

bp al u.vhd 147 {do macro. do}

ModelSim Reference Manual, v6.3g 67
May 2008

Commands

bp
» Set abreakpoint on line 22 of test.vhd. When the breakpoint is hit, the values of
variables var1 and var2 are examined. This breakpoint isinitially disabled; it can be
enabled with the enablebp command.
bp -disable test.vhd 22 {echo [exa varl]; echo [exa var2]}
» Set abreakpoint in every instantiation of the file test.vhd at line 14. When that
breakpoint is executed, the Tcl command is run. This Tcl command causes the simulator
to continue if the current simulation time is not 100.
bp test.vhd 14 {if {$now /= 100} then {cont}}
» Set abreakpoint so that the simulation pauses whenever clk=1 and prdy=0:
bp test.vhd 14 -cond "cl k=1 AND prdy=0"
» List the line number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.
bp -query testadd. vhd
» List details about the breakpoint on line 48.
bp -query testadd.vhd 48
» List all executable linesin testadd.vhd between lines 2 and 59.
bp -query testadd.vhd 2 59
Note
Any breakpoints set in VHDL code and called by either resolution functions or functions
that appear in a port map are ignored.
See also
bd disablebp enablebp
onbreak when
68 ModelSim Reference Manual, v6.3g

May 2008

Commands
cd

cd

The cd command changes the Model Sim local directory to the specified directory.

This command cannot be executed while asimulation isin progress. Also, executing acd
command will close the current project.

Syntax
cd [<dir>]
Arguments
o <dir>

(optional) A string that specifies afull or relative directory path to which to change. If you
do not specify adirectory, the command changes to your home directory.

ModelSim Reference Manual, v6.3g 69
May 2008

Commands
change

change

The change command modifies the value of a

* VHDL constant, generic, or variable

* Verilog register or variable

Syntax

change <variable> <value>

Arguments

<variable>

(required) A string that specifies the name of an object. The name can be afull hierarchical
name or arelative name, where arelative name is relative to the current environment.

Y ou cannot use Wildcards.

The following sections list supported objects:
« VHDL

(0]

Scalar variable, constant, or generics of all types except FILE.

The tool generates awarning when changing a VHDL constant or generic. Y ou can
suppress this warning by setting the TCL variable WarnConstantChange to O or in
the [vsim] section of the modelsim.ini file.

Scalar subelement of composite variable, constant, and generic of all types except
FILE.

One-dimensional array of enumerated character types, including slices.

Accesstype. An accesstype pointer can be set to "null”; the value that an accesstype
points to can be changed as specified above.

* Verilog

(0]

(0]

(o]

(0]

(0]

Parameter.
Register or memory.
Integer, real, realtime, time, and local variables in tasks and functions.

Subelements of register, integer, rea, realtime, and time multi-dimensional arrays
(al dimensions must be specified).

Bit-selects and part-sel ects of the above except for objects whose basic typeisreal.

The name can be afull hierarchical name or arelative name. A relative nameisrelative to

the current environment. Wildcards cannot be used. Required.

70

ModelSim Reference Manual, v6.3g
May 2008

Commands
change

¢ <vaue>

(required) A string that defines avalue for the <variable>. The specified value must be
appropriate for the type of the variable. Y ou must enclose any <value> that contain spaces
within quotation marks or curly braces.

Note that theinitial type of a parameter determines the type of value that it can be given. For
example, if aparameter isinitially equal to 3.14 then only real values can be set on it. Also
note that changing the value of a parameter or generic will not modify any design elements
that depended on the parameter or generic during elaboration (for example, sizes of arrays).

Examples
» Change the value of the variable count to the hexadecimal value FFFF.
change count 16#FFFF

» Change the value of the element of rega that is specified by the index (i.e., 16).
change {rega[16]} O

» Change the value of the set of elements of foo that is specified by the slice (i.e., 20:22).
change {foo[20:22]} 011

» Setthe Verilog register file_name to "test2.txt". Note that the quote marks are escaped
with '\’

change file_nane \"test2. txt\"

» Set thetime value of the mytimegeneric variable to 500 ps. The time value is enclosed
by curly braces (or quotation marks) because of the space between the value and the
units.

change nyti megeneric {500 ps}
See also

force

ModelSim Reference Manual, v6.3g 71
May 2008

Commands
configure

configure

The configure command invokes the List or Wave widget configure command for the current
default List or Wave window.

To change the default window, use the view command.

Syntax
configure list | wave [<option> <value>]

---- List Window Arguments

[-delta[all | collapse | none]] [-gateduration [<duration_open>]] [-gateexpr [<expression>]]
[-usegating [<value>]] [-strobeperiod [<period>]] [-strobestart [<start_time>]]
[-usesignaltriggers [<value>]] [-usestrobe [<value>]]

---- Wave Window Arguments
[-childrowmargin [<pixels>]] [-cursorlockcolor [<color>]] [-gridauto [off | on]]
[-gridcolor [<color>]][-griddelta [<pixels>]] [-gridoffset [<time>]] [-gridperiod [<time>]]
[-namecolwidth [<width>]] [-rowmargin [<pixels>]] [-signalnamewidth [<value>]]
[-timecolor [<color>]] [-timeline [<value>]]
[-timelineunits [fs| ps| ns|us| ms|sec | min | hr]] [-valuecolwidth [<width>]]
[-vectorcolor [<color>]] [-waveselectcolor [<color>]] [-wavesel ectenable [<value>]]

Description

The command works in three modes:

» without options or valuesit returns alist of all attributes and their current values

» with just an option argument (without a value) it returns the current value of that
attribute

» with one or more option-value pairs it changes the values of the specified attributes to
the new values

The returned information has five fields for each attribute: the command-line switch, the Tk
widget resource name, the Tk class name, the default value, and the current value.

Arguments
o list|wave
Specifies either the List or Wave widget to configure. Required.
e <option> <value>
-bg <color> — Specifies the window background color. Optional.
-fg <color> — Specifies the window foreground color. Optional.

-sel ectbackground <color> — Specifies the window background color when selected.
Optional.

72 ModelSim Reference Manual, v6.3g
May 2008

Commands
configure

-sel ectforeground <color> — Specifies the window foreground color when sel ected.
Optional.

-font — Specifies the font used in the widget. Optional.
-height <pixels> — Specifies the height in pixels of each row. Optional.

Arguments, List window only

-delta[all | collapse | none]

The all option displays a new line for each time step on which objects change; collapse
displaysthe final value for each time step; and none turns off the display of the delta
column. To use -delta, -usesignaltrigger s must be set to 1 (on). Optional.

-gateduration [<duration_open>]

The duration for gating to remain open beyond when -gateexpr (below) becomes false,
expressed in x number of timescale units. Extends gating beyond the back edge (the last list
row in which the expression evaluates to true). Optional. The default value for normal
synchronous gating is zero. If -gateduration is set to anon-zero value, a ssimulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

-gateexpr [<expression>]

Specifies the expression for trigger gating. Optional. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would normally
have displayed arow of data.

-usegating [<value>]

Enables triggersto be gated on (avalue of 1) or off (avalue of 0) by an overriding
expression. Default is off. Optional. (Use the -gatexpr argument to specify the expression.)
Refer to “Using Gating Expressions to Control Triggering” for additional information on
using gating with triggers.

-strobeperiod [<period>]

Specifies the period of the list strobe. When using a time unit, the time value and unit must
be placed in curly braces. Optional.

-strobestart [<start_time>]

Specifies the start time of the list strobe. When using a time unit, the time value and unit
must be placed in curly braces. Optional.

-usesignaltriggers [<value>]

If 1, uses signals astriggers; if 0, not. Optional.
-usestrobe [<value>]

If 1, usesthe strobe to trigger; if 0, not. Optional.

ModelSim Reference Manual, v6.3g 73
May 2008

Commands
configure

Arguments, Wave window only

-childrowmargin [<pixels>]

Specifies the distance in pixels between child signals. Optional. Default is 2. Related Tcl
variable is PrefWave(childRowMargin).

-cursorlockcolor [<color>]

Specifies the color of alocked cursor. Default isred. Related Tcl variableis
PrefWave(cursorLockColor).

-gridauto [off | on]
Controls the grid period when in simulation time mode.

off — (default) user-specified grid period is used.

on — grid period is determined by the major tick marks in the time line.
-gridcolor [<color>]

Specifies the background grid color; the default is grey50. Optional. Related Tcl variableis
PrefWave(gridColor).

-griddelta [<pixels>]

Specifiesthe closest (in pixels) two grid lines can be drawn before intermediate lineswill be
removed. Optional. Default is 40. Related Tcl variable is PrefWave(gridDelta).

-gridoffset [<time>]

Specifies the time (in user time units) of thefirst grid line. Optional. Default is 0. Related
Tcl variable is PrefWave(gridOffset).

-gridperiod [<time>]

Specifies the time (in user time units) between subsequent grid lines. Optional. Default is 1.
Related Tcl variable is PrefWave(gridPeriod).

-namecolwidth [<width>]

Specifiesin pixels the width of the name column. Optional. Default is 150. Related Tcl
variable is PrefWave(nameCol Width).

-rowmargin [<pixels>]

Specifies the distance in pixels between top-level signals. Default is 4. Related Tcl variable
is PrefWave(rowMargin).

-signalnamewidth [<value>]

Controls the number of hierarchical regions displayed as part of asignal name shown in the
pathname pane. Optional. Default of O displays the full path. 1 displays only the leaf path
element, 2 displays the last two path elements, and so on. Related Tcl variableis

PrefWave(SignalNameWidth). Can also be set with the WaveSignalNameWidth variable in
the modelsim.ini file.

74

ModelSim Reference Manual, v6.3g
May 2008

Commands
configure

* -timecolor [<color>]

Specifies the time axis color. Default is green. Optional. Related Tcl variableis
PrefWave(timeColor).

o -timeline [<value>]

Specifies whether the horizontal axis displays simulation time (default) or grid period count.
Default is zero. When set to 1, the grid period count is displayed. Related Tcl variable is
PrefWave(timeline).

o -timelineunits[fs|ps|ns|us|ms|sec|min | hr]

Specifies units for timeline display (does not affect the currently-defined simulation time).
Default isns.

» -valuecolwidth [<width>]

Specifiesin pixels the width of the value column. Default is 100. Related Tcl variableis
PrefWave(valueColWidth).

e -vectorcolor [<color>]

Specifies the vector waveform color. Default is #b3ffb3. Optional. Related Tcl variableis
PrefWave(vectorColor).

e -waveselectcolor [<color>]

Specifies the background highlight color of a selected waveform. Default is grey30. Related
Tcl variable is PrefWave(waveSel ectColor).

» -waveselectenable [<value>]

Specifies whether the waveform background highlights when an object is selected. 1
enables highlighting; O disables highlighting. Default is 0. Related Tcl variableis
PrefWave(waveSel ectEnabled).

There are more options than are listed here. See the output of a configure list or configure wave
command for all options.

Examples
» Display the current value of the strobeperiod attribute.
config list -strobeperiod
e Set the period of the list strobe and turnsit on.
config list -strobeperiod {50 ns} -strobestart O -usestrobe 1
» Set the wave vector color to blue.
config wave -vectorcol or bl ue
» Set thedisplay in the current Wave window to show only the leaf path of each signal.

config wave -signal namewi dth 1

ModelSim Reference Manual, v6.3g 75
May 2008

Commands
configure

See also

view, Simulator GUI Preferences

[

<coverage type> =

]

0 Important: When the -metric aggregate argument is used, the resulting metric number
will not “match” any other total coverage number produced by other verification tools
(i.e. coverage analyze). Thisisimportant because when you use any of the arguments
(-totals, -goal, with ranktest command, the aggregate metric is the default.

76 ModelSim Reference Manual, v6.3g
May 2008

Commands
dataset alias

dataset alias

The dataset alias command assigns an additional name (alias) to adataset. The dataset can then
be referenced by that alias. A dataset can have any number of aliases, but all dataset names and
aliases must be unique.

Syntax

dataset alias <dataset_name> [<alias_name>]

Arguments
e <dataset_name>
Specifies the name of the dataset to which to assign the alias. Required.
e <dias name>
Specifies the alias name to assign to the dataset. Optional. If you don’t specify an
alias_name, Model Sim lists current aliases for the specified dataset_name.
See also

dataset clear, dataset close, dataset config, dataset info, dataset list, dataset open, dataset
rename, dataset restart, dataset save, dataset snapshot

ModelSim Reference Manual, v6.3g 77
May 2008

Commands
dataset clear

dataset clear

The dataset clear command removes all event data from the current ssmulation WLF filewhile
keeping all currently logged signals logged. Subsequent run commands will continue to
accumulate datain the WLF file.

Syntax
dataset clear

Example

* Clear datain the WLF file from time Ons to 100000ns, then log data into the WLF file
from time 100000ns to 200000ns.

add wave *

run 100000ns
dat aset cl ear
run 100000ns

See also

dataset alias, dataset close, dataset config, dataset info, dataset list, dataset open, dataset
rename, dataset restart, dataset save, dataset snapshot, “ Recording Simulation Results With
Datasets’, log

78 ModelSim Reference Manual, v6.3g
May 2008

Commands
dataset close

dataset close

The dataset close command closes an active dataset. To open a dataset, use the dataset open
command.

Syntax
dataset close <logicalname> | [-all]

Arguments
* <logicalname>

Specifies the logical name of the dataset or alias you wish to close. Required if -all isn’t
used.

o -dl
Closes all open datasets including the ssmulation. Optional.
See also

dataset alias, dataset clear, dataset config, dataset info, dataset list, dataset open, dataset rename,
dataset restart, dataset save, dataset snapshot

ModelSim Reference Manual, v6.3g 79
May 2008

Commands
dataset config

dataset config

The dataset config command configures WLF file parameters after a WLF file has already
been opened.

Syntax
dataset config <dataset _name> [-wlfcachesize <n>] [-wlfdeleteonquit [0 | 1]] [-wlifopt [0 | 1]]

Arguments

<dataset_name>
Specifies the logical name of the dataset or alias you wish to configure. Required.
-wlfcachesize <n>

Sets the size in megabytes of the WLF reader cache. Optional. Does not affect the WLF
write cache.

-wlfdel eteonquit

When set to 1 (enabled), deletes the WLF file automatically when the simulation exits.
Optional. Valid for the current simulation dataset only.

-wlifopt

When set to 1 (enabled), optimizes the display of waveformsin the Wave window. Default.
Optional.

See also

dataset dlias, dataset clear, dataset close, dataset info, dataset list, dataset open, dataset rename,
dataset restart, dataset save, dataset snapshot, “WLF File Parameter Overview”, vsim

80

ModelSim Reference Manual, v6.3g
May 2008

Commands
dataset info

dataset info
The dataset info command reports a variety of information about a dataset.

Syntax
dataset info <option> <dataset_name>

Arguments
e <option>

Identifies what information you want reported. Required. Only one option per command is
allowed. The current options include:

name — Returns the actual name of the dataset. Useful for identifying the real dataset
name of an alias.

file— Returns the name of the WLF file associated with the dataset.
exists — Returns"1" if the dataset exists; "0" if it doesn't.
e <dataset_name>

Specifies the name of the dataset or alias for which you want information. Optional. If you
do not specify a dataset name, Model Sim uses the dataset of the current environment (see
the environment command).

See also

dataset alias, dataset clear, dataset close, dataset config, dataset list, dataset open, dataset
rename, dataset restart, dataset save, dataset snapshot

ModelSim Reference Manual, v6.3g 81
May 2008

Commands
dataset list

dataset list
The dataset list command lists all active datasets.

Syntax
dataset list [-long]

Arguments
* -long
Lists the filename corresponding to each dataset’ s logical name. Optional.
See also

dataset dlias, dataset clear, dataset close, dataset config, dataset info, dataset open, dataset
rename, dataset restart, dataset save, dataset snapshot

82 ModelSim Reference Manual, v6.3g
May 2008

Commands
dataset open

dataset open

The dataset open command opens a WLF file (representing a prior simulation) and assignsit
the logical name that you specify. To close a dataset, use dataset close.

Syntax
dataset open <filename> [<logicalname>]

Arguments
o <filename>

Specifies the WLF file to open as a view-mode dataset. Required.
* <logicalname>

Specifies the logical name for the dataset. Optional. Thisis a prefix that will identify the
dataset in the current session. By default the dataset prefix will be the name of the specified
WLFfile.

Examples
* Open the dataset file last.wif and assignsit the logical name test.

dat aset open last.w f test

See also

dataset alias, dataset clear, dataset close, dataset config, dataset info, dataset list, dataset
rename, dataset restart, dataset save, dataset snapshot, vsim -view option

ModelSim Reference Manual, v6.3g 83
May 2008

Commands
dataset rename

dataset rename

The dataset rename command changes the logical name of a dataset to the new name you
specify.

Syntax

dataset rename <logicalname> <newl ogical name>

Arguments
* <logicalname>
Specifies the existing logical name of the dataset. Required.
* <newlogicalname>
Specifies the new logical name for the dataset. Required.

Examples
* Renamethe dataset file "test" to "test2".

dat aset renane test test2

See also

dataset dlias, dataset clear, dataset close, dataset config, dataset info, dataset list, dataset open,
dataset restart, dataset save, dataset snapshot

84 ModelSim Reference Manual, v6.3g
May 2008

Commands
dataset restart

dataset restart

The dataset restart command unloads the specified dataset or current dataset and reloads the
file using the same pathname. Wave window contents are restored after the rel oad.

Syntax
dataset restart [<filename>]

Arguments
o <filename>

Specifies the WLF file to open as a view-mode dataset. Optional. If <filename> is not
specified, the current dataset is restarted.

See also

dataset alias, dataset clear, dataset close, dataset config, dataset info, dataset list, dataset open,
dataset rename, dataset save, dataset snapshot

ModelSim Reference Manual, v6.3g 85
May 2008

Commands
dataset save

dataset save

The dataset save command writes data from the current simulation to the specified file. This

lets you save simulation data while the ssimulation is still in progress.

Syntax
dataset save <datasethame> <filename>

Arguments
* <datasetname>
Specifies the name of the dataset you want to save. Required.
o <filename>
Specifies the name of the file to save. Required.

Examples

» Saveadll current log datain the sim dataset to the file "gold.wif".

dat aset save simgold. wf

See also

dataset dlias, dataset clear, dataset close, dataset config, dataset info, dataset list, dataset open,

dataset rename, dataset restart, dataset snapshot

86 ModelSim Reference Manual, v6.3g

May 2008

Commands
dataset snapshot

dataset snapshot

The dataset snapshot command saves data from the current WLF file (vsim.wif by default) at a
specified interval. This lets you take sequential or cumulative "snapshots" of your simulation
data.

Syntax
dataset snapshot [-dir <directory>] [-disable] [-enable] [-file <filename>]

[-filemode overwrite | increment] [-mode cumulative | sequential] [-report] [-reset]
[-size <file size> | -time <simulation time>]

Arguments

-dir <directory>

Specifies adirectory into which the files should be saved. Optional. Default is to save into
the directory where Model Sim is writing the current WLF file.

-disable

Turns snapshotting off. Optional. All other options are ignored if you specify -disable.
-enable

Turns snapshotting on. Optional. Default.

-file <filename>

Specifies the name of the file to save. Optional. Default is"vsim_snapshot™. ".wlf" will be
appended to the file and possibly an incrementing suffix if -filemode is set to "increment”.

-filemode overwrite | increment

Specifies whether to overwrite the snapshot file each time a snapshot occurs. Optional.
Default is"overwrite". If you specify "increment”, anew fileis created for each snapshot.
An incrementing suffix (1 to n) is added to each new file (e.g., vsim_snapshot_1.wif).

-mode cumulative | sequential

Specifieswhether to keep all datafrom thetime signals are first logged. Optional. Default is
"cumulative". If you specify "sequential”, the current WLF file is cleared every time a
snapshot is taken. See the examples for further details.

-report

Lists current snapshot settings in the Transcript pane. Optional. All other options are
ignored if you specify -report.

-reset

Resets values back to defaults. Optional. The behavior isto reset to the default, then apply

the remainder of the arguments on the command line. See examples below. If specified by
itself without any other arguments, -reset disables dataset snapshot.

ModelSim Reference Manual, v6.3g 87
May 2008

Commands
dataset snapshot

o -size<filesize>

Specifies that a snapshot occurs based on WLF file size. Y ou must specify either -size or
-time. See examples below.

¢ -time <simulation time>

Specifies that a snapshot occurs based on simulation time. Y ou must specify either -time or
-size. See examples below.

Examples

» Create thefile vaim_snapshot.wif that is written to every time the current WLF file
reaches amultiple of 10 MB (i.e,, at 10 MB, 20 MB, 30 MB, etc.).

dat aset snapshot -size 10

» Similar to the previous example, but in this case the current WLF fileis cleared every
timeit reaches 10 MB.

dat aset snapshot -size 10 -node sequenti al

* Assuming simulator time units are ps, this command saves afile called gold_n.wif every
1000000 ps. If you ran for 3000000 ps, you' d have threefiles: gold_1.wlf with datafrom
0 to 1000000 ps, gold_2.wif with data from 1000001 to 2000000, and gold _3.wif with
data from 2000001 to 3000000.

dat aset snapshot -time 1000000 -file gold.wWf -node sequenti al
-filenode increnent

Note

D Because this example uses "sequential” mode, if you ran the simulation for 3500000 ps,
the resulting vsim.wif (the default log file) file will contain data only from 3000001 to
3500000 ps.

» Enable snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

dat aset snapshot -reset -tine 10000

See also

dataset dlias, dataset clear, dataset close, dataset config, dataset info, dataset list, dataset open,
dataset rename, dataset restart, dataset save

88 ModelSim Reference Manual, v6.3g
May 2008

Commands
delete

delete
The delete command removes objects from either the List or Wave window.

Syntax
delete list | wave [-window <wname>] <object_name>

Arguments
e list|wave
Specifies the target window for the delete command. Required.
* -window <wname>

Specifies the name of the List or Wave window to target for the delete command (the view
command allows you to create more than one List or Wave window). Optional. If no
window is specified the default window is used; the default window is determined by the
most recent invocation of the view command.

e <object_name>

Specifies the name of an object. Required. Must match an object name used in an add list or
add wave command. Multiple object names may be specified. Wildcard characters are
alowed.

Examples
» Remove the object vec2 from the list2 window.

delete list -window |ist2 vec2

See also
add list, add wave, and Wildcard Characters

ModelSim Reference Manual, v6.3g 89
May 2008

Commands
describe

describe
The describe command displays information about the specified HDL object or design region.

The description is displayed in the Transcript pane. The following kinds of objects can be
described:

» Designregion
* VHDL — signals, variables, and constants
* Verilog— nets and registers
VHDL signals and Verilog nets and registers may be specified as hierarchical names.
Syntax

describe <name>

Arguments
e <name>

The name of an HDL object for which you want a description. HDL object hames can be
full hierarchical names or relative names.

Examples
* Print the types of the three specified signals.
describe clk prw prdy

90 ModelSim Reference Manual, v6.3g
May 2008

Commands
disablebp

disablebp

The disablebp command turns off breakpoints and when commands. To turn the breakpoints or
when statements back on again, use the enablebp command.

Syntax

disablebp [<id#>]
Arguments

o <id#>

Specifies a breakpoint or when command id to disable. Optional. If you don’t specify an
id#, all breakpoints are disabled.

See also
bd, bp, enablebp, onbreak, resume, when

ModelSim Reference Manual, v6.3g 91
May 2008

Commands

do

do

The do command executes commands contained in amacro file.

A macro file can have any name and extension. An error encountered during the execution of a
macro file causes its execution to be interrupted, unless an onerror command, onbreak
command, or the OnErrorDefaultAction Tcl variable has specified with the resume command.

Syntax

do <filename> [<parameter_value>]

Arguments

<filename>

Specifies the name of the macro file to be executed. Required. The name can be a pathname
or arelative file name.

Pathnames are relative to the current working directory if the do command is executed from
the command line. If the do command is executed from another macro file, pathnames are
relative to the directory of the calling macro file. This alows groups of macro files to be
moved to another directory and still work.

<parameter_value>

Specifies values that are to be passed to the corresponding parameters $1 through $9 in the
macro file. Optional. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (i.e., specify fewer parameter values than the
number of parameters actually used in the macro), you must use the argc ssmulator state
variable in the macro. Refer to “Making Macro Parameters Optional”.

Note that there is no limit on the number of parameters that can be passed to macros, but
only nine values are visible at one time. Y ou can use the shift command to see the other
parameters.

Examples

» Thiscommand executes the file macros/stimulus, passing the parameter value 100 to $1
in the macro file.

do macros/stinulus 100

» If the macro file testfile contains the line bp $1 $2, this command would place a
breakpoint in the source file named design.vhd at line 127.

do testfile design.vhd 127

See also
“Tcl and Macros (DO Files)”, “Modes of Operation”, “Using a Startup File”, DOPATH
variable

92 ModelSim Reference Manual, v6.3g

May 2008

Commands
drivers

drivers
The drivers command displays the names and strength of all drivers of the specified object.

Thedriver list is expressed relative to the top-most design signal/net connected to the specified
object. If the object isarecord or array, each subelement is displayed individually.

Syntax
drivers <object_name>

Arguments
e <object_name>
Specifies the name of the signal or net whose drivers are to be shown. Required. All signal
or net types are valid. Multiple names and wildcards are accepted.
Example

drivers /top/dut/pkt _cnt(4)

Drivers for /top/dut/pkt_cnt(4):

St0 : Net /top/dut/pkt_cnt[4]

St0 : Driver /top/dut/pkt_counter/#l MPLI Cl T-W RE(cnt _out) #6

In some cases, the output may supply a strength value similar to 630 or 52x, which indicates an
ambiguous verilog strength. For more information, please refer to the Verilog LRM Std 1365-
2005 section 7.10.2 "Ambiguous strengths: sources and combinations”.

See also
readers

ModelSim Reference Manual, v6.3g 93
May 2008

Commands
dumplog64

dumplog64

The dumplog64 command dumps the contents of the specified WLF filein areadable format to
stdout. The WLF file cannot be opened for writing in a simulation when you use this command.

The dumplog64 command cannot be used inaDO file.
Syntax

dumplog64 <filename>
Arguments

o <filename>
The name of the WLF file to be read. Required.

94 ModelSim Reference Manual, v6.3g
May 2008

Commands
echo

echo
The echo command displays a specified message in the Transcript pane.

Syntax

echo [<text_string>]
Arguments

e <text_string>

Specifies the message text to be displayed. Optional. If the text string is surrounded by
quotes, blank spaces are displayed as entered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

Examples

* |f the current timeis 1000 ns, this command:

echo “The tine is $now ns.”
produces the message:
The tine is 1000 ns.

» If the quotes are omitted:

echo The tine is $now ns.
all blank spaces of two or more are compressed into one space.
The time is $now ns.”
» echo can aso use command substitution, such as:

echo The hex val ue of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command produces:

The hex value of counter is 15.

ModelSim Reference Manual, v6.3g 95
May 2008

Commands
edit

edit

The edit command invokes the editor specified by the EDITOR environment variable. By
default, the specified filename will open in Model Sim Source editor.

Syntax

edit [<filename>]
Arguments

o <filename>

Specifiesthe name of thefileto edit. Optional. If the <filename> is omitted, the editor opens
the current sourcefile. If you specify anon-existent filename, it will open anew file.

See also
notepad, EDITOR environment variable

96 ModelSim Reference Manual, v6.3g
May 2008

Commands
enablebp

enablebp

The enablebp command turns on breakpoints and when commands that were previously
disabled.

Syntax

enablebp [<id#>]
Arguments

o <id#>

Specifies abreakpoint or when statement id to enable. Optional. If you don’t specify an id#,
all breakpoints are enabled.

See also
bd, bp, disablebp, onbreak, resume, when

ModelSim Reference Manual, v6.3g 97
May 2008

Commands
environment

environment

The environment, or env command, allows you to display or change the current dataset and
region/signal environment.

Syntax
environment [-dataset] [-nodataset] [<pathname> | -forward | -back]

Arguments

-dataset

Displays the specified environment pathname with a dataset prefix. Optional. Dataset
prefixes are displayed by default if more than one dataset is open during a simulation
session.

-nodataset
Displays the specified environment pathname without a dataset prefix. Optional.
<pathname>

Specifies the pathname to which the current region/signal environment isto be changed. See
Object Name Syntax for information on specifying pathnames. Optional .

If omitted the command causes the pathname of the current region/signal environment to be
displayed.

-forward

Displays the next environment in your history of visited environments. Optional.

-back

Displays the previous environment in your history of visited environments. Optional.

Refer to the section " Setting your Context by Navigating Source Files' in the User’sManual
for more information about -forward and -back.

Examples

Display the pathname of the current region/signal environment.

env

Change all unlocked windows to the context of the "test" dataset.

env-dat aset test

Change all unlocked windows to the context "test: /top/foo”.

env test:/top/foo

Move down two levelsin the design hierarchy.

env bl k1/u2

98

ModelSim Reference Manual, v6.3g
May 2008

Commands
environment

* Movetothetop level of the design hierarchy.

env /

ModelSim Reference Manual, v6.3g 99
May 2008

Commands
examine

examine

The examine command examines one or more objects and displays current values (or the values
at a specified previous time) in the Transcript pane.

The following objects can be examined:
 VHDL — signals, shared variables, process variables, constants, and generics

* Verilog — nets, registers, parameters, and variables
To display a previous value, specify the desired time using the -time option.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

The following rules are used by the examine command to locate an HDL object:
» If the name does not include a dataset name, then the current dataset is used.

» If the name does not start with a path separator, then the current context is used.

» If thenameis apath separator followed by a name that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

» For arelative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

» If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

» Thewildcards *' and '? can be used at any level of a name except in the dataset name
and inside of a slice specification.

» A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’'t match either of those.

See Design Object Names for more information on specifying names.

Syntax

examine [-delta <delta>] [-env <path>] [-handl€] [-in] [-out] [-inout] [-internal]
[-maxlen [0 | <integer>]] [-ports] [-expr <expression>] [-name]
[-<radix_type>] [-radix <type>] [-time <time>] [-vaue] <name>...

100 ModelSim Reference Manual, v6.3g
May 2008

Commands
examine

Arguments

-delta <delta>

Specifies asimulation cycle at the specified time from which to fetch the value. Optional.
The default isto use the last delta of the time step. The objects to be examined must be
logged viathe add list, add wave, or log command in order for the examine command to be
able to return avalue for arequested delta. This option can be used only with objects that
have been logged viathe add list, add wave, or log command.

-env <path>
Specifies a path in which to look for an object name. Optional.
-expr <expression>

Specifies an expression to be evaluated. Optional. The objects to be examined must be
logged viathe add list, add wave, or log command in order for the examine command to be
able to evaluate the specified expression. If the -time argument is present, the expression
will be evaluated at the specified time, otherwise it will be evaluated at the current
simulation time. See GUI_expression_format for the format of the expression. The
expression must be placed within curly braces.

-handle

Returns the memory address of the specified <name>. This value can be useful, as a semi-
uniquetag, for advanced HDL designers when analyzing the simulation of their design. This
valueis aso used asthetitle of abox in the Watch window. This option will not return any
valueif you are in -view mode.

-in

Specifies that <name> include ports of mode IN. Optional.

-out

Specifies that <name> include ports of mode OUT. Optional.
-inout

Specifies that <name> include ports of mode INOUT. Optional.
-internal

Specifies that <name> include interna (non-port) signals. Optional.
-maxlen [0 | <integer>]

Specifies the maximum number of charactersin the output of the command. The default
setting isthe value of the MaxVauelen simulator variable, which, itself, defaults to 30,000
characters. A value of zero (0) indicates an unlimited number of characters.

-ports

Specifies that <name> include all ports. Optional. Has the same effect as specifying -in,
-inout, and -out together.

ModelSim Reference Manual, v6.3g 101
May 2008

Commands
examine

-hame

Displays object name(s) along with the value(s). Optional. Default is -value behavior (see
below).

-<radix_type>

Specifiesthe radix type for the objects that follow in the command. Valid entries (or any
unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic, time, and
default. If no radix is specified for an enumerated type, the default representation is used.
Y ou can change the default radix for the current ssmulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

-radix <type>

Specifies a user-defined radix. Optional. Valid entries for <radix_type> are: binary, ascii,
unsigned, decimal, octal, hex, symbolic, time, and default. The -radix <radix_type>
argument can be used in place of the -<radix> entries. For example, -radix hexadecimal is
the same as -hex.

-time <time>

Specifies the time value between 0 and $now for which to examine the objects. Optional.
The objects to be examined must be logged viathe add list, add wave, or log command in
order for the examine command to be able to return avalue for a requested time.

If the <time> field uses a unit, the value and unit must be placed in curly braces. For
example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal _a
exa -time 3600 signal _a

-value

Returns value(s) as a curly-braces separated Tcl list. Default. Use to toggle off a previous
use of -name.

<name>...

Specifies the name of any HDL object. Required. All object types are allowed, except those
of the type file. Multiple names and wildcards are accepted. Spaces, square brackets, and
extended identifiers require curly braces; see examples below for more details. To examine
aVHDL variable you can add a process label to the name. For example, (make certain to
use two underscore characters):

exa line__36/i

Examples

* Return the value of /top/busl.

exam ne /top/busl

102

ModelSim Reference Manual, v6.3g
May 2008

Commands
examine

* Return the value of the subelement of rega that is specified by the index (i.e., 16). Note
that you must use curly braces when examining subelements.examine

{rega[16]}

* Return the value of the contiguous subelements of foo specified by the dlice (i.e., 20:22).
Note the curly braces.

exam ne {foo[20:22]}

* Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing \' and before the closing '} .

exam ne {/top/\ My extended id\ }

* Inthisexample, the -expr option specifies asignal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.

exam ne -time {3450 us} -expr {/top/bus and $bit_nask}

e Using the ${ fifo} syntax limitsthe variable to the simple name fifo, instead of
interpreting the parenthesis as part of the variable. Quotes are needed when spaces are
involved; and by using quotes (") instead of braces, the Tcl interpreter will expand
variables before calling the command.

examne -time $t -nane $fifo "${fifo}(1 to 3)" ${fifo}(1)

» Because -timeis not specified, this expression will be evaluated at the current
simulation time. Note the signal attribute and array constant specified in the expression.

exam ne -expr {clk event && (/top/xyz == 16" hffae)}

Commands like find and examine return their resultsasaTcl list (just a blank-separated
list of strings). Y ou can do things like:

foreach sig [find sig ABC*] {echo "Signal $sig is [exa $sig]" .}
if {[examine -bin signal _12] == “11101111XXXZ"} {.}

exam ne -hex [find *]

See also
Design Object Names, Wildcard Characters

ModelSim Reference Manual, v6.3g 103
May 2008

Commands

exit

exit
The exit command exits the simulator and the Model Sim application.

If you want to stop the simulation using awhen command, you must use a stop command within
your when statement. DO NOT use an exit command or a quit command. The stop command
acts like abreakpoint at the timeit is evaluated.

Syntax

exit [-force] [-code]

Argument

-force

Quitswithout asking for confirmation. Optional; if thisargument is omitted, Model Sim asks
you for confirmation before exiting.

-code <integer>
Quits the simulation and issues an exit code.

<integer> — Thisisthe value of the exit code. Y ou should not specify an exit code that
aready existsin thetool. Refer to the section "Exit Codes' in the User's Manual for a
list of existing exit codes. Y ou can aso specify avariablein place of the <integer>.

Y ou should always print a message before executing the exit -code command to explicitly
state the reason for exiting.

Examples

Y ou can use the exit -code syntax to instruct avmake run to exit when encountering an assertion
error. The onbreak command can specify commands to be executed upon an assert failure of
sufficient severity, upon which the simulator can be made to return an exit status, as shown in
the following example

set broken O

onbreak {
set broken 88
resume

}

run -all

if { $broken } {
puts "failure -- exit status $broken"
exit -code $broken

} else {
puts "success"

}

quit -f

The resume command gives control back to the commands following the run -all to handle the
condition appropriately.

104

ModelSim Reference Manual, v6.3g
May 2008

Commands
find

find

Thefind command | ocates objects in the design whose names match the name specification you
provide. Y ou must specify the type of object you want to find.

When searching for nets and signals, the find command returns the full pathname of all nets,
signals, registers, variables, and named events that match the name specification. When
searching for instances, the find command returns the primary design unit name.

When searching for nets and signals, the order in which arguments are specified is unimportant.
When searching for virtuals, however, all optional arguments must be specified before any
object names.

The following rules are used by the find command to locate an object:

If the name does not include a dataset name, then the current dataset is used.
If the name does not start with a path separator, then the current context is used.

If the name is a path separator followed by a name that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

For arelative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

If no objects of the specified name can be found in the specified context, then an upward
search is done to look for amatching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

The wildcards ™' and 7 can be used at any level of a name except in the dataset name
and inside of a dlice specification. Square bracket '[]’ wildcards can also be used.

A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’'t match either of those.

Because square brackets are wildcards in the find command, only parentheses’ ()’ can be
used to index or dlice arrays.

The WildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

See Design Object Names for more information on specifying names.

Syntax

find nets | signals[-in] [-inout] [-internal] <object_name> ... [-nofilter] [-out] [-ports]
[-recursive]

find instances | blocks [-recursive] <object_name> ...

ModelSim Reference Manual, v6.3g 105

May 2008

Commands

find

find virtuals [-kind <kind>] [-unsaved] <object_name> ...

find classes [<class_name>]

find objects [-class <class_name>] [-isa<class_name>] [<object_name>]

Arguments for nets and signals

-in

Specifies that the scope of the search isto include ports of mode IN. Optional.

-inout

Specifies that the scope of the search is to include ports of mode INOUT. Optional.
-internal

Specifies that the scope of the search isto include internal (non-port) objects. Optional.
<object_name> ...

Specifiesthe net or signal for which you want to search. Required. Multiple nets and signals
and wildcard characters are allowed. Wildcards cannot be used inside of aslice
specification. Spaces, square brackets, and extended identifiers require specia syntax; see
the examples below for more details.

-nofilter

Specifiesthat the WildcardFilter Tcl preference variable beignored when finding signals or
nets. Optional.

-out
Specifies that the scope of the search isto include ports of mode OUT. Optional.
-ports

Specifiesthat the scope of the search isto include all ports. Optional. Has the same effect as
specifying -in, -out, and -inout together.

-recursive

Specifies that the scope of the search isto descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

Arguments for instances and blocks

-recursive

Specifies that the scope of the search isto descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

<object_name> ...

Specifies the instance or block for which you want to search. Required. Multiple instances
and wildcard characters are allowed.

106

ModelSim Reference Manual, v6.3g
May 2008

Commands
find

Arguments for virtuals

-kind <kind>

Specifies the kind of virtual object for which you want to search. Optional. <kind> can be
one of designs, explicits, functions, implicits, or signals.

-unsaved
Specifies that Model Sim find only virtuals that have not been saved to aformat file.
<object_name> ...

Specifiesthe virtual object for which you want to search. Required. Multiple virtuals and
wildcard characters are allowed.

Arguments for classes

<class_name>

SpecifiestheincrTcl class for which you want to search. Optional. Wildcard characters are
allowed. The options for class name include nets, objects, signals, and virtuals. If you do
not specify aclass name, the command returns all classes in the current namespace context.
See"incrTcl commands' in the Tcl Man Pages for more information.

Arguments for objects

-class <class_name>
Restricts the search to objects whose most-specific classis class name. Optional.
-isa<class_name>

Restricts the search to those objects that have class name anywherein their heritage.
Optional.

<object_name>

SpecifiestheincrTcl object for which you want to search. Optional. Wildcard characters are
allowed. If you do not specify an object name, the command returns all objectsin the
current namespace context. See "incrTcl commands® in the Tcl Man Pages for more
information.

Examples

e Findall signasinthe entire design.
find signals -r /*

* Findall input signalsin region /top that begin with the letters "xy".
find nets -in /top/xy*

* Find all signalsin the design hierarchy at or below the region <current_context>/ul/u2
whose names begin with "cl".

find signals -r ul/u2/cl*

ModelSim Reference Manual, v6.3g 107
May 2008

Commands

find
Find asignal named s1. Note that you must enclose the object in curly braces because of
the square bracket wildcard characters.
find signals {s[1]}
Find signals sl, s2, or s3.
find signals {s[123]}
Find the element of signal sthat isindexed by the value 1. Note that the find command
uses parentheses, not square brackets, to specify a subelement index.
find signals s(1)
Find a4-bit array named data. Note that you must use curly braces due to the spacesin
the array dlice specification.
find signals {/top/data(3 downto 0)}
Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing \' and before the closing '} .
find signals {/top/\My extended id\ }
If /dut/core/pclk exists, prints the message "pclk does exist™ in the transcript. Thiswould
typically beruninaTcl script.
if {[find signals /dut/core/pclk] !'=""} {
echo "pcl k does exist"
}
Find instances based on their names using wildcards. Send search resultsto atext file
that lists instance names, including the hierarchy path, on separate lines.
Search for all instances with ul in path
set pattern_match "*ul*"
Get the list of instance paths
set inst list [find instances -r *] ;
Initialize an enpty list to strip off the architecture nanes
set ilist [list]
foreach inst $inst_list {
set ipath [lindex $inst 0]
if {[string match $pattern_match $ipath]} {
| append ilist $ipath
}
At this point, ilist contains the list of instances only--
no architecture nanes
#
Begin sorting |ist
set ilist [Isort -dictionary S$ilist]
Qpen a file to wite out the list
108 ModelSim Reference Manual, v6.3g

May 2008

Commands
find

set fhandle [open "instancelist.txt” w
foreach inst $ilist {
Print instance path, one per line
puts $f handl e $i nst

}

Close the file, done.
cl ose $fhandl e ;

See also
Design Object Names, Wildcard Characters

ModelSim Reference Manual, v6.3g 109
May 2008

Commands
find infiles

find infiles

The find infiles command searches the specified files and prints to the Transcript pane those
lines from the files that match the specified pattern.

Y ou can double-click on the results in the Transcript pane to open the specific file and display
the referenced line.

When you use this command in command-line mode, outside of the GUI, the results are sent to
stdout and you do not have the capability to view the file by double-clicking the result.

Syntax
find infiles <string_pattern> { <file_pattern> [<file_pattern> ...]}

Arguments
e <string_pattern>

The string you are searching for. Y ou can use regular expression wildcardsto further restrict
the search capability.

o <file_pattern> [<file_pattern> ...]

Thefile(s) you are searching. Y ou can use regular expression wildcards to further restrict
the search capability.

Example

Figure 2-2 shows a screen capture containing a couple examples of the find infiles
command and its results.

Figure 2-1. find infiles Example

Transcripk

YSIM 10> find infiles memary *.vhd ;I
CifQuestaTestcases/dataflowfcache vhidi 116 - Fskdskdsktdsktbt® | nogl MR miemnory: etttk |

CifQuestaTestcases/dataflow memory whd: 12 entity memory is

Ty fQuestaTestcases)dataflow/memory, vhd: 21:end entity memory;

CifQuestaTestcases dataflow memory whid: 25 architecture RTL of memary is

CifQuestaTestcases/dataflow/top, vhd: 44 component memory

CifQuestaTestcases/dakaflow/top whd: 830 me memary pork mapiclk, saddr, sdata, sow, sskrb, sedy);

W3IM 11 = find infiles "memory port” *,vhd

CifQuestaTestcases/dataflow/top vhd: &3 me memory pork mapiclk, saddr, sdata, sew, sskrb, sedy);

Y3IM 12> find infiles wsim *.do

CiiQuestaTesteases/dataFlowirun,do: 28 wsim -voptargs="+acc" top fnemprof j

-

| F l Transcripk ﬂi‘l
110 ModelSim Reference Manual, v6.3g

May 2008

Commands
find insource

find insource

The find insour ce command searches all source files related to the current design and prints to
the Transcript pane those lines from the files that match the specified pattern.

Y ou can double-click on the results in the Transcript pane to open the specific file and display
the referenced line.

When you use this command in command-line mode, outside of the GUI, the results are sent to
stdout and you do not have the capability to view the file by double-clicking the result.

Syntax
find insource <pattern>

Arguments
e <pattern>

The string you are searching for. Y ou can use regular expression wildcardsto further restrict
the search. Y ou must enclose <pattern> in quotes (") if it includes spaces.

Example

Figure 2-2 shows a couple of examples of the find insource command and its resultsin the
Transcript window.

Figure 2-2. find insource Example

Transcripk
Y3IM 5= find insource memory LI
':EI':I‘IE."."I'IIj: 1 16: I b B e e i LD':EI' MRU n'len'lclr':." ****************J‘

memory . vhd: 12 enkity memaory is

memory.vhd:21:end entity memary;

memory vhd: 25 architecture RTL of memory is

top.vhd: g4, ComponEnt memory

top.vhd:83: me memory port mapiclk, saddr, sdata, srw, sstrb, srdwl;
W3IM A2 find insource “memory port”

top.vhdi@3: e memory port maplclk, saddr, sdata, srw, sskeb, srdyl;

WaIM 7

| F l Transcripk

e KA N

ModelSim Reference Manual, v6.3g 111
May 2008

Commands
formatTime

formatTime

The formatTime command provides global format control for al time values displayed in the
GUI. This command always returns the current state of its three arguments.

Syntax

formatTime +|-commas | +|-nodefunits | +|-bestunits

Arguments
e +|-commas

Insert commasinto the time value to makeit easier to read. Optional. A leading '+’ turnsthe
argument on; aleading ’-’ turns the argument off. Default is off.

e +|-nodefunits

Do not include default unit in the time. Optional. A leading’+’ turns the argument on; a
leading ’-’ turns the argument off. Default is off.

e +|-bestunits

Usethelargest unit value possible. Optional. A leading '+’ turns the argument on; aleading
'~ turns the argument off. Default is off.

Examples
» Display commasin time values.
format Ti me +conmas
Instead of displaying 6458131 ps, the GUI will display 6,458,131 ps.
» Uselargest unit value possible.

format Ti e +bestunits

Displays 8 usinstead of 8,000 ns.

112 ModelSim Reference Manual, v6.3g
May 2008

Commands

force
force
The force command allows you to apply stimulus interactively to VHDL signals and Verilog
nets.

Since for ce commands (like all commands) can be included in amacro file, it is possible to
create complex sequences of stimuli.

When you do not specify any arguments, this command returns alist of the most recently
applied force commands.

There are anumber of constraints on what you can and cannot force:

* You cannot force VHDL or Verilog variables (time or realtime); these must be changed.
See the change command.

* InVHDL and mixed models, you cannot force an input port that is mapped at a higher
level. In other words, you can force the signal at the top of the hierarchy connected to
the input port but you cannot force the input port directly.

* You cannot force bits or slices of aregister; you can force only the entire register.
* You cannot forceaVHDL aiasof aVHDL signal.
* You cannot force an input port that has a conversion function on the input.

* Youcanforce“Virtua Signals’ if the number of bits correspondsto the signal value.
Y ou cannot force virtual functions.

Syntax

force [-freeze | -drive | -deposit] [-cancel <time>] [-repeat <time>] <object_name> <value>

[<time>] [, <vaue> <time> ...]

Arguments

-freeze

Freezes the object at the specified value until it isforced again or until it isunforced with a
noforce command. Optional.

-drive

Attaches a driver to the object and drives the specified value until the object is forced again
or until it is unforced with a noforce command. Optional.

Thisoptionisillegal for unresolved signals signals.
-deposit

Sets the object to the specified value. The value remains until there is a subsequent driver
transaction, or until the object isforced again, or until it is unforced with anoforce
command. Optional.

If one of the -freeze, -drive, or -deposit optionsis not used, then -freeze is the default for
unresolved objects and -drive is the default for resolved objects.

ModelSim Reference Manual, v6.3g 113
May 2008

Commands

force

If you prefer -freeze as the default for resolved and unresolved VHDL signals, change the
default force kind in the DefaultForceKind preference variable.

-cancel <time>

Cancels the for ce command at the specified <time>. The timeisrelative to the current time
unless an absolute time is specified by preceding the value with the character @.
Cancellation occurs at the last ssimulation delta cycle of atime unit. A value of zero cancels
the force at the end of the current time period. Optional.

-cancel 520 ns \\ Relative Tine
-cancel @20 ns \\ Absolute Tine
-repeat <time>

Repeats the for ce command, where <time> is the time at which to start repeating the cycle.
Thetimeisrelative to the current time. A repeating for ce command will force avalue
before other non-repeating for ce commands that occur in the same time step. Optional.

<object_name>

Specifies the name of the HDL object to be forced. Required. A wildcard is permitted only

if it matches one object. See Design Object Namesfor the full syntax of an object name. The
object name must specify ascalar type or aone-dimensional array of character enumeration.
Y ou may also specify arecord subelement, an indexed array, or asliced array, aslong asthe
type is one of the above. Required.

<vaue>

Specifies the value to which the object is to be forced. The specified value must be
appropriate for the type. Required.

A VHDL one-dimensional array of character enumeration can be forced as a sequence of
character literals or as a based number with aradix of 2, 8, 10 or 16. For example, the
following values are equivalent for asignal of type bit_vector (0 to 3):

Value Description

1111 character literal sequence
2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix

Note

For based numbersin VHDL, Model Sim translates each 1 or O to the appropriate value
for the number’ s enumerated type. The translation is controlled by the trandlation tablein
the pref.tcl file. If Model Sim cannot find atrandation for O or 1, it uses the left bound of
the signal type (type' left) for that value.

114

ModelSim Reference Manual, v6.3g
May 2008

Commands
force

o <time>

Specifies the time to which the value isto be applied. The timeisrelative to the current time
unless an absolute time is specified by preceding the value with the character @. If thetime
units are not specified, then the default is the resolution units selected at simulation start-up.
Optional.

A zero-delay force command causes the change to occur in the current (rather than the next)
simulation delta cycle.

Examples
» Forceinputl to O at the current simulator time.

force inputl O

* Forcebusl to 01XZ at 100 nanoseconds after the current simulator time.

force busl 01XZ 100 ns

e Force busl to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force busl 16#f @00

* Forceinputl to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current ssmulation time. This cycle repeats starting at 100 time units after
the current simulation time, so the next transition isto 1 at 100 time units after the
current ssimulation time.

force inputl 1 10, 0 20 -r 100

» Similar to the previous example, but also specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces.

force inputl 1 10 ns, 0 {20 ns} -r 100ns

» Forcesignal sto aternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of atime unit.

force s 1 0, 0 100 -repeat 200 -cancel 1000
o,
force s 1 0 -cancel 0O
will force signal sto 1 for the duration of the current time period.
» Forcesigato decimal value 85 whenever the value on the signal is 1.

when {/nydut/siga = 10#1} {
force -deposit /nydut/siga 10#85
}

ModelSim Reference Manual, v6.3g 115
May 2008

Commands
force

See also

noforce, change

Note
Y ou can configure defaults for the force command by setting the DefaultFor ceKind
variable in the modelsim.ini file. Refer to “ Force Command Defaults’.

116 ModelSim Reference Manual, v6.3g
May 2008

Commands
help

help

The help command displays in the Transcript pane a brief description and syntax for the
specified command.

Syntax
help [<command> | <topic>]

Arguments
¢ <command>

Specifies the command for which you want help. The entry is case and space sensitive.
Optional.

e <topic>

Specifies atopic for which you want help. The entry is case and space sensitive. Optional.
Specify one of the following six topics:

Topic Description

commands Listsall available commands and
topics

debugging Lists debugging commands

execution Lists commands that control
execution of your simulation.

Tcl Listsal available Tcl commands.
Tk Lists all available Tk commands
incrTCL Lists all availableincrTCL
commands
ModelSim Reference Manual, v6.3g 117

May 2008

Commands
history

history

The history command lists the commands you have executed during the current session.
History isa Tcl command. For more information, consult the Tcl Man Pages.

Syntax
history [clear] [keep <value>]
Arguments
* Clear
Clears the history buffer. Optional.
* Kkeep <vaue>
Specifies the number of executed commands to keep in the history buffer. Optional. The
default is 50.
118 ModelSim Reference Manual, v6.3g

May 2008

Commands
layout

layout
The layout command loads, saves, lists, or deletes custom GUI layouts.
The command options include:
» layout load opens the specified layout
» layout save saves the current layout to the specified name
» layout nameslistsall known layouts
» layout current liststhe current layout

» layout delete removes the current layout from the .modelsim file (UNIX/Linux) or
Registry (Windows)

See “Layouts and Modes of Operation” for more information.

Syntax
layout load <name>
layout save <name>
layout names
layout current
layout delete <name>
Arguments

e <name>
Specifies the name of the layout. Required.

ModelSim Reference Manual, v6.3g 119
May 2008

Commands

log

log

Thelog command creates awave log format (WLF) file containing simulation datafor all HDL
objects whose names match the provided specifications.

Objects that are displayed using the add list and add wave commands are automatically
recorded in the WLF file. Thelog is stored in aWLF file in the working directory. By default
the file is named vsim.wif. Y ou can change the default name using the -wlf option of the vaim
command.

If no port mode is specified, the WLF file contains data for all objectsin the selected region
whose names match the object name specification.

The WLF fileisthe source of datafor the List and Wave windows. An object that has been
logged and is subsequently added to the List or Wave window will have its complete history
back to the start of logging available for listing and waving.

Syntax

log [-depth <level>] [-flush] [-howmany] [-in] [-inout] [-internal] [-out] [-ports]

[-recursive] <object_name> ...

Arguments

-depth <level>

Restricts a recursive search (specified with the -recur sive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify -
depth 1, the command descends only one level in the hierarchy. Optional.

-flush

Addsregion datato the WLF file after each individual log command. Optional. Default isto
add region data to the log file only when a command that advances ssmulation timeis
executed (e.g., run, step, etc.) or when you quit the simulation.

-howmany

Returns an integer indicating the number of signals found. Optional.

-in

Specifies that the WLF file isto include data for ports of mode IN whose names match the
specification. Optional.

-inout

Specifiesthat the WLF fileisto include datafor ports of mode INOUT whose names match
the specification. Optional.

-interna

Specifies that the WLF file isto include data for internal (non-port) objects whose names
match the specification. Optional.

120

ModelSim Reference Manual, v6.3g
May 2008

Commands
log

e -out

Specifies that the WLF file isto include data for ports of mode OUT whose names match
the specification. Optional.

* -ports
Specifies that the scope of the search isto include all ports. Optional.
* -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search islimited to the selected region. Y ou can use the -depth argument to
specify how far down the hierarchy to descend.

e <object_name>

Specifies the object name which you want to log. Required. Multiple object names may be
specified. Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference
variable identifies types to ignore when matching objects with wildcard patterns.)

Examples
* Log al objectsin the design.
log -r /*
* Log al output ports in the current design unit.

|l og -out *

See also
add list, add wave, nolog, “Recording Simulation Results With Datasets’, and Wildcard
Characters

Note
D The log command is also known as the "add log" command.

ModelSim Reference Manual, v6.3g 121
May 2008

Commands
Ishift

Ishift

The Ishift command takesa Tcl list as an argument and shiftsit in-place, one place to the left,

eliminating the left-most element.
The number of shift places may also be specified. Returns nothing.

Syntax
Ishift <list> [<amount>]
Arguments
o <list>
Specifiesthe Tcl list to target with Ishift. Required.
e <amount>
Specifies the number of places to shift. Optional. Default is 1.

Examples

proc nyfunc args {
throws away the first two argunents
Ishift args 2

See also
See the Tcl man pages (Help > Tcl Man Pages) for details.

122 ModelSim Reference Manual, v6.3g

May 2008

Commands
Isublist

Isublist

Thelsublist command returns a sublist of the specified Tcl list that matches the specified Tcl
glob pattern.

Syntax
Isublist <list> <pattern>

Arguments
o <list>
Specifiesthe Tcl list to target with Isublist. Required.
o <pattern>
Specifies the pattern to match within the <list> using Tcl glob-style matching. Required.
Examples
* Intheexample below, variable ‘t’ returns "structure signals source”.

set wi ndow nanmes "structure signals variables process source wave
list datafl ow
set t [lsublist $w ndow_names s*]

See also

The set command isa Tcl command. See the Tcl man pages (Help > Tcl Man Pages) for
details.

ModelSim Reference Manual, v6.3g 123
May 2008

Commands
mem compare

mem compare

The mem compar e command compare selected memory to reference memory or file. Must
have the "diff" utility installed and visible in your search path in order to run the mem compare
command.

Syntax
mem compare [[-mem <ref_mem>] | [-file <ref_file>]] [actua_mem]

Arguments
e -mem <ref_mem>
Specifies areference memory to be compared.
o file<ref_file>
Specifies areference file to be compared.
e actua_mem
Specifies the name of the memory to be compared against the reference data.

124 ModelSim Reference Manual, v6.3g
May 2008

Commands
mem display

mem display

The mem display command prints to the Transcript pane the memory contents of the specified
instance. As a shorthand, if the given instance path contains only a single array signal or
variable, the signal or variable name need not be specified.

Address radix, data radix, and address range for the output can also be specified, aswell as
specia output formats.

Y ou can redirect the output of the mem display command into afile for later use with the mem
load command. The output file can also be read by the Verilog $readmem system tasks if the
memory module is a Verilog module and Verilog memory format (hex or binary) is specified.
The format settings are stored at the top of thisfile as a pseudo comment so that subsequent
mem |oad commands can correctly interpret the data. Do not edit this data when manipulating a
saved file.

By default, identical datalines are printed. To replace identical lineswith asingleline
containing the asterisk character, you can enable compression with the -compr ess argument.

Syntax
mem display [-format [bin | hex | mti]] [-addressradix <radix_type>] [-dataradix <radix_type>]
[-wordsperline <Nwords>] [-startaddress <st>] [-endaddress <end>] [-noaddress]
[-compress] [<path>]
Arguments
o -format [bin | hex | mti]
Specifies the output format of the contents. Optional. The default format is mti. For details
on mti format, see the description contained in mem load.
o -addressradix <radix_type>
Specifies the address radix for the default (mti) formatted files. The <radix_type> can be
specified as: d (decimal) or h (hex). Optional. If the output format is mti, the default is d.
e -dataradix <radix_type>

Specifies the data radix for the default (mti) formatted files. Optional. If unspecified, the
global default radix isused. Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, symbolic, and default. If no radix is specified for an enumerated type,
the symbolic representation is used. Y ou can change the default radix type for the current
simulation using the radix command. Y ou can change the default radix permanently by
editing the DefaultRadix variable in the modelsim.ini file.

* -wordsperline <Nwords>

Specifies how many words are to be printed on each line, with the default assuming an 80
column display width. <Nwords> is an unsigned integer. Optional.

ModelSim Reference Manual, v6.3g 125
May 2008

Commands
mem display

-startaddress <st>

Specifies the start address for arange of addresses to be displayed. The <st> can be
specified asany valid address in the memory. Optional. If unspecified, the default isthe start
of the memory.

-endaddress <end>

Specifies the end address for arange of addresses to be displayed. The <end> can be
specified as any valid addressin the memory. Optional. If unspecified, the default isthe end
of the memory.

-noaddress
Specifies that addresses not be printed. Optional.
-compress

Specifiesthat identical lines not be printed. Optional. Reduces the file size by replacing
exact matches with a single line containing an asterisk. These compressed files are
automatically expanded during amem load operation.

<path>

Specifies the full path to the memory instance. Optional. The default is the current context,
as shown in the Structure tab of the Workspace. Indexes can be specified.

Examples

» Thiscommand displays the memory contents of instance /top/mymru_mem, addresses 5
to 10 to the screen asfollows:

mem di spl ay -startaddress 5 -endaddress 10/top/c/nru_nem

5: 110 110 110 110 110 000

» Display the memory contents of the same instance to the screen in hex format, as
follows:

mem di splay -format hex -startaddress 5 -endaddress 10
/[top/c/nmru_nmem

#5. 666660

See Also

mem load

126

ModelSim Reference Manual, v6.3g
May 2008

Commands
mem list

mem list

The mem list command displays aflattened list of all memory instancesin the current or
specified context after a design has been elaborated.

Each instance lineis prefixed by "VHDL:" or "Verilog:", depending on the type of model.
Returns the signal/variable name, address range, and depth and width of the memory.

Syntax
mem list [-r] [<path>]

Arguments
L
Recursively descends into sub-modules when listing memories. Optional.
e <path>

The hierarchical path to the location the search should start. Optional. The default is the
current context, as shown in the Structure tab of the Workspace pane.

Examples
* Recursively lists all memories at the top level of the design.
memlist -r /
Returns:

Verilog: /top/ mmeni0:255](256d x 16w)
#

* Recursively lists al memoriesin /top2/uut.
mem |ist /top2/uut -r

Returns:
Verilog: /top2/uut/menf0:255] x 16w

ModelSim Reference Manual, v6.3g 127
May 2008

Commands
mem load

mem load

The mem load command updates the simulation memory contents of a specified instance. Y ou
can upload contents either from a memory data file, amemory pattern, or both. If both are
specified, the pattern is applied only to memory locations not contained in the file.

A relocatable memory fileisone that has been saved without addressinformation. Y ou can load
arelocatable memory file into the instance of amemory core by specifying an address range on
the mem load command line. If no address range (starting and ending address) is specified, the
memory is loaded starting at the first location.

The order in which the datais placed into the memory depends on the format specified by the -
format option. If you choose bin or hex format, the memory isfilled low to high, to be
compatible with $readmem commands. Thisisin contrast to the default mti format, which fills
the memory according to the memory declaration, from left index to right index.

For Verilog objects and VHDL integers and std_logic types: if the word width in afileiswider
than the word width of the memory, the leftmost bits (msb’s) in the data words are ignored. To
allow wide words use the -truncate option which will ignore the msb bits that exceed the
memory word size. If the word width in the file is less than the width of the memory, and the
left-most digit of the file dataisnot * X', then the |eft-most bits are zero filled. Otherwise, they
are X-filled.

The type of datarequired for the -filldata argument is dependent on the -filltype specified: a
fixed value, or one that governs an incrementing, decrementing, or random sequence.

» For fixed pattern values, thefill pattern isrepeatedly tiled to initialize the memory block
specified. The pattern can contain multiple word values for this option.

» For incrementing or decrementing patterns, each memory word istreated as an unsigned
guantity, and each successive memory location isfilled in with a value one higher or
lower than the previous value. The initial value must be specified.

» For arandom pattern, a random data sequence will be generated to fill in the memory
values. The data type in the sequence will match the type stored in the memory. For
std_logic and associated types, unsigned integer sequences are generated. A seed value
may be specified on the command line. For any given seed, the generated sequenceis
identical.

The interpretation of the pattern datais performed according to the default system radix setting.
However, this can be overridden with a standard Verilog-style ‘ <radix_char><data>
specification.

Syntax

mem load [-infile <infile> -format [bin | hex | mti]] [-filltype <filltype>]
[-filldata <patterndata>] [-fillradix <radix_type>] [-skip <Nwords>] [-truncate]
[-startaddress <st>] [-endaddress <end>] [<path>]

128 ModelSim Reference Manual, v6.3g
May 2008

Commands
mem load

Arguments

-infile <infile>

Updates memory data from the specified file. Required unless the -filltype argument is
used.

-endaddress <end>

Specifies the end address for arange of addressesto be loaded. The <end> can be specified
as any valid address in the memory. Optional.
-format [bin | hex | mti]

Specifies the format of thefile to be loaded. The <formtype> can be specified as: bin, hex,
or mti. bin and hex are the standard Verilog hex and binary memory pattern file formats.
These can be used with Verilog memories, and with VHDL memories composed of
std_logic types.

Inthe MTI memory datafile format, internal file address and data radix settings are stored
within the file itself. Thus, there is no need to specify these settings on the mem load
command line. If aformat specified on the command line and the format signature stored
internally within the file do not agree, the file cannot be loaded.

-filltype <filltype>

Fillsin memory data patterns algorithmically. The <filltype> can be specified as. value, inc,
dec, or rand. Required unless the -infile argument is used, in which caseit is optional.
Default is value.

-filldata <patterndata>

Specifies the pattern parameters, value for fixed-value fill operations, and seed or starting
point for random, increment, or decrement fill operations. Required if -filltypeis used.

A fill pattern covers any of the selected address range that is not populated from file values.
If afill pattern is used without afile option, the entire memory or specified addressrangeis
initialized with the fill pattern.

-fillradix <radix_type>

Specifies radix of the data specified by "-filldata’ option. Valid entries (or any unique
abbreviations) are: binary, decimal, unsigned, octal, hex, symbolic, and default.

-skip <Nwords>

Specifies the number of words to be skipped between each fill pattern value. <Nwords> is
specified as an unsigned integer. Optional. Used with -filltype and -filldata.

-truncate

Ignores any most significant bits (msb) in amemory word which exceed the memory word
size. By default, when memory word size is exceeded, an error results. Optional.

ModelSim Reference Manual, v6.3g 129
May 2008

Commands
mem load

¢ -startaddress <st>

Specifiesthe start addressfor arange of addressesto be loaded. The <st> can be specified as
any valid address in the memory. Optional.

e <path>

The hierarchical path to the memory instance. If the memory instance name is unique,
shorthand instance names can be used. Optional. The default is the current context, as
shown in the Structure tab of the Workspace pane.

Memory address indexes can be specified in the instance name also. If addresses are
specified both in the instance name and the file, only the intersection of the two address
ranges is populated with memory data.

Examples

* Load the memory pattern from the file vals.mem to the memory instance /top/m/mem,
filling the rest of the memory with the fixed-value 1'bO0.

memload -infile vals.nem-format bin -filltype value -filldata 1' b0
/top/ M mem

When you enter the mem display command on memory addresses 0 through 12, you see
the following:

mem di spl ay -startaddress O -endaddress 12 /top/ m nem

0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 0000000000000000 0000000000000000
12: 0000000000000000

» Load the memory pattern from the file vals.mem to the memory instance
/top/m/mru_mem, filling the rest of the memory with the fixed-value 16’ Hbeef.

memload -infile vals.nem-format hex -st 0 -end 12 -filltype val ue
-filldata 16’ Hbeef /top/ m nru_nmem

* Load memory instance /top/mem2 with two words of memory data using the Verilog
Hex format, skipping 3 words after each fill pattern sequence.

memload -filltype value -filldata "16' hab 16" hcd" /top/men2 -skip 3
» Truncate the msb bits that exceed the maximum word size (specified in HDL code).
memload -format h -truncate -infile data fil es/data. out

/top/ mreg_inc/ mem

See also
mem save

130 ModelSim Reference Manual, v6.3g
May 2008

Commands
mem save

mem Save

The mem save command saves the contents of a memory instance to afilein any of the
supported formats: Verilog binary, Verilog hex, and MTI memory pattern data.

This command worksidentically to the mem display command, except that its output iswritten
to afilerather than adisplay.

The order in which the datais placed into the saved file depends on the format specified by the -
format argument. If you choose bin or hex format, the fileis populated from low to high, to be
compatible with $readmem commands. Thisisin contrast to the default mti format, which
populates the file according to the memory declaration, from left index to right index.

Y ou can use the mem save command to generate relocatable memory datafiles. The
-noaddr ess option omits the address information from the memory datafile. Y ou can later load
the generated memory data file using the memory load command.

Syntax

mem save [-format bin | hex | mti] [-addressradix <radix_type>] [-dataradix <radix_type>]

[-wordsperline <Nwords>] [-startaddress <st> -endaddress <end>] [-noaddress]
[-compress] [<path>] -ouitfile <filename>

Arguments

-format bin | hex | mti

Specifies the output format. The <format_spec> can be specified as bin, hex, or mti.
Optional. The default format is mti. The MTI memory pattern data format is described in
mem load.

-addressradix <radix_type>

Specifies the address radix for the default mti formatted files. Optional. The <radix_type>
can be specified as: dec or hex. The default is the decimal representation.

-dataradix <radix_type>

Specifies the data radix for the default mti formatted files. Optional. The <radix_type> can
be specified as symbolic, binary, octal, decimal, unsigned, or hex. Y ou can change the
default radix for the current simulation using the radix command. Y ou can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

-wordsperline <Nwords>

Specifies how many memory values are to be printed on each line. Optional. The default
assumes an 80 character display width. The <Nwords> is specified as an unsigned integer.

-startaddress <st>

Specifies the start address for arange of addresses to be saved. The <st> can be specified as
any valid address in the memory. Optional.

ModelSim Reference Manual, v6.3g 131
May 2008

Commands
mem save

-endaddress <end>

Specifies the end address for arange of addresses to be saved. The <end> can be specified
as any valid address in the memory. Optional.

-noaddress

Prevents addresses from being printed. Optional. Mutually exclusive with the -compress
option.

-compress

Specifies that only unique lines are printed, identical lines are not printed. Optional.
Mutually exclusive with the -noaddr ess option.

-outfile <filename>
Specifies that the memory contents be stored in <filename>. Required.
<path>

The hierarchical path to the location of the memory instance. Optional. The default isthe
current context, as shown in the Structure tab of the Workspace pane.

Examples

» Savethe memory contents of the instance /top/mymem(0: 10) to memfile, written in the
mti radix.

mem save -format nmti -outfile nmenfile -start 0 -end 10 /top/ m nem

The contents of memfile are as follows:

/1l menory data file (do not edit the following line - required for
mem | oad use)

[/l format=nti addressradi x=d dataradi x=s version = 1.0

0: 0000000000000000 0000000000000001 0000000000000010
0000000000000011

4: 0000000000000100 0000000000000101 0000000000000110
0000000000000111

8: 0000000000001000 00000000000010071 XXXXXXXXXXXXXXXX

See also

mem display, mem load

132

ModelSim Reference Manual, v6.3g
May 2008

Commands
mem search

mem search

The mem search command finds and prints to the screen the first occurring match of a
specified memory pattern in the specified memory instance. Shorthand instance names are
accepted.

Optionally, you can instruct the command to print all occurrences. The search pattern can be
one word or a sequence of words.

Syntax

mem search [-addressradix <radix_type>] [-dataradix <radix_type>] [-al] [-replace <word>[

<word>...]]
[-startaddress <address>] [-endaddress <address>] [<path>]
[-glob <word>[<word>...]] | [-regexp <word>[<word>...]]

Arguments

-addressradix <radix_type>

Specifies the radix for the address being displayed. The <radix_type> can be specified as
decimal or hexadecimal. Default is decimal. Optional.

-dataradix <radix_type>

Specifies the radix for the memory databeing displayed. The <radix_type> can be specified
as symbolic, binary, octal, decimal, unsigned, or hex. Optional. By default the radix
displayed is the system default.

-all

Searches the specified memory range and prints out all matching occurrences to the screen.
Optional. By default only the first matching occurrence is printed.

-replace <word>[<word>...]

Replaces the found patterns with a designated pattern. Optional. If this option is used, each
pattern specified by the -patter n argument must have a corresponding pattern specified by
the -replace argument. Multiple word patterns are accepted, separated by a single white
space. No wildcards are allowed in the replaced pattern.

-startaddress <address>

Specifiesthe start addressfor arange of addressesto search. The <address> can be specified
as any valid address in the memory. Optional.

-endaddress <address>

Specifies the end address for arange of addresses to search. The <address> can be specified
as any valid address in the memory. Optional.

<path>

Specifiesthe hierarchical path to the location of the memory instance. Optional. The default
is the current context value, as shown in the Structure tab of the Workspace pane.

ModelSim Reference Manual, v6.3g 133
May 2008

Commands
mem search

-glob <word>[<word>...]

Specifies the value of the pattern, accepting glob pattern syntax for the search. This
argument and -regexp and -patter n are mutually exclusive arguments. This argument is
functionally identical to the -patter n argument. Required: either -glob or -regexp.

Multiple word patterns are accepted, separated by a single white space. Wildcards are
accepted in the pattern.

-regexp <word>[<word>...]

Specifies the value of the pattern, accepting regular expression syntax, for the search. This
argument and -glob and -pattern are mutually exclusive arguments. Required: either -glob
or -regexp.

Multiple word patterns are accepted, separated by a single white space. Wildcards are
accepted in the pattern.

Examples

» Search for and print to the screen all occurrences of the pattern 16°Hbeef in
/uut/u0/mem3:

mem search -gl ob 16‘ Hbeef -dataradi x hex /uut/uO/ men8

Returns:
#7845: beef

#7846:. beef
#100223: beef

» Search for and print only the first occurrence of 16° Hbeef in the address range
7845:150000, replacing it with 16°Hcafe in /uut/ul/mem3:

mem search -glob 16' Hbeef -d hex -replace 16' Hcafe -st 7846 -end
150000 /uut/ul/ men8

Returns:
#7846: cafe

* Replaceall occurrences of 16 Hbeef with 16°Habe in /uut/ul/mem3:

mem search -gl ob 16' Hbeef -r 16‘' Habe -addressadi x hex -al
/uut / ul/ men8

Returns:
#leab: 2750

#leab: 2750
#1877f: 2750

» Search for and print the first occurrence any pattern ending in f:

mem search -glob "*f"

134

ModelSim Reference Manual, v6.3g
May 2008

Commands
mem search

Search for and print the first occurrence of this multiple word pattern:
mem search -glob "abe cafe" /uut/ul/ nen8
Search for patterns 0000 0000" or 0001 0000" in m/mem:

mem search -data hex -regexp {000[0| 1] 0{4}} m nmem -all

Search for a pattern that has any number of Os followed by any number of 1sasa
memory location, and which has a memory location containing digits as the value:

mem search -regexp {70+1+$ \d+} m nmem -all
Search for any initialized location in aVHDL memory:

mem search -regexp {[~U} -all <vhdl _nmenory>

ModelSim Reference Manual, v6.3g 135

May 2008

Commands
messages clearfilter

messages clearfilter

This command removes any filter you have set in the Message Viewer. Refer to the section
“Message Viewer Filter Dialog Box” for additional information about filtering in the Message
Viewer.

Syntax
messages clearfilter

Arguments
* No arguments

136 ModelSim Reference Manual, v6.3g
May 2008

Commands
messages setfilter

messages setfilter

This command performs the same action as the Message Viewer Filter Dialog Box, which
controls which messages are shown in the Message Viewer.

The ideal workflow for using this command is through the GUI:
1. View >Message Viewer.
2. Right-click in the Message Viewer and select Filter.
The Message Viewer Filter dialog box is displayed
3. Createyour filter.
4. OK or Apply.

The Message Viewer updates based on your filter and a messages setfilter command,
which is equivalent to your settings, is output to the transcript.

5. Retain the messages setfilter command from the transcript for future use.
Syntax
messages setfilter <tcl_list>
Arguments

o <tcl_list>— Thetcl_list argument is a complex string of tcl code that controls the filter
Settings.

Examples
* Severity iserror and timeis greater than or equal to 100 ns
messages setfilter {{} \

(Severity Contains {Case Insensitive} error)} \
{AND (Time >= 100 ns)}

» Theobjectsfield contains neither clock or reset

messages setfilter {{} \
(Object Contains {Case Sensitive} clock)} \
{NOR (nject Contains {Case Sensitive} data)}

» Themessage string either containsreg_str2 or reg_strl

messages setfilter {{} \
(Message Contains {Case Insensitive} reg_str2)} \
{OR (Message Contains {Case Insensitive} reg_strl)}

ModelSim Reference Manual, v6.3g 137
May 2008

Commands
modelsim

modelsim
The modelsim command starts the Model Sim GUI without prompting you to load a design.
This command is valid only for Windows platforms and may be invoked in one of three ways:
o from the DOS prompt
» from aMode Sim shortcut

+ from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the shortcut’s
properties. (Arguments work on the DOS command line too, of course.)

The simulator may be invoked from either the Model Sim> prompt after the GUI startsor from a
DO file called by modelsim.

Syntax
modelsim [-do <macrofile>] [-nosplash]
Arguments
* -do <macrofile>
Specifies the DO file to execute when modelsim isinvoked. Optional.

Note
In addition to the macro called by thisargument, if aDO file is specified by the
STARTUP variablein modelsim.ini, it will be called when the vsim command isinvoked.

e -nosplash
Disables the splash screen. Optional.
See also

vsim, do, “Using a Startup File’

138 ModelSim Reference Manual, v6.3g
May 2008

Commands
noforce

noforce

The nofor ce command removes the effect of any active force commands on the selected HDL
objects.

The nofor ce command also causes the object’ s value to be re-evaluated.

Syntax
noforce <object_name> ...

Arguments
e <object_name>
Specifies the name of an object. Required. Must match an object name used in a previous
force command. Multiple object names may be specified. Wildcard characters are alowed.
See also
force and Wildcard Characters

ModelSim Reference Manual, v6.3g 139
May 2008

Commands

nolog

nolog

The nolog command suspends writing of data to the wave log format (WLF) file for the
specified signals.

A flag iswritten into the WLF file for each signal turned off, and the GUI displays"-No Data-"
for the signal(s) until logging (for the signal(s)) is turned back on. Logging can be turned back
on by issuing another log command or by doing anolog -r eset.

Because use of the nolog command adds new information to the WLF file, WLF files created
when using the nolog command cannot be read by older versions of the ssimulator. If you are
using dumplog64.c, you will need to get an updated version.

Syntax

nolog [-all] [-depth <level>] [-howmany] [-in] [-inout] [-internal] [-out] [-ports] [-recursive]

[-reset] [<object_name>...]

Arguments

-all
Turns off logging for al signals currently logged. Optional.
-depth <level>

Restricts arecursive search (specified with the -recur sive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify -
depth 1, the command descends only one level in the hierarchy. Optional.

-howmany

Returns an integer indicating the number of signals found. Optional.

-in

Turns off logging only for ports of mode IN whose hames match the specification. Optional.
-inout

Turns off logging only for ports of mode INOUT whose names match the specification.
Optional.

-interna

Turns off logging only for internal (non-port) objects whose names match the specification.
Optional.

-out

Turns off logging only for ports of mode OUT whose names match the specification.
Optional.

-ports
Specifies that the scope of the search isto include all ports. Optional.

140

ModelSim Reference Manual, v6.3g
May 2008

Commands
nolog

e -recursive

Specifies that the scope of the search isto descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region. Y ou can use the -depth argument to
specify how far down the hierarchy to descend.

* -reset
Turns logging back on for al unlogged signals. Optional.
e <oObject_name>...

Specifies the object name which you want to unlog. Optional. Multiple object names may be
specified. Wildcard characters are allowed.

Examples
* Unlog all objectsin the design.
nolog -r /*
» Turnlogging back on for all unlogged signals.

nol og -reset

See also
add list, add wave, log

ModelSim Reference Manual, v6.3g 141
May 2008

Commands
notepad

notepad

The notepad command opens a simple text editor. It may be used to view and edit ASCII files
or create new files.

This mode can be changed from the Notepad Edit menu.
Returns nothing.

Syntax
notepad [<filename>] [-r | -edit]
Arguments
o <filename>
Name of the file to be displayed. Optional.
o -r|-edit

Selects the notepad editing mode: -r for read-only, and -edit for edit mode. Optional. Edit
mode is the default.

142 ModelSim Reference Manual, v6.3g
May 2008

Commands
noview

noview

The noview command closes a window/pane in the Model Sim GUI. To open a window/pane,
use the view command.

Syntax

noview [<class>] [<window_name>...]

Arguments
* <class>

Specifiesaclass of windowsin the MDI frameto close. All windowsin that classwill close.
Valid valuesinclude: Source, List, Wave, and Memory. Optional.

e <window_name>...

Specifies the window/pane to close. Wildcards and multiple window/pane types may be
used. At least one type (or wildcard) is required. Available window types are:

dataflow, list, locals, nenory, objects, process, profilemain,
profil edetails, signals, structure, variables, wave, watch, and
wor kspace

Y ou can aso close Source windows using the tab or file name.

Examples
¢ Closethe Wave window named "wavel".

novi ew wavel

¢ Closeadl List windows.

novi ew Li st

See also

view

ModelSim Reference Manual, v6.3g 143
May 2008

Commands
nowhen

nowhen
The nowhen command deactivates selected when commands.

Syntax
nowhen [<label>]

Arguments
o <label>

Specifies an individual when command. Optional. Wildcards may be used to select more
than one when command.

Examples
* Thisnowhen command deactivates the when command labeled 99.
when -l abel 99 b {echo “b changed”}
nowhen 99
» Thisnowhen command deactivates all when commands.

nowhen *

144 ModelSim Reference Manual, v6.3g
May 2008

Commands
onbreak

onbreak

The onbreak command is used within a macro, which must be followed by arun command to
take effect. It specifies one or more commands to be executed when running a macro that
encounters a breakpoint in the source code.

Using the onbreak command without arguments will return the current onbreak command
string. An onbreak command can contain macro calls.

The default behavior for the onbreak command is the resume command.
Use an empty string to change the onbreak command back to its default behavior:
onbreak ""

In this case, the macro will be interrupted after a breakpoint occurs (after any associated bp
command string is executed).

Syntax

onbreak {[<command> [; <command>] ...]}

Arguments
e <command>

Any command can be used as an argument to onbreak. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines. The
entire command string must be placed in curly braces. Y ou must use the onbreak command
before arun, run -continue, or step command. It is an error to execute any commands
within an onbreak command string following any of the run commands. This restriction
appliesto any macros or Tcl procedures used in the onbreak command string. Optional.

Examples

» Examinethe value of the HDL object data when a breakpoint is encountered. Then
continue the run command.

onbreak {exa data ; cont}

* Resume execution of the macro file on encountering a breakpoint.

onbreak {resune}

* Thisset of commandstest for assertions. Assertions are treated as breakpointsif the
severity level is greater than or equal to the current BreakOnA ssertion variable setting
(refer to “ Simulator Control Variables’). By default a severity level of failure or above
causes a breakpoint; a severity level of error or below does not.

ModelSim Reference Manual, v6.3g 145
May 2008

Commands
onbreak

set broken O
onbreak {
set broken 1
resune

run -all

if { $broken } {
puts "failure"

} else {

puts "success"

}

See also
abort, bd, bp, do, onerror, resume, status

146 ModelSim Reference Manual, v6.3g
May 2008

Commands
onElabError

onElabError

The onElabError command specifies one or more commands to be executed when an error is
encountered during the elaboration portion of avsim command. The command is used by
placing it within a macro.

Use the onElabError command without arguments to return to a prompt.

Syntax
onElabError {[<command> [; <command>] ...]}

Arguments
e <command>

Any command can be used as an argument to onElabError. If you want to use more than
one command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Optional.

See also

do

ModelSim Reference Manual, v6.3g 147
May 2008

Commands
onerror

onerror

The onerror command is used within a macro, placed before arun command; it specifies one
or more commands to be executed when a running macro encounters an error.

Using the onerror command without arguments will return the current onerror command
string. Use an empty string to change the onerror command back to its default behavior (i.e.,
onerror ""). Use onerror with aresume command to allow an error message to be printed
without halting the execution of the macro file.

Y ou can also set the global OnErrorDefaultAction Tcl variable to dictate what action Model Sim
takes when an error occurs. To set the variable on a permanent basis, you must define the
variable in amodelsim.tcl file (Refer to “The modelsim.tcl File” for details).

The onerror command is executed when a Tcl command encounters an error in the macro file
that contains the onerror command (note that arun command does not necessarily need to be
in process). Conversely, OnErrorDefaultAction will run even if the macro does not contain a
local onerror command. This can be useful when you run a series of macros from one script,
and you want the same behavior across al macros.

Syntax

onerror {[<command> [; <command>] ...]}

Arguments
¢ <command>

Any command can be used as an argument to onerror. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines. The
entire command string must be placed in curly braces. Optional.

Example
» Forcethe ssimulator to quit if an error is encountered while the macro is running.

onerror {quit -f}

See also
abort, do, onbreak, resume, status

148 ModelSim Reference Manual, v6.3g
May 2008

Commands
pause

pause

The pause command placed within amacro interrupts the execution of that macro, allowing you
to perform interactive debugging of the macro file.

Syntax
pause
Arguments
* None.
Description
When you execute a macro and that macro gets interrupted, the prompt will change to:
VS| M paused) >
This*pause” prompt reminds you that a macro has been interrupted.

When amacro is paused, you may invoke another macro, and if that one gets interrupted, you
may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the status command. It will show you which
macros are interrupted, at what line number, and show you the interrupted command.

To resume the execution of the macro, use the resume command. To abort the execution of a
macro use the abort command.

See also

abort, do, resume, run, status

ModelSim Reference Manual, v6.3g 149
May 2008

Commands
precision

precision

The precision command determines how real numbers display in the graphic interface (e.g.,
Objects, Wave, Locals, and List windows). It does not affect the internal representation of areal
number and therefore precision values over 17 are not allowed.

Using the precision command without any arguments displays the current precision setting.
Syntax

precision [<digits>[#]]
Arguments

o <digits>[#]

Specifies the number of digitsto display. Optional. Default is 6. Trailing zeros are not
displayed unless you append the '# sign. See examples for more details.

Examples
* Resultsin 4 digits of precision.
precision 4
For example:
1.234 or 6543
* Resultsin 8 digits of precision including trailing zeros.
preci sion 8#
For example:
1. 2345600 or 6543.2100
* Resultsin 8 digits of precision but doesn’t print trailing zeros.
precision 8
For example:
1.23456 or 6543.21

150 ModelSim Reference Manual, v6.3g
May 2008

Commands
printenv

printenv

The printenv command prints to the Transcript pane the current names and values of all
environment variables.

If variable names are given as arguments, prints only the names and values of the specified
variables.

Syntax
printenv [<var>...]
Arguments
o <var>...
Specifies the name(s) of the environment variable(s) to print. Optional.
Examples
* Print all environment variable names and their current values.

printenv
For example,
CC = gcc
DI SPLAY = srl:0.0
» Print the specified environment variables:
printenv USER HOVE

USER = vince
HOVE = /scratch/srl/vince
ModelSim Reference Manual, v6.3g 151

May 2008

Commands
project

project

The project command is used to perform common operations on projects. Some of the project
commands must be used outside of a simulation session.

Syntax

project [addfile <filename> [<file type>] [<folder_name>]] | [addfolder <foldername>

[<folder_parent>]] | [calculateorder] | [closg] | [compileall [-Nn]] | [compileorder] |
[compileoutofdate [-n]] | [delete <filename>] | [env] | [history] | [new <home _dir>
<proj_name> [<defaultlibrary>] [<intiaini>] [<reference>]] | [open <project>] |
[removefile <filename>]

Arguments

addfile <filename> [<file_type>] [<folder_name>]

Addsthe specified file to the current open project. Optional. Y ou may also specifiy the HDL
file type and folder name in which the file will be placed. If no folder name is specified the
file will be placed in the top level folder.

addfolder <foldername> [<folder_parent>]

Creates afolder to contain the project. Optional. Y ou may also specify a parent folder for
the project folder. If unspecified, the project folder is placed at the top level.

calcul ateorder

Determines the compile order for the project by compiling each file, then moving any
compilesthat fail to the end of thelist. Thisis repeated until there are no more compile
errors. Optional.

close
Closes the current project. Optional.
compileall [-n]

Compilesall filesin the project using the defined compile order. Optional. The -n option
will return alist of the compile commands this command would execute, without actually
executing the compiles.

compileorder
Returns the current compile order list. Optional.
compileoutofdate [-n]

Compilesall filesthat have a newer date/time stamp than the last time the file was compiled.
Optional. The -n option will return alist of the compile commands this command would
execute, without actually executing the compiles.

delete <filename>
Deletes the specified project (.mpf) file. Optional.

152

ModelSim Reference Manual, v6.3g
May 2008

Commands
project

e ewv
Returns the current project file. Optional.

e history
Lists a history of manipulated projects. Optional. Must be used outside of a simulation
session.

e new <home_dir> <proj_name> [<defaultlibrary>] [<intialini>] [<reference>]

Creates anew project under a specified home directory with a specified name and optionally
adefault library. Optional. The name of the work library will default to "work" unless
specified. An optional modelsim.ini file can be specified as a seed for the project file by
using the initialini option. If initialini is an empty string, then Model Sim uses the current
modelsim.ini file when creating the project. Y ou must specify adefault library if you want to
specify initialini. A new project cannot be created while a project is currently open or a
simulation isin progress. The boolean "reference” option indicates if library mappings will
include an "others" clause back to theinitial .ini file (1) or copy all the mappings into the
new file (0).

e Oopen <project>

Closes any currently opened project and opens a specified project file (must be avalid .mpf
file), making it the current project. Changes the current working directory to the project's
directory. Optional. Must be used outside of a simulation session.

* removefile <filename>
Removes the specified file from the current project. Optional.
Examples

» Make /user/george/design/test3/test3.mpf the current project and changes the current
working directory to /user/george/design/test3.

proj ect open /user/george/design/test3/test3. npf
» Execute current project library build scripts.

proj ect conpil eall

ModelSim Reference Manual, v6.3g 153
May 2008

Commands
pwd

pwd
The Tcl pwd command displays the current directory path in the Transcript pane.

Syntax
pwd

Arguments
* None

154 ModelSim Reference Manual, v6.3g
May 2008

Commands
quietly

quietly
The quietly command turns off transcript echoing for the specified command.

Syntax

quietly <command>

Arguments
e <command>

Specifies the command for which to disable transcript echoing. Required. Any results
normally echoed by the specified command will not be written to the Transcript pane. To
disable echoing for all commands use the transcript command with the -quietly option.

See also

transcript

ModelSim Reference Manual, v6.3g 155
May 2008

Commands
quit

quit
The quit command exits the ssimulator.

If you want to stop the simulation using awhen command, you must use a stop command within
your when statement, you must not use an exit or aquit command. The stop command acts like
abreakpoint at the time it is evaluated.

Syntax

quit [-f | -force] [-sim] [-code <integer>]
Arguments

« -f|-force

Quits without asking for confirmation. Optional. If omitted, Model Sim asks you for
confirmation before exiting. (The -f and -force arguments are equivalent.)

e -sim
Unloads the current design in the simulator without exiting Model Sim. All files opened by
the ssimulation will be closed including the WLF file (vsim.wif).

e -code <integer>
Quits the simulation and issues an exit code.

<integer> — Thisisthe value of the exit code. Y ou should not specify an exit code that
already existsin thetool. Refer to the section "Exit Codes" in the User’s Manual for a
list of existing exit codes. Y ou can aso specify avariablein place of the <integer>.

Y ou should always print a message before executing the quit -code command to explicitly
state the reason for exiting.

Examples

Refer to the Examples section of the exit command for an example of using the -code argument.
The quit and exit commands behave similarly in this regard.

156 ModelSim Reference Manual, v6.3g
May 2008

Commands
radix

radix

The radix command specifies the default radix to be used for the current simulation.

The command can be used at any time. The specified radix is used for all commands (force,
examine, change, etc.) aswell asfor displayed valuesin the Objects, Locals, Dataflow, List, and
Wave windows.

Alternate methods for changing the default radix:

* Inthe modelsim.ini file, edit the DefaultRadix variable.

* Choose Simulate > Runtime Options from the main menu, click the Defaults tab,
make your selection in the Default Radix box.

Syntax

radix [-symbolic | -binary | -octal | -decimal | -hexadecimal | -unsigned | -ascii | -time]

Arguments

Y ou can abbreviate the following arguments to any length. For example, -dec is equivalent to
-decimal.

-symbolic

Displays valuesin aform closest to their natural form. Optional.
-binary

Displays valuesin binary format. Optional.

-octal

Displays valuesin octal format. Optional.

-decimal

Displays values in decimal format. Y ou can specify -signed as an alias for this argument.
Optional.

-hexadecimal

Displays values in hexadecimal format. Optional.

-unsigned

Displays values in unsigned decimal format. Optional.

-ascii

Display a Verilog object as a string equivalent using 8-bit character encoding. Optional.
-time

Displays values of time for register-based typesin Verilog. Optional.

<no argument>

Returns the current radix setting.

ModelSim Reference Manual, v6.3g 157
May 2008

Commands
radix

See also
User-Defined Radices, radix define, radix names, radix list, radix delete

158 ModelSim Reference Manual, v6.3g
May 2008

Commands
radix define

radix define

The radix define command is used to create or modify a user-defined radix. A user definable
radix is used to map bit patternsto a set of enumeration labels. User-defined radices are
available for use in the Wave and List windows or with the examine command.

Syntax
radix define <name> <definition_body>

Arguments

<name>

User-specified name for the radix. Required.

<definition_body>

A list of number pattern, label pairs. Required. The definition body has the form:
{

<nuneri c-val ue> <enum| abel >,
<nuneri c-val ue> <enum| abel >
-default <radi x_type>

}

A <numeric-value> is any legitimate HDL integer numeric literal. To be more specific:
<base>#<base-integer># --- <base>is 2, 8, 10, or 16

<base>"bi t-val ue" --- <base>is B, O or X

<i nt eger >

<si ze>' <base><nunber > --- <size>is an integer, <bhase>is b, d, o, or h.

Check the Verilog and VHDL LRM's for exact definitions of these numeric literals.

The commay(,) in the definition body is optional. The <enum-label> isany arbitrary string. It
should be quoted (") especialy if it contains spaces.

The -default entry is optional. If present, it defines the radix to use if amatch is not found
for agiven value. The -default entry can appear anywherein thelist, it does not have to be at
the end.

Example

» Theradix define command used to create aradix called “ States,” which will display
state valuesin the List, Watch, and Wave windows instead of numeric values.

radi x define States {

11' bOOO0O0O0O00001 "I DLE",

11' bOO0O00000010 "CTRL",

11' bOO0O00000100 "WI_WD 1",
11' bOO0O00001000 "WI_WD 2",
11' bOO0O00010000 "W _BLK 1",
11' bO0000100000 "WI_BLK 2",
11' bO0O001000000 "WI_BLK 3",
11' b00010000000 "WI_BLK 4",
11' b00100000000 "WI_BLK 5",

ModelSim Reference Manual, v6.3g 159

May 2008

Commands

radix define
11' b01000000000 "RD WD 1",
11' b10000000000 "RD WD 2",
-default hex
}
See also

User-Defined Radices, radix, radix names, radix list, radix delete

160 ModelSim Reference Manual, v6.3g
May 2008

Commands
radix names

radix names
The radix names command returns alist of currently defined radix names.

Syntax
radix name
Arguments

None

See also
User-Defined Radices, radix, radix define, radix list, radix delete

ModelSim Reference Manual, v6.3g 161
May 2008

Commands
radix list

radix list

Theradix list command will return the complete definition of aradix, if anameisgiven. If no
nameisgiven, it will list all the defined radices.

Syntax
radix list [<name>]
Arguments
e <name>
Returns the complete definition of the named radix. Optional .

See also
User-Defined Radices, radix, radix define, radix names, radix delete

162 ModelSim Reference Manual, v6.3g
May 2008

Commands
radix delete

radix delete
Theradix delete command will remove the radix definition from the named radix.

Syntax
radix delete <name>

Arguments

e <name>
Removes the radix definition from the named radix. Required.

See also
User-Defined Radices, radix, radix define, radix names, radix list

ModelSim Reference Manual, v6.3g 163
May 2008

Commands
readers

readers
The readers command displays the names of all readers of the specified object.

The reader list is expressed relative to the top-most design signal/net connected to the specified
object.

Syntax
readers <object_name>

Arguments
e <object_name>

Specifies the name of the signal or net whose readers are to be shown. Required. All signal
or net types are valid. Multiple names and wildcards are accepted.

See also

drivers

164 ModelSim Reference Manual, v6.3g
May 2008

Commands
report

report

Thereport command displays the value of all ssmulator control variables, or the value of any
simulator state variables relevant to the current ssmulation.

Syntax
report simulator control | simulator state

Arguments
* simulator control
Displays the current values for al simulator control variables.

e simulator state
Displays the ssimulator state variables relevant to the current simulation.

Examples
» Display all smulator control variables.

report sinmulator control

UserTi meUnit = ns
RunLength =
IterationLimt = 5000
Br eakOnAsserti on
Def aul t For ceKi nd
I gnoreNote = 0
| gnor eVr ni ng
I gnoreError =
I gnoreFail ure
I gnoreSVAI nfo= 1
| gnor eSVAVAr ni ng

defaul t

0

1ol

0

=1

| gnor eSVAErr or 0

| gnor eSVAFat al 0
Checkpoi nt Conpr essWbde =
Nuneri cSt dNoWarnings = 0
St dAri t hNoWarni ngs = 0
Pat hSeparator =/

Def aul t Radi x = synbolic
Del ayFil eQpen = 1

WLFFi | enane = vsimw f
WLFTi neLi mt
WLFSi zeLi it

1

HHEFRHFHFHFHFHFHFHFEHRFEHFEHFEHFHHHHHR

=0
=0

» Digplay al smulator state variables. Only the variables that relate to the design being
simulated are displayed:

report sinmulator state

ModelSim Reference Manual, v6.3g 165
May 2008

Commands
report

now = 0.0
delta =0
library = work
entity = type_cl ocks
architecture = full
resolution = 1ns

HHFEHHFH

Viewing preference variables

Preference variables have more to do with the way things look (but not entirely) rather than
controlling the simulator. Y ou can view preference variables from the Preferences dialog box.
Select Tools > Edit Preferences (Main window).

See also
Simulator Control Variables, Simulator GUI Preferences

166 ModelSim Reference Manual, v6.3g
May 2008

Commands
restart

restart

Therestart command reloads the design elements and resets the simulation time to zero. Only
design elements that have changed are reloaded. (Note that SDF files are aways reread during a
restart.)

Shared libraries are handled as follows during a restart:

e Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless the -keeploaded option to the veim
command is used).

» Shared libraries |oaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded (unless you specify the -keeploaded
argument to vsim).

» Shared librariesthat implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for aforeign architecture.

Y ou can configure defaults for the restart command by setting the DefaultRestartOptions
variable in the modelsim.ini file. Refer to “ Restart Command Defaults’.

To handle restarts with Verilog PLI applications, you need to define aVerilog user-defined task
or function, and register amisctf class of callback. To handle restarts with Verilog VPI
applications, you need to register reset callbacks. To handle restarts with VHDL FLI
applications, you need to register restart callbacks. Refer to “Verilog PLI/VPI/DPI” for more
information on the Verilog PLI/VPI/DPI and the Model Sm FLI Reference for moreinformation
on the FLI.

Syntax

restart [-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Arguments
» -force

Specifies that the simulation will be restarted without requiring confirmation in a popup
window. Optional.

* -nobreakpoint

Specifiesthat all breakpoints will be removed when the simulation is restarted. Optional.
The default isfor all breakpoints to be reinstalled after the simulation is restarted.

¢ -nolist

Specifiesthat the current List window environment will not be maintained after the
simulationisrestarted. Optional. The default isfor al currently listed HDL objects and their
formats to be maintained.

ModelSim Reference Manual, v6.3g 167
May 2008

Commands
restart

* -nolog

Specifiesthat the current logging environment will not be maintained after the smulationis
restarted. Optional. The default isfor al currently logged objects to continue to be logged.

* -nowave

Specifies that the current Wave window environment will not be maintained after the
simulation isrestarted. Optional. The default isfor all objects displayed in the Wave
window to remain in the window with the same format.

See also

vsim

168 ModelSim Reference Manual, v6.3g
May 2008

Commands
resume

resume

The resume command is used to resume execution of amacro file after a pause command or a
breakpoint.

It may beinput manually or placed in an onbreak command string. (Placing aresume command
in abp command string does not have this effect.) The resume command can also be used in an

onerror command string to allow an error message to be printed without halting the execution of
the macrofile.

Syntax
resume

Arguments
* None

See also

abort, do, onbreak, onerror, pause

ModelSim Reference Manual, v6.3g 169
May 2008

Commands

run

run

The run command advances the simulation by the specified number of timesteps.

Syntax

run [<timesteps>[<time_units>]] | [-all] | [-continue] | [-next] | [-step] | [-over]

Arguments

<timesteps>[<time_units>]

Specifies the number of timesteps for the simulation to run. The number may be fractional,
or may be specified absolute by preceding the value with the character @. Optional. In
addition, optional <time_units> may be specified as:

fs, pPsS, ns, us, B, Or sec
The default <timesteps> and <time_units> specifications can be changed during a
Model Sim session by selecting Simulate > Simulation Options (Main window). Time

steps and time units may also be set with the RunLength and UserTimeUnit variablesin the
modelsim.ini file.

-all

Causes the simulator to run the current ssmulation forever, or until it hits a breakpoint or
specified break event. Optional .

-continue

Continues the last ssmulation run after a step command, step -over command or a
breakpoint. A run -continue command may be input manually or used as the last command
in abp command string. Optional.

-next

Causes the simulator to run to the next event time. Optional.
_gep

Steps the simulator to the next HDL statement. Optional.
-over

Specifiesthat VHDL procedures, functions and Verilog tasks are to be executed but treated
as simple statements instead of entered and traced line by line. Optional.

Examples

» Advance the ssmulator 1000 timesteps.
run 1000

» Advance the ssimulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run 10.4 ns

170

ModelSim Reference Manual, v6.3g
May 2008

Commands

run
» Advance the smulator to timestep 8000.
run @000
See also
step
ModelSim Reference Manual, v6.3g 171

May 2008

Commands
runStatus

runStatus

The runStatus command returns the current state of your simulation after issuing arun or step
command.

Syntax
runStatus [-full]

Arguments
o full
appends additional information to the output of the runStatus command.
Results

The output of the runStatus command is described in Table 2-2 (runStatus results) and
Table 2-3 (runStatus -full results).

Table 2-2. runStatus Command States

State Description

ready The design isloaded and is ready to run.

break The simulation stopped before completing the requested run.
error The simulation stopped due to an error condition.

loading The simulation is currently elaborating.

nodesign There is no design loaded.

checkpoint A checkpoint is being created, do not interrupt this process.
cready The design isloaded and is ready to run in C debug mode.
initializing The user interface initialization isin progress.

Table 2-3. runStatus -full Command Information

-full Information Description
bkpt stopped at breakpoint
bkpt_builtin stopped at breakpoint on builtin process
end reached end of requested run
fatal_error encountered fatal error (such as, divide by 0)
iteration_limit iteration limit reached, possible feedback loop
silent_halt mti_BreakSilent() called,
step run -step completed
step_builtin run -step completed on builtin process
172 ModelSim Reference Manual, v6.3g

May 2008

Commands
runStatus

Table 2-3. runStatus -full Command Information

-full Information

Description

step_wait_suspend

run -step completed, time advanced.

user_break run interrupted do to break-key or *C (SIGINT)
user_halt mti_Break() called.
user_stop stop or finish requested from vpi, stop command, etc.

gate oscillation

Verilog gate iteration limit reached.

simulation_stop

pli stop_simulation() called.

Disables the generation of symbols for the debugging database in the library, which allows
source annotation.

ModelSim Reference Manual, v6.3g

May 2008

173

Commands
searchlog

searchlog

The sear chlog command searches one or more of the currently open logfiles for a specified
condition.

It can be used to search for rising or falling edges, for signals equal to a specified value, or for
when a generalized expression becomes true.

Syntax
searchlog [-count <n>] [-deltas] [-env <path>] [-expr { <expr>}] [-reverse]
[-rising | -falling | -anyedge] [-startDelta <num>] [-value <string>] <startTime> <pattern>
Description

If at least one match isfound, it returns the time (and optionally delta) at which the last match
occurred and the number of matches found, inaTcl list:

{{<tinme>} <matchCount >}

where <time> isin the format <number> <unit>. If the -deltas option is specified, the delta of
the last match is aso returned:

{{<tinme>} <delta> <matchCount >}

If no matches are found, aTCL_ERROR isreturned. If one or more matches are found, but less
than the number requested, it is not considered an error condition, and the time of the farthest
match is returned, with the count of the matches found.

Arguments
e -count <n>

Specifies to search for the nth occurrence of the match condition, where <n> is a positive
integer. Optional.

¢ -ddltas

Indicates to test for amatch on simulation delta cycles. Otherwise, matches are only tested
for at the end of each simulation time step. Optional.

* -env <path>
Provides adesign region in which to look for the signal names. Optional.
* -expr {<expr>}

Specifies ageneral expression of signal values and simulation time. Optional. sear chlog
will search until the expression evaluatesto true. The expression must have a boolean result
type. See GUI_expression_format for the format of the expression.

* -reverse
Specifies to search backwards in time from <startTime>. Optional.

174 ModelSim Reference Manual, v6.3g
May 2008

Commands
searchlog

 -rising | -faling | -anyedge

Specifies an edge to look for on a scalar signal. Optional. This option isignored for
compound signals. If no options are specified, the default is -anyedge.

* -startDelta<num>

Indicates a simulation delta cycle on which to start. Optional.
e -vaue<string>

Specifies to search until asingle scalar or compound signal takes on this value. Optional.
o <startTime>

Specifies the simulation time at which to start the search. Required. The time may be
specified as an integer number of simulation units, or as {<num> <timeUnit>}, where
<num> can beinteger or with adecimal point, and <timeUnit> isone of the standard VHDL
time units (fs, ps, ns, us, Ms, Sec).

e <pattern>

Specifies one or more signal names or wildcard patterns of signal names to search on.
Required unless the -expr argument is used.

See also

virtual signal, virtual log, virtual nolog

ModelSim Reference Manual, v6.3g 175
May 2008

Commands
see

sSee

The see command displays the specified number of source file lines around the current
execution line. By default, five lines will be displayed before and four lines after.

Syntax

see [<n> | <pre> <post>]
Arguments

e <n>

Designates the number of lines to display before and after the current execution line.
Optional.

 <pre>
Designates the number of lines to display before the current execution line. Optional.
. <pOSt>
Designates the number of lines to display after the current execution line. Optional.
Example
» Digplay 8 lines before and 6 lines after the current execution line.

see 8 6

176 ModelSim Reference Manual, v6.3g
May 2008

Commands
setenv

setenv

The setenv command changes or reports the current value of an environment variable. The
setting is not persistent—it is valid only for the current Model Sim session.

Syntax
setenv <varname> [<vaue>]

Arguments
e <varname>
The name of the environment variable you wish to set or check. Required.

¢ <vdue>

The value for the environment variable. Optional. If you don’'t specify avalue, ModelSim
reports the variable’s current value.

See also

unsetenv, printenv

ModelSim Reference Manual, v6.3g 177
May 2008

Commands
shift

shift

The shift command shifts macro parameter values left one place, so that the value of parameter
\$2 is assigned to parameter \$1, the value of parameter \$3 is assigned to \$2, etc. The previous
value of \$1 is discarded.

The shift command and macro parameters are used in macro files. If amacro file requires more
than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc variable.

Syntax
shift

Arguments
* None

Description

For amacro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named, the
value of the tenth parameter becomes the value of $9 and can be accessed from within the
macro file.

See also
do

178 ModelSim Reference Manual, v6.3g
May 2008

Commands
show

show
The show command lists HDL objects and subregions visible from the current environment.
The objects listed include:
* VHDL — signals, processes, constants, variables, and instances
* Verilog— nets, registers, tasks, functions, instances, variables, and memories

The show command returns formatted results to stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show command instead.

Syntax
show [-all] [<pathname>]

Arguments
o -dl
Displays all names at and below the specified path recursively. Optional.
e <pathname>

Specifies the pathname of the environment for which you want the objects and subregionsto
be listed. Optional; if omitted, the current environment is assumed.

Examples
» Listthe names of all the objects and subregion environments visible in the current
environment.
show

» List the names of all the objects and subregions visible in the environment named /uut.

show / uut

» List the names of all the objects and subregions visible in the environment named
sub_region whichisdirectly visible in the current environment.

show sub_regi on

See also
find

ModelSim Reference Manual, v6.3g 179
May 2008

Commands
simstats

simstats

The simstats command returns performance-rel ated statistics about elaboration and simulation.
The statistics measure the simulation kernal process (vsimk) for asingle invocation of vaim. If

you invoke vsim a second time, or restart the simulation, the current statistics are discarded and
new values are collected.

If executed without arguments, the command returns alist of pairslike the following:

{{el ab nenory} 0} {{elab working set} 7245824} {{elab tinme} 0.942645}
{{elab cpu tine} 0.190274} {{elab context} 0} {{elab page faults} 1549}
{menory 0} {{working set} 0} {tine 0} {{cpu time} O} {context O}
{{page faults} 0}

The elaboration statistics are measured one time at the end of elaboration. The simulation
memory statistics are measured at the time you invoke simstats. The simulation time statistics
are updated at the end of each run command. See the arguments below for descriptions of each
statistic.
Units for time values are in seconds. Units for memory values vary by platform:

» For SunOS and Linux, the memory sizeis reported in Kbytes

» For Windows, the memory sizeis reported in bytes.

Some of the values may not be available on all platforms and other values may be approximates.
Different operating systems report these numbers differently.

Syntax

simstats [memory | working | time | cpu | context | faults]

Arguments
* memory
Returns the amount of virtual memory that the OS has allocated for vsimk. Optional.
» working

Returns the portion of allocated virtual memory that is currently being used by vsimk.
Optional. If this number exceeds the actual memory size, you will encounter performance
degradation.

e time
Returns the cumulative "wall clock time" of al run commands. Optional.
* cpu

Returns the cumul ative processor time of all run commands. Optional. Processor time
differsfrom wall clock time in that processor time is only counted when the cpu is actually
running vsaimk. If vsimk is swapped out for another process, cpu time does not increase.

180 ModelSim Reference Manual, v6.3g
May 2008

Commands
simstats

e context

Returns the number of context swaps (vsimk being swapped out for another process) that
occurred during all run commands. Optional.

o faults
Returns the number of page faults that occurred during al run commands. Optional.

ModelSim Reference Manual, v6.3g 181
May 2008

Commands
status

status
The status command lists summary information about currently interrupted macros.

If invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak or onerror commands that have been defined for each interrupted macro.

Syntax
status [file | ling]
Arguments
« file
Reports the file pathname of the current macro.
e line
Reports the line number of the current macro.

Examples

The transcript below contains examples of resume, and status commands.

VS| M paused) > st at us
Macro resunme_test.do at line 3 (Current nacro)
command executing: "pause"
is Interrupted
ONBREAK commands: "resume"
Macro startup.do at line 34
command executing: "run 1000"
processi ng BREAKPO NT
is Interrupted
ONBREAK commands: "resumne"
VSI M paused) > resune
Resuni ng execution of nacro resune_test.do at line 4

HHEHRFEHRHFHH

See also

abort, do, pause, resume

182 ModelSim Reference Manual, v6.3g
May 2008

Commands
step

step

The step command steps to the next HDL or C statement. Current values of local HDL variables
may be observed at this time using the Locals window.

VHDL procedures and functions, Verilog tasks and functions, and C functions can optionally be
skipped over. When await statement or end of processis encountered, time advances to the next
scheduled activity. The Process and Source windows will then be updated to reflect the next
activity.

Syntax
step [-over] [<n>]

Arguments

e -over

Specifiesthat VHDL procedures and functions, Verilog tasks and functions, and C functions
should be executed but treated as simple statements instead of entered and traced line by
line. Optional.

o <>

Any integer. Optional. Will execute ‘n’ steps before returning.

See also
run

ModelSim Reference Manual, v6.3g 183
May 2008

Commands
stop

stop
The stop command is used with the when command to stop simulation in batch files.

The stop command has the same effect as hitting a breakpoint. The stop command may be
placed anywhere within the body of the when command.

Syntax
stop

Arguments
* None.

Description

Use the run command with the -continue option to continue the simulation run, or the resume
command to continue macro execution. If you want macro execution to resume automatically,
put the resume command at the top of your macro file:

onbreak {resune}

Note
D If you want to stop the simulation using awhen command, you must use a stop command

within your when statement. DO NOT use an exit command or aquit command. The stop
command acts like a breakpoint at the timeit is evaluated.

See also

bp, resume, run, when

184 ModelSim Reference Manual, v6.3g
May 2008

Commands
suppress

suppress

The suppress command prevents the specified message(s) from displaying. Y ou cannot
suppress Fatal or Internal messages. The suppress command used without arguments will
return the message numbers of all suppressed messages.

Edit the suppress variable in the modelsim.ini file to set a permanent default. Refer to
“Changing Message Severity Level” for more information.

Syntax

suppress [-clear <msg_number>[,<msg_number>,...]] [<msg_number>[,<msg_number>,...]]
Arguments

* -clear <msg_number>[,<msg_number>,...]

Clears message suppression of the message (or messages) designated by the message
number (or numbers). Optional.

e <msg_number>[,<msg_number>,...]

The number (or numbers) preceding the message (or messages) you wish to suppress. At
least one message number is required. Optional.

Examples
* Return the message numbers of all suppressed messages:
suppress
* Suppress designated messages.
suppress 8241, 8242, 8243, 8446, 8447

» Clear message suppression for the designated messages:

suppress -cl ear 8241, 8242

* Return the message numbers of all suppressed messages and clear suppression for all:

suppress -clear suppress

ModelSim Reference Manual, v6.3g 185
May 2008

Commands
tb

th

Thetb (traceback) command displays a stack trace for the current processin the Transcript
pane. Thislists the sequence of HDL function calls that have been entered to arrive at the
current state for the active process.

Syntax
th

Arguments
* None

186 ModelSim Reference Manual, v6.3g
May 2008

Commands
Time

Time

There are several Time commands that allow you to perform comparisons between, operations
on, and conversions of time values.

Syntax

eqTime <timel> <time2>

Returnsa 1 (true) or O (false) if <timel> and <time2> are equal.
negTime <timel> <time2>

Returnsal (true) or O (false) if <timel> and <time2> are not equal.
[tTime <timel> <time2>

Returnsa 1 (true) or O (false) if <timel> islessthan <time2>.
gtTime <timel> <time2>

Returnsa 1 (true) or O (false) if <timel> is greater than <time2>.
lteTime <timel> <time2>

Returnsa 1 (true) or O (false) if <timel> islessthan or equal to <time2>.
gteTime <timel> <time2>

Returnsa 1 (true) or O (false) if <timel> is greater than or equal to <time2>.
addTime <timel> <time2>

Returns the value of adding <timel> to <time2>
subTime <timel> <time2>

Returns the value of subtracting <time2> from <timel>
mul Time <timel> <integer>

Returns the value of multiplying <timel> by an <integer>
divTime <timel> <time2>

Returns an integer, which is the value of dividing <timel> by <time2>. Specifying O for
<time2> resultsin an error.

intToTime <high_32bit_int> <low_32bit_int>

Returns a 64-bit time value based on two 32-bit parts of a 64-bit integer. This command is
useful when you’ ve performed an integer calculation that resultsin a 64-bit value and need
to convert it to a time unit.

scaleTime <timel> <scale factor>
Returns atime value scaled by areal number and truncated to the current time resolution.
Rea ToTime <real>

ModelSim Reference Manual, v6.3g 187
May 2008

Commands
Time

Returns a time value equivalent to the specified real number and truncated to the current
time resolution.

vaidTime <time>

Returnsal (true) or O (false) if the given string isavalid time for use with any of these
Time calculations.

formatTime {+ |-} commas |{+ |-} nodefunit | {+ | -} bestunits
Sets display properties for time values.

Arguments
o <time>—

<number> — the command assumes that the <time_unit> is the current simulation time
unit, as defined by the Resolution variable in the modelsim.ini file or the -t switch to
the vsim command.

<number><time_unit> — note that there is no space is between the values.

<number> <time_unit>— note that if you put a space between the values, you must
enclose the argument in braces ({ }) or double-quotes (" ").

e <time_unit>—
fs— femtosecond (101° seconds)
ps — picosecond (1012 seconds)
ns — nanosecond (10" seconds)
us — microsecond (10" seconds)
ms — millisecond (102 seconds)
sec — second
min — minute (60 seconds)
hr — hour (3600 seconds)
e <high_32bit_int> | <low_32bit_int>
<high_32bit_int>— The "high" part of the 64-bit integer.
<low_32bit_int>— The "low" part of the 64-bit integer.
» <scale factor>— areal number to be used as scaling factor. Common values can include:

0.25, 0.5, 1.5, 2, 10, 100
e {+|-} commas— controls whether commas are displayed in time values.

+commas — time values include commas
-commas — time values do not include commas
e {+|-}nodefunit — controls whether time values display time units

+nodefunit — time values do not include time units and will bein current time
resolution

188 ModelSim Reference Manual, v6.3g
May 2008

Commands
Time

-nodefunit — time values may include time units

e {+|-}bestunits — controls whether time values display the largest possible time unit, for
example 8 us instead of 8,000 ns.

+bestunits — time values display the largest possible time unit
-bestunits — time values display the default time unit
Examples
* Thefollowing transcript shows examples of the Time commands and their output:

>l tTine 100ns 1ns
1

>addTi ne {1545 ns} {455 ns}
2 us

>gteTime "1000 ns" "1 us"
#1

>di vTi ne 1lus 10ns
100

>format Ti ne +bestuni t
>scal eTi ne 3nms 1000
3 sec

>Real ToTi ne 1. 345e04
13450 ns

ModelSim Reference Manual, v6.3g 189
May 2008

Commands
transcript

transcript
Thetranscript command controls echoing of commands executed in a macro file.
If no option is specified, the current setting is reported.

Syntax

transcript [on | off | -q | quietly]
Arguments

* on

Specifies that commands in amacro file will be echoed to the Transcript pane as they are
executed. Optional.

o Off

Specifies that commands in amacro file will not be echoed to the Transcript pane as they
are executed. Optional.

*q
Returns"0" if transcripting isturned off or "1" if transcripting isturned on. Useful inaTcl
conditional expression. Optional.

e Quietly

Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command. Optional.

Examples

» Commands within amacro file will be echoed to the Transcript pane asthey are
executed.

transcript on
» |f issued immediately after the previous example, the message:
transcri pt
Macro transcripting i s turned ON
appearsin the Transcript pane.

See also
Transcript Window, echo

190 ModelSim Reference Manual, v6.3g
May 2008

Commands
transcript file

transcript file

Thetranscript file command sets or queries the pathname for the transcript file. Y ou can use
this command to clear atranscript in batch mode or to limit the size of atranscript file. It offers
an alternative to setting the PrefMain(file) Tcl preference variable.

Syntax
transcript file [<filename>]

Arguments
o <filename>

Specifies the full path and filename for the transcript file. Optional. If you specify a new
file, the existing transcript file is closed and a new transcript file opened. If you specify an
empty string (""), the existing file is closed and no new fileis opened. If you don’t specify
this argument, the current setting is returned.

Examples

» Closethe current transcript file and stops writing data to the file. Thisis a method for
reducing the size of your transcript.

transcript file ""

» Thisseries of commands results in the transcript containing only data from the second
millisecond of the simulation. Thefirst transcript file command closes the transcript so
no data is being written to it. The second transcript file command opens a new
transcript and records data from 1 msto 2 ms.

transcript file ""

run 1 ns

transcript file transcript
run 1 ns

See also

Transcript Window

ModelSim Reference Manual, v6.3g 191
May 2008

Commands
tssi2mti

tssizmti

The tssi2mti command is used to convert a vector filein TSSI Format into a sequence of force
and run commands.

The stimulusis written to the standard output.
The source code for tssi2mti is provided in the file tssi2mti.c in the examples directory.

Syntax

tssi2mti <signal_definition_file> [<sef vector_file>]
Arguments

e <signal_definition_file>

Specifies the name of the TSSI signal definition file describing the format and content of the
vectors. Required.

o <sef vector file>

Specifies the name of the file containing vectors to be converted. If none is specified,
standard input is used. Optional.

Examples

* The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mi trigger.def trigger.sef > trigger.do

» Thisexample isthe same as the previous one, but uses the standard input instead.

tssi2mi trigger.def < trigger.sef > trigger.do

See also

force, run, write tss

192 ModelSim Reference Manual, v6.3g
May 2008

Commands
unsetenv

unsetenv
The unsetenv command deletes an environment variable. The deletion is not permanent—it is
valid only for the current Model Sim session.

Syntax
unsetenv <varname>

Arguments

e <varname>
The name of the environment variable you wish to delete. Required.

See also
setenv, printenv

ModelSim Reference Manual, v6.3g 193
May 2008

Commands
vcd add

vcd add
The ved add command adds the specified objectsto aVCD file.

The allowed objects are Verilog nets and variables and VHDL signals of type bit, bit_vector,
std _logic, and std_logic_vector (other types are silently ignored). The command works with
mixed HDL designs.

All ved add commands must be executed at the same simulation time. The specified objects are
added to the VCD header and their subsequent value changes are recorded in the specified VCD
file. By default all port driver changes and internal variable changes are captured in thefile.

Y ou can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Syntax

ved add [-r] [-in] [-out] [-inout] [-internal] [-ports] [-file <filename>] [-dumpports]

<object_name> ...

Arguments

-r

Specifies that signal and port selection occurs recursively into subregions. Optional. If
omitted, included signals and ports are limited to the current region.

-in

Includes only port driver changes from ports of mode IN. Optional.

-out

Includes only port driver changes from ports of mode OUT. Optional.

-inout

Includes only port driver changes from ports of mode INOUT. Optional.

-internal

Includes only internal variable or signal changes. Excludes port driver changes. Optional.
-ports

Includes only port driver changes. Excludes internal variable or signal changes. Optional.
-file <filename>

Specifies the name of the VCD file. This option should be used only when you have created
multiple VCD files using the vcd files command.

-dumpports

Specifies port driver changes to be added to an extended VCD file. Optional. When the ved
dumpports command cannot specify all port driver changes that will appear within the
VCD file, multiple ved add -dumpports commands can be used to specify additional port
driver changes.

194

ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd add

e <oObject_name> ...

Specifiesthe Verilog or VHDL object or objects to add to the VCD file. Required. Multiple
objects may be specified by separating names with spaces. Wildcards are accepted.

See also
“Value Change Dump (VCD) Files’. Verilog tasks are documented in the | EEE 1364 standard.

ModelSim Reference Manual, v6.3g 195
May 2008

Commands
vcd checkpoint

vcd checkpoint

The ved checkpoint command dumps the current values of all VCD variables to the specified
VCD file. While simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall

Syntax
vcd checkpoint [<filename>]

Arguments
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or "dump.ved” if ved file was not invoked.

See also
“Vaue Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the |IEEE 1364 standard.

196 ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd comment

vcd comment

The ved comment command inserts the specified comment in the specified VCD file.

Syntax

vced comment <comment string> [<filename>]

Arguments
e <comment string>

Comment to be included in the VCD file. Required. Must be quoted by double quotation
marks or curly braces.

¢ <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or "dump.ved" if ved file was not invoked.

See also
“Value Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the |IEEE 1364 standard.

ModelSim Reference Manual, v6.3g 197
May 2008

Commands
vcd dumpports

vcd dumpports
The ved dumpports command creates a VvV CD file that includes port driver data.
By default all port driver changes are captured in the file. Y ou can filter the output using
arguments detailed below. Related Verilog task: $dumpports
Syntax
vcd dumpports [-compress] [-direction] [-file <filename>] [-in] [-inout] [-out]
[-no_strength_range] [-unique] [-vcdstim] <object_name> ...
Arguments
e -compress

Produces a compressed VCD file. Optional. Model Sim uses the gzip compression
algorithm. If you specify a .gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compr ess argument.

* -direction
Includes driver direction datain the VCD file. Optional.
o -file <filename>

Specifies the path and name of aVVCD file to create. Optional. Defaults to the current
working directory and the filename dumpports.ved. Multiple filenames can be opened
during a single simulation.

* -in
Includes ports of mode IN. Optional.
e -inout
Includes ports of mode INOUT. Optional.
e -out
Includes ports of mode OUT. Optional.
* -no_strength_range

Ignores strength ranges when resolving driver values. Optional. This argument isan
extension to the IEEE 1364 specification. Refer to “Resolving Values’ for additional
information.

* -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

e -ycdstim

Ensures that port name order in the VCD file matches the declaration order in the instance’s
module or entity declaration. Optional. Refer to “Port Order Issues” for further information.

198 ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd dumpports

e <oObject_name> ...

Specifiesthe Verilog or VHDL object or objects to add to the VCD file. Required. Multiple
objects may be specified by separating names with spaces. Wildcards are accepted.

Examples
» Create aVCD file named counter.vcd of al IN portsin the region /test_design/dut/.

vcd dunpports -in -file counter.vecd /test_design/dut/*

» These two commands resimulate a design from aV CD file. Refer to “ Simulating with
Input Valuesfrom aVCD File” for further details.

vcd dunpports -file addern.vcd /testbench/uut/*
vsim -vcdsti m addern. ved addern -gn=8 -do "add wave /*; run 1000"

» Thisseries of commands creates VCD filesfor the instances proc and cache and then re-
simulates the design using the VCD filesin place of the instance source files. Refer to
“Replacing Instances with Output Values from aVCD File” for more information.

vcd dunpports -vcdstim-file proc.ved /top/p/*
vcd dunpports -vcdstim-file cache.ved /top/c/*
run 1000

vsimtop -vcdstim/top/ p=proc.vcd -vcdstim/top/c=cache. vcd

See also
“Vaue Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim Reference Manual, v6.3g 199
May 2008

Commands
vcd dumpportsall

vcd dumpportsall

The ved dumpportsall command creates a checkpoint in the VCD file which shows the value
of all selected ports at that time in the simulation, regardless of whether the port values have
changed since the last timestep.

Related Verilog task: $dumpportsall

Syntax
ved dumpportsall [<filename>]

Arguments
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also
“Value Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the IEEE 1364 standard.

200 ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd dumpportsflush

vcd dumpportsflush

The ved dumpportsflush command flushes the contents of the VCD file buffer to the specified
VCD file.

Related Verilog task: $dumpportsflush

Syntax
vcd dumpportsflush [<filename>]

Arguments
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also
“Vaue Change Dump (VCD) Files’, DumpportsCollapse

ModelSim Reference Manual, v6.3g 201
May 2008

Commands
vcd dumpportslimit

vcd dumpportslimit

The ved dumpportslimit command specifies the maximum size of the VCD file (by default,
limited to available disk space). When the size of the file exceeds the limit, acomment is
appended to the file and VCD dumping is disabled.

Related Verilog task: $dumpportslimit
Syntax

ved dumpportslimit <dumplimit> [<filename>]

Arguments
e <dumplimit>
Specifies the maximum VCD file sizein bytes. Required.
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also
“Vaue Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the |EEE 1364 standard.

202 ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd dumpportsoff

vcd dumpportsoff

The ved dumpportsoff command turns off VCD dumping and records all dumped port values
asX.

Related Verilog task: $dumpportsoff

Syntax
vcd dumpportsoff [<filename>]

Arguments
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also
“Vaue Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the |IEEE 1364 standard.

ModelSim Reference Manual, v6.3g 203
May 2008

Commands
vcd dumpportson

vcd dumpportson

The ved dumpportson command turns on VCD dumping and records the current values of all
selected ports. This command is typically used to resume dumping after invoking ved
dumpportsoff.

Related Verilog task: $dumpportson
Syntax

ved dumpportson [<filename>]

Arguments
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also
“Value Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the IEEE 1364 standard.

204 ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd file

vcd file

The ved file command specifies the filename and state mapping for the VCD file created by a
ved add command. The ved file command is optional. If used, it must be issued before any ved
add commands.

Related Verilog task: $dumpfile

Syntax

vcd file [-dumpports] [-direction] [<filename>] [-map <mapping pairs>] [-no_strength_range]

[-nomap] [-unique]

Arguments

-dumpports

Capture detailed port driver datafor Verilog ports and VHDL std_logic ports. Optional.
This option works only on ports, and any subsequent vcd add command will accept only
qualifying ports (silently ignoring all other specified objects).

-direction

Includes driver direction datain the VCD file. Optional.

<filename>

Specifies the name of the VCD filethat is created (the default is dump.vcd). Optional.

-map <mapping pairs>

Affectsonly VHDL signals of type std_logic. Optional. It allows you to override the default
mappings. The mapping is specified asalist of character pairs. Thefirst character in a pair

must be one of the std_logic characters UX01ZWLH- and the second character isthe
character you wish to be recorded in the VCD file. For example, to map L and H to z:

ved file -map "L z H z"
Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.
-no_strength_range

Ignores strength ranges when resolving driver values. Optional. This argument isan
extension to the IEEE 1364 specification. Refer to “Resolving Values’ for additional
information.

-nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values recorded
inthe VCD file shall usethe std_logic enumeration characters of UX01ZWLH-. Thisoption
results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

ModelSim Reference Manual, v6.3g 205
May 2008

Commands

vced file

VHDL VCD VHDL VCD
U X W X

X X L 0

0 0 H 1

1 1 - X

4 z

* -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

See also
“Value Change Dump (VCD) Files’, vcd files, DumpportsCollapse
Verilog tasks are documented in the |IEEE 1364 standard.

206 ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd files

vcd files

The ved files command specifies filenames and state mapping for VCD files created by the ved
add command. The vcd files command is optional. If used, it must be issued before any ved
add commands.

Related Verilog task: $fdumpfile

Syntax

vcd files [-compress] [-direction] <filename> [-map <mapping pairs>] [-no_strength _range]

[-nomap] [-unique]

Arguments

-compress

Produces a compressed VCD file. Optional. Model Sim uses the gzip compression
algorithm. If you specify a.gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compr ess argument.

-direction
Includes driver direction datain the VCD file. Optional.
<filename>

Specifies the name of aVCD fileto create. Required. Multiple files can be opened during a
single simulation; however, you can create only onefile at atime. If you want to create
multiple files, invoke vcd files multiple times.

-map <mapping pairs>

Affectsonly VHDL signals of type std_logic. Optional. It allows you to override the default
mappings. The mapping is specified asalist of character pairs. The first character in a pair
must be one of the std_logic characters UX01ZWLH- and the second character is the
character you wish to be recorded in the VCD file. For example, to map L and H to z:

vced files -map "L z H z"
Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.
-no_strength_range
Ignores strength ranges when resolving driver values. Optional. Thisargument is an
extension to the IEEE 1364 specification. Refer to “Resolving Vaues’ for additional
information.
-nomap

Affectsonly VHDL signals of type std_logic. Optional. It specifies that the values recorded
inthe VCD file shall usethe std_logic enumeration characters of UX01ZWLH-. Thisoption

ModelSim Reference Manual, v6.3g 207
May 2008

Commands
vcd files

results in a non-standard V CD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

VHDL VCD VHDL VCD
U X W X

X X L 0

0 0 H 1

1 1 - X

Z z

e -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

Examples

The following example shows how to "mask" outputs from aVCD file until a certain time after
the start of the ssmulation. The example uses two vcd files commands and the ved on and ved
off commands to accomplish this task.

ved files in_inout.ved

ved files output.ved

ved add -in -inout -file in_inout.vecd /*
vcd add -out -file output.ved /*

vced of f output. ved

run lus

vcd on out put.ved

run -al

See also
“Value Change Dump (VCD) Files’, vcd file, DumpportsCol lapse
Verilog tasks are documented in the |EEE 1364 standard.

208 ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd flush

vcd flush

The ved flush command flushes the contents of the VCD file buffer to the specified VCD file.
This command is useful if you want to create a complete VCD file without ending your current
simulation.

Related Verilog tasks: $dumpflush, $fdumpflush

Syntax
ved flush [<filename>]

Arguments
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

See also
“Value Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the IEEE 1364 standard.

ModelSim Reference Manual, v6.3g 209
May 2008

Commands
ved limit

ved limit

The ved limit command specifies the maximum size of aVCD file (by default, limited to
available disk space).

When the size of the file exceedsthe limit, acomment is appended to thefile and VCD dumping
is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit
Syntax

ved limit <filesize> [<filename>]

Arguments
o <filesize>

(Required) Specifies the maximum VCD file size, in bytes. The numerical value of
<filesize> can only be awhole number. Y ou can use a unit multiplier of either Kb, Mb, or
Gb with the numerical value (multipliers are caseinsensitive). Do not insert a space between
the numerical value and the multiplier (for example, 400Mb, not 400 Mb).

o <filename>

(Optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the vcd file command or dump.ved if ved file was not invoked.

Example

» Specify amaximum VCD file size of 6 gigabytesand aVCD file named
my_vcd file.ved.

ved limt 6gb nmy_ved file.ved

See also
“Value Change Dump (VCD) Files’, DumpportsCollapse
Verilog tasks are documented in the |EEE 1364 standard.

210 ModelSim Reference Manual, v6.3g
May 2008

Commands
vcd off

vcd off

The ved off command turns off VCD dumping to the specified file and records all VCD
variable values as x.

Related Verilog tasks: $dumpoff, $fdumpoff

Syntax
ved of f [<filename>]

Arguments
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or dump.ved if ved file was not invoked.

See also
“Value Change Dump (VCD) Files’., DumpportsCollapse
Verilog tasks are documented in the |IEEE 1364 standard.

ModelSim Reference Manual, v6.3g 211
May 2008

Commands
ved on

vcd on

The ved on command turns on VCD dumping to the specified file and records the current
values of al VCD variables.

By default, ved on is automatically performed at the end of the simulation time that the ved add
commands are performed.

Related Verilog tasks: $dumpon, $fdumpon

Syntax
vcd on [<filename>]

Arguments
o <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

See also
“Value Change Dump (VCD) Files’, DumpportsCollapse
Verilog system tasks are documented in the |EEE 1364 standard.

212 ModelSim Reference Manual, v6.3g
May 2008

Commands
ved2wlf

ved2wlf

ved2wlf isautility that trandates aVCD (Vaue Change Dump) fileinto a WLF file that you
can display in Model Sim using the vsim -view argument. This command only works on VCD
files containing positive time values.

Description

The ved2wlf command functions as simple one-pass converter. If you are defining abusin a
VCD file, you must specify al bus bits before the next $scope or $upscope statement appearsin
the file. The best way to ensure that bits get converted together as abusisto declare them on
consecutive lines.

For example:

Line 21 : $var wire 1 $in [2] $end
Line 22 : $var wire 1 $u in [1] $end
Line 23 : $var wire 1 # in [0] $end

Syntax

ved2wilf [-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>] [-nocase]

<vcd filename> <wif filename>

Arguments

-splitio

Specifies that extended VCD port values are to be split into their corresponding input and
output components by creating 2 signalsinstead of just 1 in the resulting .wif file. Optional.
By default the new input-component signal keeps the same name as the original port name
while the output-component name is the original name with " __ 0" appended to it.

-splitio_in_ext <extension>

Specifies an extension to add to input-component signal names created by using -splitio.
Optional.

-splitio_out_ext <extension>

Specifies an extension to add to output-component signal names created by using -splitio.
Optional.

-nocase

Converts all aphabetic identifiers to lowercase. Optional.

<vcd filename>

Specifies the name of the VCD file you want to trandlate into a WLF file. Required.
<wlIf filename>

Specifies the name of the output WLF file. Required.

See also
“Vaue Change Dump (VCD) Files”

ModelSim Reference Manual, v6.3g 213
May 2008

Commands

vcom

vcom

The vcom command compiles VHDL source code into a specified working library (or to the
work library by default).

Y ou can invoke vcom either from within Model Sim or from the command prompt of your
operating system. Y ou can invoke this command during simulation.

Compiled libraries are dependent on the major version of Model Sim. When moving between
major versions, you must refresh compiled libraries using the -r efr esh argument to vcom. This
is not required for minor versions (letter rel eases).

All
not

Synt

arguments to the vcom command are case-sensitive. For example, -WORK and -work are
equivalent.

ax

vcom [-87] [-93] [-2002] [-amsstd | -noamsstd] [-bindAtCompile] [-bindAtL oad]

[-check synthesis] [-debugV A] [-deferSubpgmCheck] [-explicit] [-f <filename>]
[-fsmnoresettrans] [-force _refresh <design_unit>] [-gen_xml <design_unit> <filename>]
[-help] [-ignoredefaultbinding] [-ignorevitalerrors] [-just abcep] [-line <number>] [-lint]
[-n01164] [-noaccel <package name>] [-nocasestaticerror] [-nocheck]
[-nocoverrespecthandl] [-nodbgsym] [-noDefer SubpgmCheck] [-noindexcheck] [-nologo]
[-nonstddriverinit] [-noothersstaticerror] [-norangecheck]

[-note <msg_number> [,<msg_number>, ...]] [-novital] [-novital check]

[-nowarn <category _number>] [-OQ]

[-pedanticerrors] [-performdefaultbinding] [-quiet] [-rangecheck] [-refresh]

[-s] [-skip abcep] [-source]

[-time] [-togglecountlimit] [-togglewidthlimit] [-version]

[-suppress <msg_number>[,<msg_number>,...]]

[-error <msg_number>[,<msg_number>,...]]

[-warning <msg_number>[,<msg_number>,...]]

[-fatal <msg_number>[,<msg_number>,...]]

[-work <library _name>] <filename>

Arguments

-87

Disables support for VHDL-1993 and 2002. Optional. Default is -2002. See additional
discussion in the examples. Y ou can modify the VHDL 93 variable in the modelsim.ini file
to set this permanently (Refer to “ Simulator Control Variables’).

-93

Disables support for VHDL-1987 and 2002. Optional. Default is -2002. See additional
discussion in the examples. Y ou can modify the VHDL 93 variable in the modelsim.ini file
to set this permanently.

214

ModelSim Reference Manual, v6.3g
May 2008

Commands
vcom

e -2002

Specifies that the compiler isto support VHDL-2002. Optional. Thisis the default.
« -dlowProtectedBeforeBody

Allows avariable of a protected type to be created prior to declaring the body. Optional.
e -amsstd | -noamsstd

Specifies whether vcom adds the declaration of REAL_VECTOR to the STANDARD
package. Thisis useful for designersusing VHDL-AMS to test digital parts of their model.

-amsstd — REAL_VECTOR isincluded in STANDARD.
-noamsstd — REAL_VECTOR isnot included in STANDARD (default).

Y ou can also control this with the AmsStandard variable or the MGC_AMS HOME
environment variable.

e -bindAtCompile

Forces Model Sim to perform default binding at compile time rather than at load time.
Optional. Refer to “Default Binding” for more information. Y ou can change the permanent
default by editing the BindAtCompile variable in the modelsim.ini.

¢ -hindAtLoad

Forces Model Sim to perform default binding at load time rather than at compile time.
Optional. Default.

* -check_synthesis

Turns on limited synthesis rule compliance checking. Specificaly, it checks to see that
signals read by a process are in the sensitivity list. Optional. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis variable in the modelsim.ini
file to set a permanent default.

e -debugVA

Prints a confirmation if aVITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration. Optional.

» -deferSubpgmCheck

Forces the compiler to report array indexing and length errors as warnings (instead of as
errors) when encountered within subprograms. Subprograms with indexing and length
errors that are invoked during simulation cause the simulator to report errors, which can
potentially slow down simulation because of additional checking.

e -error <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "error.” Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

ModelSim Reference Manual, v6.3g 215
May 2008

Commands

vcom

-explicit

Directs the compiler to resolve ambiguous function overloading by favoring the explicit
function definition over the implicit function definition. Optional. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools choose
explicit operators over implicit operators. Using this switch makes Model Sim compatible
with common industry practice.

-f <filename>

Specifies afile with more command-line arguments. Optional. Allows complex argument
strings to be reused without retyping. Allows gzipped input files. Nesting of -f optionsis
allowed.

Refer to the section "Argument Files" for more information.
-fsmnoresettrans

Disables recognition of implicit asynchronous reset transitions. Optional. This has the effect
of excluding asynchronous reset transitions from any coverage results.

-fatal <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "fatal.” Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

-force refresh <design_unit>

Forces the refresh of all specified design units. Optional. By default, the work library is
updated; use -work <library_name>, in conjunction with -for ce_refresh, to update a
different library (for example, vcom -work <your_lib_name> -force refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the tool’ s dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim13) Reconpile /u/test/dware/dware _61le bet a. dwpackages
because /hone/ users/ questasinilinux/../synopsys.attributes has changed.

The -for ce_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -r efr esh argument.

A more conservative approach to working around -r efr esh dependency checksisto
recompile the source code, if it isavailable.

-gen_xml <design_unit> <filename>

Produces an XML -tagged file containing the interface definition of the specified entity.
Optional. This option requires a two-step process where you must 1) compile <filename>
into alibrary with vcom (without -gen_xml) then 2) execute vcom with the -gen_xml
switch, for example:

vlib work
vcom counter. vhd

216

ModelSim Reference Manual, v6.3g
May 2008

Commands
vcom

vcom -gen_xm counter counter.xni

 -hep
Displays the command’ s options and arguments. Optional.
* -ignoredefaultbinding

Instructs the compiler not to generate a default binding during compilation. Optional. Y ou
must explicitly bind all components in the design to use this switch.

* -ignorevitalerrors

Directs the compiler to ignore VITAL compliance errors. Optional. The compiler still
reportsthat VITAL errorsexist, but it will not stop the compilation. Y ou should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

e -just abcep
Directs the compiler to “just” include:
a— architectures
b — bodies
¢ — configurations
e— entities
p — packages

Any combination in any order can be used, but one choiceisrequired if you usethis
optional switch.

¢ -line <number>

Starts the compiler on the specified line in the VHDL source file. Optional. By default, the
compiler starts at the beginning of thefile.

e -lint

Optional. Enables better checking on case statement rules. Also enables warning messages
for the following situations: 1) the result of the built-in concatenation operator ("&") isthe
actual for a subprogram formal parameter of an unconstrained array type; 2) the entity to
which a component instantiation is bound has a port that is not on the component, and for
which there is no error otherwise; 3) adirect recursive subprogram call; and 4) in cases
involving class SIGNAL formal parameters, as described in IEEE Standard VHDL
Language Reference Manual 1076-1993, section 2.1.1.2 entitled "Signal parameters’, line
115. Thislast check only appliesto designs compiled using 87. If you were to compilein 93,
it would be flagged as awarning or error, even without the -lint argument. Can also be
enabled using the Show_L.int variable in the modelsim.ini file.

ModelSim Reference Manual, v6.3g 217
May 2008

Commands

vcom

-noll64

Causes the source files to be compiled without taking advantage of the built-in version of
the IEEE std_logic_1164 package. Optional. Thiswill typically result in longer simulation
times for VHDL programs that use variables and signals of type std_logic.

-noaccel <package name>
Turns off acceleration of the specified package in the source code using that package.
-nocasestaticerror

Suppresses case statement static warnings. Optional. VHDL standards require that case
statement alternative choices be static at compile time. However, some expressions which
are globally static are allowed. This switch prevents the compiler from warning on such
expressions. If the -pedanticerrors switch is specified, this switch isignored.

-nocheck

Disables index and range checks. Optional. Y ou can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

-nocoverrespecthandl

Specifies that you want the VHDL 'H' and ‘L' input values on conditions and expressions to
be automatically convertedto ‘1’ and ‘O’, respectively. By default in the current release,
they are not automatically converted.

As an aternative to using this argument — if you are not using 'H' and 'L" values and don’t
want the additional UDP rows that are difficult to cover — you can either:

» change your VHDL expressions of the form (a="1") to (to_x01(a) ='1") or to
std_match(a,'1"). These functions are recognized and serve to smplify the UDP tables
» set the CoverRespectHandL .ini file variableto O

-nodbgsym
Disables the generation of the symbols debugging database in the compiled library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

Y ou should only specify this switch if you know that anyone using the library will not
require thisinformation for design analysis purposes.

-noDefer SubpgmCheck

Causes range and length violations detected within subprograms to be reported as errors
(instead of as warnings). As an alternative to using this argument, you can set the
NoDeferSubpgmCheck property in the modelsim.ini fileto avalue of 1.

218

ModelSim Reference Manual, v6.3g
May 2008

Commands
vcom

* -noindexcheck

Disables checking on indexing expressions to determine whether indices are within declared
array bounds. Optional.

* -nologo
Disables display of the startup banner. Optional.
* -nonstddriverinit

Forces Model Sim to match pre-5.7c behavior ininitializing driversin a particular case.
Optional. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly initialized
driversif the port did not have an explicit initialization value and the actual signal connected
to the port had explicit initial values. Depending on a number of factors, Model Sim could
incorrectly use the actual signa’sinitial value when initializing lower level drivers. Note
that the argument does not cause all lower-level driversto use the actual signal’sinitial
value. It does this only in the specific cases where older versions used the actual signal's
initial value.

¢ -noothersstaticerror

Disables warnings that result from array aggregates with multiple choices having "others’
clauses that are not locally static. Optional. If the -pedanticerrors switch is specified, this
switch isignored.

» -norangecheck

Disables run time range checking. In some designs, thisresultsin a 2X speed increase.
Range checking is enabled by default or, once disabled, can be enabled using -rangecheck.
Refer to “Range and Index Checking” for additional information.

e -note <msg_number> [,<msg_number>, ...]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

e -novital

Causes vcom to use VHDL code for VITAL procedures rather than the accelerated and
optimized timing and primitive packages built into the simulator kernel. Optional. Allows
breakpointsto be setinthe VITAL behavior process and permits single stepping through the
VITAL procedures to debug your model. Also all of the VITAL data can be viewed in the
Locals or Objects windows.

* -novitalcheck

Disables Vital level 1 checks and aso Vital level 0 checks defined in section 4 of the Vital-
95 Spec (IEEE Std 1076.4-1995). Optional.

e -nowarn <category number>

Selectively disables a category of warning messages. Optional. Multiple -nowar n switches
are alowed. Warnings may be disabled for al compiles viathe Main window Compile >

ModelSim Reference Manual, v6.3g 219
May 2008

Commands

vcom

Compile Options menu command or the modelsim.ini file (Refer to “VHDL Compiler
Control Variables”).

The warning message categories are described in Table 2-4:

Table 2-4. Warning Message Categories for vcom -nowarn

Category | Description

number

1 unbound component

2 process without await statement

3 null range

4 no space in time literal

5 multiple drivers on unresolved signal

6 VITAL compliance checks (“VitalChecks’ also works)
7 VITAL optimization messages

8 lint checks

9 signal value dependency at elaboration

10 VHDL-1993 constructsin VHDL-1987 code
13 constructs that coverage can't handle

14 locally static error deferred until simulation run

-O0

L ower the optimization to aminimum with -OO0 (capital oh zero). Optional. Use thisto work
around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out. Add the DisableOpt variable
to the [vcom] section of the modelsim.ini file to set a permanent default.

-pedanticerrors

Forces Model Sim to error (rather than warn) on avariety of conditions. Refer to “ Enforcing
Strict 1076 Compliance” for acomplete list. Optional. This argument overrides -
nocasestaticerror and -noother sstaticerror (see above).

-performdefaultbinding

Enables default binding when it has been disabled viathe
RequireConfigFor AllDefaultBinding option in the modelsim.ini file. Optional.

-quiet
Disables’Loading’ messages. Optional.

220

ModelSim Reference Manual, v6.3g
May 2008

Commands
vcom

e -rangecheck

Enables run time range checking. Default. Range checking can be disabled using the
-nor angecheck argument. Refer to “Range and Index Checking” for additional information.

 -refresh

Regenerates alibrary image. Optional. By default, the work library is updated. To update a
different library, use -work <library_name> with -refresh (for example, vcom -work
<your_lib_name> -refresh). If a dependency checking error occurs which prevents the
refresh, use the vcom -for ce_refresh argument. See the vcom Examples for more
information. Y ou may use a specific design name with -r efr esh to regenerate a library
image for that design, but you may not use afile name.

s =S

Instructs the compiler not to load the standar d package. Optional. This argument should
only be used if you are compiling the standard package itself.

e -skip abcep
Directs the compiler to skip all:
a— architectures
b — bodies
¢ — configurations
e— entities
p — packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

e -sSource

Displays the associated line of source code before each error message that is generated
during compilation. Optional. By default, only the error message is displayed.

e -suppress <msg_number>[,<msg_number>,...]

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. Y ou cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “ Changing Message Severity Level” for more information.

¢ -time

Reportsthe "wall clock time" vcom takesto compile the design. Optional. Note that if many
processes are running on the same system, wall clock time may differ greatly from the
actual "cpu time" spent on vcom.

e -togglecountlimit

Limits the toggle coverage count for atoggle node. Optional. After the limit is reached,
further activity on the node will beignored for toggle coverage. All possible transition edges

ModelSim Reference Manual, v6.3g 221
May 2008

Commands

vcom

must reach this count for the limit to take effect. For example, if you are collecting toggle
data on 0->1 and 1->0 transitions, both transition counts must reach the limit. If you are
collecting "full" data on 6 edge transitions, all 6 must reach the limit. Overrides the global
value set by the ToggleCountLimit modelsim.ini variable.

-togglewidthlimit

Sets the maximum width of signalsthat are automatically added to toggle coverage with the
-cover t argument. Optional. Can be set on design unit basis. Overrides the global value set
by the ToggleWidthLimit modelsim.ini variable.

-version
Returns the version of the compiler as used by the licensing tools. Optional.
-warning <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “ Changing
Message Severity Level” for more information.

-work <library_name>

Specifies alogical name or pathname of alibrary that isto be mapped to the logical library
wor k. Optional; by default, the compiled design units are added to the work library. The
specified pathname overrides the pathname specified for work in the project file.

<filename>

Specifies the name of afile containing the VHDL source to be compiled. One filenameis
required; multiple filenames can be entered separated by spaces or wildcards may be used
(e.g., *.vhd).

If you don't specify afilename, and you are using the GUI, adialog box pops up allowing
you to select the options and enter afilename.

Examples

Compile the VHDL source code contained in the file example.vhd.

vcom exanpl e. vhd

* ModelSim supports designs that use elements conforming to the 1987, 1993, and 2002
standards. Compile the design units separately using the appropriate switches.

vcom -87 o_unitsl.vhd o_units2.vhd
vcom -93 n_unit91. vhd n_unit92. vhd

* When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom - noaccel nuneric_std exanpl e. vhd

» Although it is not obvious, the = operator is overloaded in the std_logic 1164 package.
All enumeration data typesin VHDL get an “implicit” definition for the = operator. So
while there is no explicit = operator, thereis an implicit one. Thisimplicit declaration

222

ModelSim Reference Manual, v6.3g
May 2008

Commands
vcom

can be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

vcom -explicit exanple.vhd

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

AR THVETI C."="(l eft, right)

» The-work option specifies mylib asthe library to regenerate. -r efr esh rebuilds the
library image without using source code, alowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim (4.6 and

later only).

vcom -work nylib -refresh

atest-associated merge, which associates coverage items with the test(s) that covered them. To
obtain amore basic level of information use the argument without -test.

0 Important: When the -metric aggr egate argument is used, the resulting metric number
will not “match” any other total coverage number produced by other verification tools
(i.e. coverage analyze). Thisisimportant because when you use any of the arguments
(-totals, -goal, with ranktest command, the aggregate metric is the default.

ModelSim Reference Manual, v6.3g 223
May 2008

Commands

vdel

vdel
The vdel command deletes a design unit from a specified library.

Syntax

vdel [-help] [-lib <library_name>] [-verboseg] [-all | <design_unit> [<arch_name>]

Arguments

-all

Deletes an entirelibrary. Optional. BE CAREFUL! Libraries cannot be recovered once
deleted, and you are not prompted for confirmation.

<arch_name>

Specifies the name of an architecture to be deleted. Optional. If omitted, al of the
architectures for the specified entity are deleted. Invalid for a configuration or a package.

<design_unit>

Specifies the entity, package, configuration, or module to be deleted. Required unless-all is
used.

-help
Displays the command’ s options and arguments. Optional.
-lib <library_name>

Specifiesthelogical name or pathname of the library that holds the design unit to be del eted.
Optional. By default, the design unit is deleted from the work library.

-verbose
Displays progress messages. Optional.

Examples

» Deletethework library.

vdel -all
» Delete the synopsys library.
vdel -lib synopsys -all
» Delete the entity named xor and al its architectures from the work library.
vdel xor
» Delete the architecture named behavior of the entity xor from the work library.

vdel xor behavi or

» Delete the package named base from the work library.

224

ModelSim Reference Manual, v6.3g
May 2008

Commands
vdel

vdel base

ModelSim Reference Manual, v6.3g 225
May 2008

Commands
vdir

vdir

The vdir command lists the contents of adesign library.

This command can also be used to check compatibility of avendor library. If vdir cannot read a
vendor-supplied library, the library may not be Model Sim compatible.

Syntax

vdir [-help] [-I | [-prop <prop>]] [-r] [-all | [-lib <library_name>]] [<design_unit>]

Arguments
* -help

Displays options and arguments for this command. Optional.

Prints the version of vcom or vlog with which each design unit was compiled, plus any
compilation options used. Also prints the object-code version number that indicates which
versions of vcom/vlog and Model Sim are compatible.

 -prop <prop>

Reports on the specified design unit property, aslisted in Table 2-5. If you do not specify a
value for <prop>, an error message is displayed.

Table 2-5.

Design Unit Properties

Value of <prop> | Description

archcfg configuration for arch
bbox blackbox for optimized design
body needs a body

default default options

dir source directory

dpnd depends on

entcfg configuration for entity
extern package reference number
inline module inlined

[rm language standard

mtime source modified time
name short name

opcode opcode format

options compile options

226

ModelSim Reference Manual, v6.3g

May 2008

Commands
vdir

Table 2-5. Design Unit Properties

Valueof <prop> | Description

root optimized Verilog design root
src sourcefile

top top level model

ver version number

vliogv Verilog version

voptv Verilog optimized version

o r
Prints architecture information for each entity in the output.
o -l

Lists the contents of all librarieslisted in the Library section of the active modelsim.ini file.
Optional. Refer to “Library Path Variables’ for more information.

e -lib<library_name>

Specifiesthelogical name or the pathname of alibrary to belisted. Optional. By default, the
contents of the work library are listed.

e <design_unit>

Indicates the design unit to search for within the specified library. If the design unitisa
VHDL entity, its architectures are listed. Optional. By default all entities, configurations,
modules, packages, and optimized design unitsin the specified library are listed.

Examples

» List the architectures associated with the entity named my_asic that reside in the HDL
design library called design.

vdir -lib design my_asic

» Show the output of vdir -I, including any compilation options used to compile the
library:

MODULE ramtb
Veril og Version: RVI9i]?9FGhi bj Gsj XXV_" 1
Ver si on nunber: CRW2<UhheaW LI L2 B5031
Source nodified time: 1132284874
Source file: ramtb.v
Ver si on nunber: CRW2<UhheaW LI L2 B5031
Opcode format: 6.1c; VLOG SE bject version 31
Optinmized Verilog design root: 1
Language standard: 1
Conpi | e options: -cover bcst
Conpi | e defaults: CeneratelLooplterati onMax=100000
Source directory: C\Verif\QuestaSim®6. 1c
\ exampl es\tutorial s\veril og\ menory

VVVVVVVVVYVYVYV
HFHEHFEHHFHHFHFHFRHHR

ModelSim Reference Manual, v6.3g 227
May 2008

Commands
vdir

228 ModelSim Reference Manual, v6.3g
May 2008

Commands
vencrypt

vencrypt

The vencrypt command encrypts Verilog and SystemV erilog code contained within encryption
envelopes. The codeis not pre-processed before encryption, so macros and other “directives are
unchanged. This allows IP vendors to deliver encrypted IP with undefined macros and
“directives.

Upon execution of this command, the filename extension will be changed to .vp for Verilog
files (.v files) and .svp for SystemVerilog files (.sv files). Asthe vencrypt utility processes the
file (or files), if it does not find any encryption directivesiit reprocesses the file using the
following default encryption:

“pragnma protect data_nethod = "aesl128-chc"

“pragma protect key keyowner = "MIl"

‘pragma protect key_ keynane = "M3C- DVT- MIl"

‘pragma protect key nethod = "rsa"

“pragma protect key_block encoding = (enctype = "base64")

“pragnma protect begin

The vencrypt command must be followed by a compile command — such as vliog — for the
design to be compiled.
Syntax

vencrypt <filename> [-d <dirname>] [-e <extension>] [-f <filename>] [-h <filename>] [-help]
[-] <filename>] [-0 <filename>] [-p <prefix>] [-quiet]

¢« <filename>

Specifies the name of the Verilog source code file to encrypt. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used. Default
encryption pragmas will be used, as described above, if no encryption directives are found
during processing.

¢ -d<dirname>

Specifies directory that will contain encrypted Verilog files. Optional. If no directory is
specified, current working directory will be used. The original file extension (.v for Verilog
and .sv for SystemVerilog) will be preserved.

* -e<extension>
Specifies afilename extension. Optional.
o -f <filename>

Specifies afile with more command line arguments. Optional. Allows complex arguments
to be reused without retyping. Nesting of -f optionsis allowed.

Refer to the section "Argument Files" for more information.
e -h<filename>

Concatenates header information, specified by <file>, into all design files listed with
<filename>. Optional. Allows the user to pass alarge number of filesto the vencrypt utility
that do not contain the “pragma protect or “protect information about how to encrypt the

ModelSim Reference Manual, v6.3g 229
May 2008

Commands
vencrypt

file. Saves the user from editing hundreds of filesto add in the same “pragma protect to
every file.

 -hep
Displays vencrypt command arguments. Optional.
o -l <filename>
Redirects output to the file designated by <filename>. Optional.
e -0 <filename>
Combines all encrypted output into asingle file. Optional.
s -p<prefix>
Prepends file names with a prefix. Optional.
e -Quiet
Disables encryption messages. Optional.
See also

"Protecting Y our Source Code" in the User’s Manual
Example
» Insert header information into all design files listed.
vencrypt -h encrypt_head top.v cache.v gates.v nmenory.v

The encrypt_head file may look like the following:

“pragnma protect data_nethod = "aesl128-chc"
“pragnma protect author = "IP Provider"
“pragma protect key keyowner = "MIl", key_nethod = "rsa"

“pragma protect key_keynane = "M3C- DVT- MTI "
“pragnme protect begin

Thereisno "pragma protect end expression in the header file, just the header block that
starts the encryption. The “pragma protect end expression isimplied by the end of the
file. For more detailed examples, see "Protecting Y our Source Code" in the User’s
Manual.

230 ModelSim Reference Manual, v6.3g
May 2008

Commands
verror

vVerror

Theverror command prints a detailed description about a message number. It may also point to
additional documentation related to the error.

Syntax
verror [-fmt | -tag | -fmt -tag | -full] <msgNum> ...
verror [-fmt | -tag | -fmt -tag | -full] [-tool <tool>] -all
Verror -ranges
verror -help

Arguments
o -fmt|-tag|-full
Specifies the type and amount of information to return.
-fmt — returns the format string used in the error message.
-tag — returns a tag associated with the error message.
-full — returns the format string, tag, and compl ete text associated with the error
message.
e [-tool <tool>] -all
Allows you to return information about al error messages.
-al — returns all error messages.

-tool <tool> -all — returns all error messages associated with the specified tool, where
<tool> can be one of the following:

common vcom vcom-viog

vliog vsm vsim-vish

wif Vsim-sccom sccom

vsim-systemc ucdb vsim-viog
pseudo_synth

e <msgNum>

Specifies the message number(s) you would like more information about. Y ou can find the
message number in messages of the format:

** <L evel>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedM sg>
Y ou can specify <msgNum> any number of times for one verror command. It is suggested
that you use a space-separated list.
e -ranges
Prints the numeric ranges of error message numbers, organized by tool.

ModelSim Reference Manual, v6.3g 231
May 2008

Commands
verror

Example
» If you receive the following message in the transcript:

** Error (vsim3061) foo.v(22): Too many Verilog port connections.

and you would like more information about this message, you would type:

verror 3061

and receive the following outpuit:

Message # 3061:

Too many Verilog ports were specified in a nixed VHDL/ Veril og
instantiation. Verify that the correct VHDL/Veril og connection is
bei ng made and that the nunmber of ports matches.

[DOC: Model Sim User's Manual - M xed VHDL and Veril og Designs
Chapt er]

232 ModelSim Reference Manual, v6.3g
May 2008

Commands
vgencomp

vgencomp

Once aVerilog moduleis compiled into alibrary, you can use the vgencomp command to write
its equivalent VHDL component declaration to standard output.

Optional switches allow you to generate bit or vl_logic port types; std_logic port types are
generated by default.

Syntax

vgencomp [-help] [-lib <library_name>] [-b] [-S] [-v] <module_name>

Arguments

-help
Displays the command’ s options and arguments. Optional.
-lib <library_name>

Specifies the pathname of the working library. If not specified, the default library work is
used. Optional.

-b

Causes vgencomp to generate bit port types. Optional.

-S

Used for the explicit declaration of default std_|logic port types. Optional.
-V

Causes vgencomp to generate vl_logic port types. Optional.
<module_name>

Specifies the name of the Verilog module to be accessed. Required.

Examples

* Thisexample usesaVerilog module that is compiled into the work library. The module
begins as Verilog source code:

nmodul e top(il, ol, 02, iol);
paraneter width = 8;
paraneter delay = 4.5;
paraneter filename = "file.in";

i nput i1;

output [7:0] o1,

output [4:7] o02;

i nout [width-1:0] io1l;
endnodul e

After compiling, vgencomp isinvoked on the compiled module:

vgenconp top

ModelSim Reference Manual, v6.3g 233
May 2008

Commands
vgencomp

and writes the following to stdout:

conponent top

generi c(

wi dt h : integer := 8;
del ay : real = 4.500000;
filenane : string ="file.in"

)

port (
i1l cin std_I ogi c;
ol :out std_l ogi c_vector (7 downto 0);
02 :out std_l ogic_vector(4 to 7);
iol : inout std_| ogic_vector

)

end conponent;
234 ModelSim Reference Manual, v6.3g

May 2008

Commands
view

view

The view command displays a stand-alone window or Main window pane.

To remove awindow, use the noview command.

The view command without arguments returns alist of window class names of all the windows
currently open.

The view command with one or more options and no window classes or window names
specified applies the options to the currently open windows. See examples for additional details.

Syntax
view [*] [-height <n>] [-icon] [-title {New Window Title}] [-undock | -dock]

[-width <n>] [-x <n>] [-y <n>] <window_type>...

Arguments

*

Specifies that all windows be opened. Optional.
-height <n>

Specifies the window height in pixels. Valid only for stand-alone windows, not panesin the
Main window. Optional.

-icon

Togglesthe view between window and icon. Valid only for stand-al one windows, not panes
in the Main window. Optional.

-title { New Window Title}

Specifies the window title of the designated window. Curly braces are only needed for titles
that include spaces. Double quotes can be used in place of braces, for example "New
Window Title". If the new window title does not include spaces, no braces or quotes are
needed. For example: -title new_wave wave assigns the title new_wave to the Wave
window.

-undock

Opens the specified pane as a standal one window, undocked from the Main window.
Optional.

-dock
Docks the specified standalone window into the Main window.
-width <n>

Specifies the window width in pixels. Valid only for stand-alone windows, not panesin the
Main window. Optional.

ModelSim Reference Manual, v6.3g 235
May 2008

Commands

view

<window_type>...

Specifies the window/pane type to view. Required. Y ou do not need to type the full type
name (see examples below); implicit wildcards are accepted; multiple window types are
accepted. Available window/pane types are:

capacity,dataflow, list, locals, memory, objects, process, profiledetails, profilemain,
signals, structure, variables, wave, watch, workspace

-X <n>

Specifies the window upper-left-hand x-coordinate in pixels. Valid only for stand-alone
windows, not panesin the Main window. Optional.

-y <n>

Specifies the window upper-left-hand y-coordinate in pixels. Valid only for stand-alone
windows, not panes in the Main window. Optional.

Examples

» Undock the Wave pane from the Main window and makes it a standalone window.

vi ew -undock wave

* Undock all currently open panesin the Main window.
vi ew - undock

» Display the Watch and Wave panes.
Vi ew w

» Display the Objects and Active Process panes.
vi ew ob pr

* Open anew Wave window with My Wave Window asitstitle.

view -title { M/ Wave W ndow} wave

See also

noview

236

ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual count

virtual count

The virtual count command counts the number of currently defined virtuals that were not read
in using amacro file.

Syntax

virtual count [-kind <kind>] [-unsaved]

Arguments
» -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unigue abbreviations are accepted.

e -unsaved
Specifies that the count include only those virtuals that have not been saved to a macro file.
Optional.
See also

virtual define, virtual save, virtual show, “Virtual Objects’

ModelSim Reference Manual, v6.3g 237
May 2008

Commands
virtual define

virtual define

The virtual define command prints to the Transcript pane the definition of the virtual signal or
function in the form of acommand that can be used to re-create the object.

Syntax
virtual define [-kind <kind>] <pathname>

Arguments
» -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unigue abbreviations are accepted.

e <pathname>

Specifies the path to the virtual (s) for which you want definitions. Required. Wildcards can
be used.

Examples
» Show the definitions of all the virtuals you have explicitly created.

virtual define -kind explicits *

See also
virtual describe, virtual show, “Virtual Objects’

238 ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual delete

virtual delete

The virtual delete command removes the matching virtuals.

Syntax

virtual delete [-kind <kind>] <pathname>
Arguments

e -kind <kind>

Specifies a subset of virtualsto look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

e <pathname>
Specifies the path to the virtual(s) you want to delete. Required. Wildcards can be used.
Examples
* Deletedl of the virtuals you have explicitly created.

virtual delete -kind explicits *

See also
virtual signal, virtual function, “Virtual Objects”

ModelSim Reference Manual, v6.3g 239
May 2008

Commands
virtual describe

virtual describe

The virtual describe command printsto the Transcript pane a complete description of the data
type of one or more virtual signals.

Similar to the existing describe command.

Syntax
virtual describe [-kind <kind>] <pathname>

Arguments
e -kind <kind>

Specifies asubset of virtualsto look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

* <pathname>

Specifies the path to the virtual(s) for which you want descriptions. Required. Wildcards
can be used.

Examples
» Describe the datatype of all virtuals you have explicitly created.

virtual describe -kind explicits *

See also
virtual define, virtual show, “Virtual Objects’

240 ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual expand

virtual expand

The virtual expand command produces alist of all the non-virtual objects contained in the
specified virtual signal(s).

This can be used to create alist of arguments for acommand that does not accept or understand
virtual signals.

Syntax
virtual expand [-base] <pathname>
Arguments
* -base
Causes the root signal parent to be output in place of a subelement. Optional. For example:

vcd add [virtual expand -base nyVirtual Signal]

the resulting command after substitution would be:
vcd add signala signalb signalc
e <pathname>

Specifies the path to the signals and virtual signals to expand. Required. Wildcards can be
used. Any number of paths can be specified.

Examples
* Add the elements of avirtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand ..."), then the result substituted into the surrounding
command.

vcd add [virtual expand nyVirtual Signal]

So if myVirtualSignal is a concatenation of signala, signalb.recl and signalc(5 downto
3), the resulting command after substitution would be:

vcd add signala signalb.recl {signalc(5 dowto 3)}
The dlice of signalc is quoted in curly braces, because it contains spaces.

See also
virtual signal, “Virtual Objects’

ModelSim Reference Manual, v6.3g 241
May 2008

Commands
virtual function

virtual function

The virtual function command creates a new signal, known only by the GUI (not the kernel),
that consists of logical operations on existing signals and simulation time, as described in
<expressionString>.

It cannot handle bit selects and slices of Verilog registers. Please see Syntax and Conventions
for more details on syntax.

If the virtual function references more than asingle scalar signal, it will display asan
expandable object in the Wave and Objects windows. The children correspond to the inputs of
the virtual function. This allows the function to be "expanded” in the Wave window to see the
values of each of the input waveforms, which could be useful when using virtual functions to
compare two signal values.

Virtual functions can also be used to gate the List window display.

Syntax
virtual function [-env <path>] [-install <path>] [-delay <time>] {<expressionString>} <name>

Arguments

Argumentsfor virtual function are the same asthosefor virtual signal, except for the contents
of the expression string.

s -env <path>

Specifiesahierarchical context for the signal namesin <expressionString> so they don't all
have to be full paths. Optional.

e -install <path>

Causes the newly-created signal to become a child of the specified region. If -install is not
specified, the newly-created signal becomes a child of the nearest common ancestor of all
objects appearing in <expressionString>. If the expression references more than one WLF
file (dataset), the virtual signal will automatically be placed in region virtual s./Functions.
Optional.

* -delay <time>

Specifies avaue by which the virtual function will be delayed. Optional. Y ou can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

* {<expressionString>}

A text string expression in the MTI GUI expression format. Required. See
GUI_expression_format for more information.

e <pame>

The name you define for the virtual signal. Required. Caseisignored unlessinstalled in a
Verilog region. Use alpha, numeric, and underscore characters only, unless you are using

242 ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual function

VHDL extended identifier notation. If using VHDL extended identifier notation, <name>
needs to be quoted with double quotes or with curly braces.

Examples
» Createasignal /chip/sectionl/clk_n that is the inverse of /chip/sectionl/clk.

virtual function { not /chip/sectionl/clk } clk_n

» Createastd logic_vector equivalent of aVerilog register rega and installsit as
/chip/rega_slv.

virtual function -install /chip { (std_logic _vector) chip.vlog.rega
} rega_slv

» Create aboolean signal /chip/addr_eq fab that istrue when /chip/addr[11:0] is equal to
hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { /chip/addr[11:0] == Oxfab } addr_eq fab

» Createasignal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff isinstalled
in region virtuals./Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being
compared.

virtual function { gate:/chip/siga XCR rtl:/chip/siga} siga diff

» Create avirtual signal consisting of the logical "AND" function of /top/signal A with
/top/signal B, and delays it by 10 ns.

virtual function -delay {10 ns} {/top/signal A AND /top/signal B}
myDel ayAandB

* Create aone-bit signal outbus_diff which is non-zero during times when any bit of
/chip/outbus in the gate-level version doesn’t match the corresponding bit in the rtl
version.

This expression uses the "OR-reduction” operator, which takes the logical OR of all the
bits of the vector argument.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) }
out bus_di ff

Commands fully compatible with virtual functions

add log delete describe
log ("virtual describe" isalittle faster)
ModelSim Reference Manual, v6.3g 243

May 2008

Commands
virtual function

examine

searchlog

find
show

Commands not currently compatible with virtual functions

drivers force noforce
ved add when
See also
virtual count virtual define virtual delete
virtual describe virtual expand virtual hide
virtual log virtual nohide virtual nolog
virtual region virtual save virtual show
virtual signd virtual type “Virtual Objects
244 ModelSim Reference Manual, v6.3g

May 2008

Commands
virtual hide

virtual hide

The virtual hide command causes the specified real or virtual signalsto not be displayed in the
Objects window. Thisis used when you want to replace an expanded bus with a user-defined
bus.

Y ou make the signal's reappear using the virtual nohide command.

Syntax

virtual hide [-kind <kind>]|[-region <path>] <pattern>
Arguments

e -kind <kind>

Specifies a subset of virtualsto look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

e -region <path>

Used in place of -kind to specify aregion of design space in which to look for the signal
names. Optional.

. <pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals to
hide. Required. Any number of names or wildcard patterns may be used.

See also
virtual nohide, “Virtual Objects’

ModelSim Reference Manual, v6.3g 245
May 2008

Commands
virtual log

virtual log

Thevirtual log command causes the simulation-mode dependent signals of the specified virtual
signals to be logged by the kernel.

If wildcard patterns are used, it will also log any normal signalsfound, unlessthe -only optionis
used. You unlog the signals using the virtual nolog command.

Syntax

virtual log [-kind <kind>] | [-region <path>] [-recursive] [-only] [-in] [-out] [-inout] [-internal]

[-ports] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtualsto look at. Optional. <kind> can be implicits and explicits.
Unigue abbreviations are accepted.

-region <path>

Used in place of -kind to specify aregion of design spaceinwhichto look for signalsto log.
Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

-only

Can be used with awildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be logged. Optional.

-In

Specifiesthat the kernel log datafor ports of mode IN whose names match the specification.
Optional.

-out

Specifiesthat the kernel log data for ports of mode OUT whose names match the
specification. Optional.

-inout

Specifiesthat the kernel log data for ports of mode INOUT whose names match the
specification. Optional.

-interna

Specifies that the kernel log data for internal (non-port) objects whose names match the
specification. Optional.

-ports
Specifies that the kernel log data for all ports. Optional.

246

ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual log

. <pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals to
log. Required. Any number of names or wildcard patterns may be used.

See also
virtual nolog, “Virtua Objects’

ModelSim Reference Manual, v6.3g 247
May 2008

Commands
virtual nohide

virtual nohide

The virtual nohide command reverses the effect of avirtual hide command, causing the
specified real or virtual signals to reappear the Objects window.

Syntax
virtual nohide [-kind <kind>]|[-region <path>] <pattern>

Arguments
» -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unigue abbreviations are accepted.

e -region <path>

Used in place of -kind to specify aregion of design space in which to look for the signal
names. Optional.

e <pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals to
expose. Required. Any number of names or wildcard patterns may be used.

See also
virtual hide, “Virtual Objects’

248 ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual nolog

virtual nolog

The virtual nolog command reverses the effect of avirtual log command. It causes the
simulation-dependent signals of the specified virtual signalsto be excluded ("unlogged™) by the
kernel.

If wildcard patterns are used, it will aso unlog any normal signals found, unless the -only
option is used.

Syntax

virtual nolog [-kind <kind>] | [-region <path>] [-recursive] [-only] [-in] [-out] [-inout]

[-internal] [-ports] <pattern>

Arguments

-kind <kind>

Specifies asubset of virtualsto look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify aregion of design space in which to look for signals to
unlog. Optional.

-recursive

Specifies that the scope of the search isto descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

-only

Can be used with awildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be unlogged. Optional.

-In

Specifies that the kernel exclude datafor ports of mode IN whose names match the
specification. Optional.

-out

Specifies that the kernel exclude datafor ports of mode OUT whose names match the
specification. Optional.

-inout

Specifies that the kernel exclude datafor ports of mode INOUT whose names match the
specification. Optional.

-interna

Specifiesthat the kernel exclude datafor internal (non-port) objects whose names match the
specification. Optional.

ModelSim Reference Manual, v6.3g 249
May 2008

Commands
virtual nolog

e -ports
Specifies that the kernel exclude datafor al ports. Optional.
e <pattern>

Indicates which signal names or wildcard pattern should be used in finding the signals to
unlog. Required. Any number of names or wildcard patterns may be used.

See also
virtual log, “Virtual Objects’

250 ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual region

virtual region
Thevirtual region command creates a new user-defined design hierarchy region.

Syntax
virtual region <parentPath> <regionName>

Arguments
e <parentPath>
The full path to the region that will become the parent of the new region. Required.
* <regionName>
The name you want for the new region. Required.
See also

virtual function, virtual signal, “Virtual Objects”

Note
D Virtual regions cannot be used in the when command.

ModelSim Reference Manual, v6.3g 251
May 2008

Commands
virtual save

virtual save
The virtual save command saves the definitions of virtualsto afile.

Syntax
virtual save [-kind <kind>] [-append] [<filename>]

Arguments
e -kind <kind>
Specifies a subset of virtualsto look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

- -append

Specifiesto save only virtualsthat are not already saved or weren't read in from amacro
file. These unsaved virtuals are then appended to the specified or default file. Optional.

+« <filename>

Used for writing the virtual definitions. Optional. If you don’t specify <filename>, the
default virtual filename (virtuals.do) will be used. Y ou can specify adifferent default in
the pref.tcl file.

See also
virtual count, “Virtual Objects’

252 ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual show

virtual show

The virtual show command lists the full path names of all explicitly defined virtuas.
Syntax

virtual show [-kind <kind>]
Arguments

e -kind <kind>

Specifies a subset of virtualsto look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

See also
virtual define, virtual describe, “Virtual Objects”

ModelSim Reference Manual, v6.3g 253
May 2008

Commands
virtual signal

virtual signal

Thevirtual signal command creates anew signal, known only by the GUI (not the kernel), that
consists of concatenations of signals and subelements as specified in <expressionString>.

It cannot handle bit selects and slices of Verilog registers. Please see Concatenation of Signals
or Subelements for more details on syntax.

Syntax

virtual signal [-env <path>] [-install <path>] [-delay <time>] { <expressionString>} <name>
Arguments

e -env <path>

Specifies ahierarchical context for the signal namesin <expressionString>, so they don't
all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -install is not
specified, the newly-created signal becomes a child of the nearest common ancestor of all
objects appearing in <expressionString>. If the expression references more than one WLF
file (dataset), the virtual signal will automatically be placed in region virtuals./Signals.
Optional.

-delay <time>

Specifies avalue by which the virtual signal will be delayed. Optional. Y ou can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{ <expressionString>}

A text string expression in the MTI GUI expression format that defines the signal and
subelement concatenation. Can also be aliteral constant or computed subexpression.
Required. For details on syntax, please see Syntax and Conventions.

<name>

The name you define for the virtual signal. Required. Caseisignored unlessinstalledin a
Verilog region. Use alpha, numeric, and underscore characters only, unless you are using
VHDL extended identifier notation. If using VHDL extended identifier notation, <name>
needs to be quoted with double quotes or with curly braces.

Examples

» Reconstruct a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a ii areal scalars of the sametype.

virtual signal -env sim/chip/alu{ (concat_range (4 dowmnto 0))(a_04
& a 03 &a 02 &a 0l &a 00) } a

254

ModelSim Reference Manual, v6.3g
May 2008

Commands
virtual signal

* Reconstruct a bus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -env simchip.alu
{ (concat _range [4:0])& a 04, a 03, a 02, a 01, a 00} } a

* Create asigna sim:/testbench/stuff which is arecord type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of
type integer, /chipa/alu/ais of type std_logic_vector, and /chipa/decode/inst is a user-
defined enumeration.

virtual signal -install sim/testbench
{ /chipal/alu/a(19 dowmto 13) & /chipal/decode/inst & /chipal/node }
stuff

» Createavirtual signal that isthe same as /top/signal A except it is delayed by 10 ps.
virtual signal -delay {10 ps} {/top/signal AA nyDel ayedSi gnal A

» Create athree-bit signal, chip.address mode, as an alias to the specified bits.

virtual signal { chip.instruction[23:21] } address_node

» Concatenate signals a, b, and c with the literal constant *000’.
virtual signal {a & b & ¢ & 3'b000} nyext endedbus

* Add three missing bitsto the bus num, creates avirtual signal fullbus, and then adds that
signal to the Wave window.

virtual signal {num & "000"} full bus
add wave -unsigned full bus

* Reconstruct a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, etc.)
represented by the ... in the syntax above.

virtual signal { nunBl & nunmB0 & nunk9 & ... & numt & nunB8 & "000" }
ful |l bus
add wave -unsigned full bus

* Create atwo-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit istrue (1).
Alternatively, if bold does not equal bnew, the second bit isfalse (0). Each
subexpression is evaluated independently.

virtual signal {(aold == anew) & (bold == bnew)} nyequalityvector

» Create signal newbus that is a concatenation of busl (bit-reversed) and bus2[7:4] (bit-
reversed). Assuming busl has indices running 7 downto 0, the result will be
newbus[11:0] with the upper 8 bits being bus1[0:7] and the lower 4 bits being bus2[4.7].
See Concatenation Directives for further details.

ModelSim Reference Manual, v6.3g 255
May 2008

Commands
virtual signal

vi rt ual

Commands fully compatible with virtual signals

add list
delete
find

searchlog

Commands compatible with virtual signals using [virtual expand <signal>]

drivers

Commands not currently compatible with virtual signals

when

See also

virtual count
virtual describe
virtual log
virtual region
virtual function

add log
log

describe ("virtual describe" is

alittle faster)

force
noforce

show

ved add

virtual define
virtual expand
virtual nohide
virtual save

virtual type

{(concat _reverse)(busl & bus2[7:4])} newbus

add wave

examine

restart

virtual delete
virtual hide
virtual nolog
virtual show
“Virtual Objects

256

ModelSim Reference Manual, v6.3g

May 2008

Commands
virtual type

virtual type

The virtual type command creates a new enumerated type, known only by the GUI, not the
kernel. Virtual types are used to convert signal valuesto character strings. The command works
with signed integer values up to 64 bits.

Virtual types cannot be used in the when command.

Syntax
virtual type -delete <name> | {<list_of strings>} <name>

Arguments
* -delete <name>

Deletes apreviously defined virtual type. <name> is the name you gave the virtual type
when you originally defined it. Required if not defining atype.

o {<list_of_strings>}

A list of values and their associated character strings. Required if -deleteisnot used. Values
can be expressed in decimal or based notation and can include "don’t-cares’ (see examples
below). Three kinds of based notation are supported: Verilog, VHDL, and C-language
styles. The values are interpreted without regard to the size of the bus to be mapped. Bus
widths up to 64 bits are supported.

There is currently no restriction on the contents of each string, but if strings contain spaces
they would need to be quoted, and if they contain characterstreated specially by Tcl (square
brackets, curly braces, backslashes...), they would need to be quoted with curly braces.

See the examples below for further syntax.
* <name>

The user-defined name of the virtual type. Required if -deleteis not used. Caseis not
ignored. Use alpha, numeric, and underscore characters only, unless you are using VHDL
extended identifier notation. If using VHDL extended identifier notation, <name> needs to
be quoted with double quotes or with curly braces.

Examples

» Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List, or Objects window, the string "state0" will appear when
mysignal == 0, "statel” when mysignal == 1, "state2" when mysignal == 2, etc.

virtual type {stateO statel state2 state3} mnystateType

virtual function {(nystateType)nysignal} myConvertedSi gnal
add wave myConvert edSi gnal

» Use sparse mapping of bus values to aphanumeric strings for an 8-bit, one-hot
encoding. It shows the variety of syntax that can be used for values. The value "default”
has special meaning and corresponds to any value not explicitly specified.

ModelSim Reference Manual, v6.3g 257
May 2008

Commands
virtual type

virtual type {{0 NULL_STATE} {1 stl} {2 st2} {0x04 st3} {16' h08 st4} \
{'h10 st5} {16#20 st6} {0b01000000 st7} {Ox80 st8} \
{default BAD STATE}} nyMappedType

virtual function {(nyMappedType) nybus} myConvert edBus
add wave nyConvert edBus

» Delete the virtual type "mystateType".
virtual type -del ete nystateType
» Create avirtual type that includes "don’t-cares' (the’-" character).
virtual type {{0x01-- add}{0x02-- sub}{default bad}} nydecodetype

» Create avirtual type using amask for "don’'t-cares." The middle field is the mask, and
the mask should have bits set to 1 for the bits that are don't care.

virtual type {{0x0100 Oxff add}{0x0200 Oxff sub}{default bad}}
mydecodet ype

See also
virtual function, “Virtual Objects”

258 ModelSim Reference Manual, v6.3g
May 2008

Commands
vlib

vlib

The vlib command creates a design library. Y ou must use vlib rather than operating system
commandsto create alibrary directory or index file.

If the specified library already exists as avalid ModelSim library, the vlib command will exit
with a warning message without touching the library.

Syntax

vlib [-archive [-compact <percent>]] [-format { 1|3 }] [-help] [-dos | -short | -unix | -long]

[-lock | -unlock] [-locklib | -unlocklib <] <name>

Arguments

-archive [-compact <percent>]

Causes design units that are compiled into the created library to be stored in archives rather
than in subdirectories. Optional. Refer to “ Archives’ for more details.

Y ou may optionally specify adecima number between 0 and 1 that denotes the allowed
percentage of wasted space before archives are compacted. By default archives are
compacted when 50% (.5) of their space is wasted. See an example below.

-format{ 1|3}

Allowsyou to convert alibrary compiled with the current to be compatible with a previous
release.

1 — alowsyou to convert alibrary to be compatible with the 6.2 series and earlier.
3 — alowsyou to convert alibrary to be compatible with the 6.3 series and newer.
-help
Displays the command’ s options and arguments. Optional.
-dos

Specifies that subdirectoriesin alibrary have names that are compatible with DOS. Not
recommended if you use the vmake utility. Optional.

-short
Interchangeabl e with the -dos argument. Optional.
-unix

Specifiesthat subdirectoriesin alibrary may have long file namesthat are NOT compatible
with DOS. Optional. Default for SE.

-long
Interchangeabl e with the -unix argument. Optional.
-lock | -unlock

Locks an existing design unit so it cannot be recompiled or refreshed. The -unlock switch
reverses this action. Optional. File permissions are not affected by these switches.

ModelSim Reference Manual, v6.3g 259
May 2008

Commands
vlib

* -locklib | -unlocklib <

Locksacomplete library so that compilation cannot target the library and the library cannot
be refreshed. The -unlocklib switch reverses this action. Optional. File permissions are not
affected by these switches.

e <name>
Specifies the pathname or archive name of the library to be created. Required.
Examples

» Createthe design library design. You can define alogical name for the library using the
vmap command or by adding alineto the library section of the modelsim.ini file that is
located in the same directory.

vlib design

» Createthedesign library uut and specifiesthat any design units compiled into thelibrary
are created as archives. Also specifies that each archive be compacted when 30% of its
space is wasted.

vlib -archive -conpact .3 uut

260 ModelSim Reference Manual, v6.3g
May 2008

Commands
viog

viog

The viog command compiles Verilog source code and SystemV erilog extensions into a
specified working library (or to the work library by default).

The vlog command may be invoked from within Model Sim or from the operating system
command prompt. It may also be invoked during simulation.

Compiled libraries are major-version dependent. When moving between major versions, you
have to refresh compiled libraries using the -r efr esh argument to vlog. Thisis not true for minor
versions (letter releases).

All arguments to the viog command are case sensitive: -WORK and -work are not equivalent.

The |IEEE P1800 Draft Standard for SystemV erilog requires that the default behavior of the
vlog command is to treat each Verilog design file listed on the command line as a separate
compilation unit. This behavior is achange in vlog from versions prior to 6.2, wherein all files
in asingle command line were concatenated into a single compilation unit. To treat multiple
files listed within a single command line as a single compilation unit, use either the vliog -mfcu
argument or the MultiFileCompilationUnit modelsim.ini file variable.

Syntax

vlog [-93] [-compat] [-compile uselibg[=<directory _name>]] [-covercells <filename>]
[-cuname] [+definet<macro_name>[=<macro_text>]] [+delay_mode_distributed]
[+delay_mode path] [+delay_mode_unit] [+delay_mode zero]
[-dpiheader <filename>] [-error <msg_number>[,<msg_number>,...]] [-f <filename>]
[-force refresh <design_unit>] [-fsmnoresettrans] [-fsmxassign]
[-genvhdl [<svb>] [f <filename>]] [-gen_xml <design_unit> <filename>] [-hazards] [-help]
[+incdir+<directory>] [-incr] [-isymfile] [+libext+<suffix>] [-libmap <pathname>]
[-libmap_verbose] [+librescan] [-line <number>] [-lint] [+maxdelays] [+mindelays]
[-mixedansiports] [-mfcu | -sfcu] [-nocovercells <filename>] [-nodbgsym] [-noincr]
[+nolibcell] [-nologo] [+nospecify] [-note <msg_number>[,<msg_number>,...]]
[+notimingchecks] [+nowarn<CODE>] [-nowarn <category number>]
[-O0] [-quiet] [-R [<simargs>]] [-refresh] [-source] [-9] [-sv]
[-suppress <msg_number>[,<msg_number>,...]] [-time]
[-timescale <time_units>/<time_precision>] [-togglecountlimit] [-togglewidthlimit]
[+typdelayd] [-u] [-V <library_file>] [-version] [-vlogOlcompat] [-vIog95compat]
[-warning <msg_number>[,<msg_number>,...]]
[-work <library_name>] [-y <library_directory>] <filename>

Arguments
e -O3

Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiersto preserve case in Verilog identifiers that contain uppercase letters. Optional .

ModelSim Reference Manual, v6.3g 261
May 2008

Commands

viog

-compat
Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generaly duplicates Verilog-XL event ordering, but there are cases
whereit isinefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. Refer to “Event Ordering in Verilog Designs” for additional information.

-compile_uselibg=<directory_name>]

L ocates source files specified in a "uselib directive (Refer to “Verilog-XL uselib Compiler
Directive”), compiles those files into automatically created libraries, and updates the
modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_nameis not specified, Model Sim uses the name specified in the
MTI_USELIB_DIR environment variable. If that variable is not set, Model Sim creates the
directory mti_uselibsin the current working directory.

-covercdls <filename>

Enables code coverage of modules, within the specified file, defined by * celldefine and
*endcelldefine compiler directives, or compiled with the -v or -y arguments. Optional. Can
be used to override the CoverCells compiler control variable in the modelsim.ini file.

-Cuname

Used only in conjunction with -mfcu. Optional. The -cuname names the compilation unit
being created by vlog. The named compilation unit can then be specified on the vsim
command line, along with the <top> design unit. The purpose of doing so isto force
elaboration of specified compilation unit package, thereby forcing elaboration of a
necessary ’bind’ statement within that compilation unit that would otherwise not be
elaborated. An example of the necessary commandsis:

vl og -cunane pkg_nane -nfcu filel.sv file2.sv
vsi mtop pkg_nane

Y ou need to do thisonly in cases where you have a’bind’ statement in a module that might
otherwise not be elaborated, because no module in the design depends on that compilation
unit. In other words, if amodule that depends on that compilation unit exists, you don’t need
to force the elaboration, for it occurs automatically. Also, if you are using qverilog to
compile and ssimulate the design, this binding issue is handled properly automatically.

+definet<macro_name>[=<macro_text>]

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

“define <macro_nane> <macro_text>

Optional. Y ou can specify more than one macro with asingle +define. For example:

vl og +defi ne+one=r 1+two=r2+three=r3 test.v

262

ModelSim Reference Manual, v6.3g
May 2008

Commands
viog

A command line macro overrides a macro of the same name defined with the “define
compiler directive.

e +delay_mode distributed

Disables path delays in favor of distributed delays. Optional. Refer to “Delay Modes” for
details.

e +delay_mode path
Sets distributed delaysto zero in favor of using path delays. Optional.
» +delay_mode_unit
Sets path delays to zero and non-zero distributed delays to one time unit. Optional.
e +delay_mode zero
Sets path delays and distributed delays to zero. Optional.
» -dpiheader <filename>

Generates a header file that may then beincluded in C source code for DPI import functions.
Optional. Refer to “DPI Use Flow” for additional information.

e -@ror <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "error.” Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

o -f <filename>

Specifies afile with more command line arguments. Optional. Allows complex arguments
to be reused without retyping. Allows gzipped input files. Nesting of -f optionsis allowed.

Refer to the section "Argument Files" for more information.
» -force refresh <design_unit>

Forces the refresh of all specified design units. Optional. By default, the work library is
updated; use -work <library _name>, in conjunction with -for ce refresh, to update a
different library (for example, vlog -work <your_lib_name> -force_refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the tool’ s dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim13) Reconpile /u/test/dware/dware _6le bet a. dwpackages
because /hone/ users/ questasinilinux/../synopsys.attributes has changed.

The -for ce_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -r efr esh argument.

A more conservative approach to working around -r efr esh dependency checksisto
recompile the source code, if it isavailable.

ModelSim Reference Manual, v6.3g 263
May 2008

Commands

viog

-fsmnoresettrans

Disables recognition of implicit asynchronous reset transitions. Optional. This hasthe effect
of excluding asynchronous reset transitions from any coverage results.

-fsmxassign

Enables recognition of finite state machines (FSMs) containing X assignment. Optional.
This option is used to detect FSMs if current state variable or next state variable has been
assigned "X" valuein a"case" statement. FSM's containing X-assign are otherwise not
detectable.

-genvhdl [<svb>] [f <filename>]
Generates an equivalent VHDL package in the specified file. Optional.
S = generate the equivalent stdlogic; optional
v = generate the equivalent vl_logic; optional
b = generate the equivalent bit; optional
null = generate the equivalent vl_logic
f <filename> specifies the file into which the VHDL package is generated.
-gen_xml <design_unit> <filename>

Produces an XML -tagged file containing the interface definition of the specified module.
Optional. This option requires a two-step process where you must 1) compile <filename>
into alibrary with vliog (without -gen_xml) then 2) execute vliog with the -gen_xml switch,
for example:

vlib work

vl og counter.v
vl og -gen_xm counter counter.v

-hazards

Detects event order hazards involving simultaneous reading and writing of the same register
in concurrently executing processes. Optional. Y ou must also specify this argument when
you simulate the design with vsim. Refer to “Hazard Detection” for more details.

Note

[

Enabling -hazards implicitly enables the -compat argument. As aresult, using this
argument may affect your ssmulation results.

-help
Displays the command’ s options and arguments. Optional.
+incdir+<directory>

Specifiesdirectoriesto search for filesincluded with “include compiler directives. Optional.
By default, the current directory is searched first and then the directories specified by the

264

ModelSim Reference Manual, v6.3g
May 2008

Commands
viog

+incdir optionsin the order they appear on the command line. Y ou may specify multiple
+incdir options as well as multiple directories separated by "+" in asingle +incdir option.

e -incr

Performs an incremental compile. Optional. Default. Compiles only code that has changed.
For example, if you change only one module in afile containing several modules, only the
changed module will be recompiled. Note however that if the compile options change, all
modules are recompiled regardless if you use -incr or not.

e -isymfile

Generates a complete list of all imported tasks and functions (TFs). Used with DPI to
determine all imported TFs that are expected by Model Sim.

. \Q +libext+<suffix>
ks in conjunction with the -y option. Specifies file extensions for the filesin a source
library directory. Optional. By default the compiler searches for files without extensions. If
you specify the +libext option, then the compiler will search for afile with the suffix
appended to an unresolved name. Y ou may specify only one +libext option, but it may
contain multiple suffixes separated by "+". The extensions are tried in the order they appear
in the +libext option.

e -libmap <pathname>

SpecifiesaVerilog 2001 library map file. Optional. Y ou can omit this argument by placing
the library map file as the first option on the vlog invocation (e.g., viog top.map top.v
top_cfg.v).

e -libmap verbose

Displays library map pattern matching information during compilation. Optional. Use to
troubleshoot problems with matching filename patternsin alibrary file.

» +librescan
Scans libraries in command-line order for all unresolved modules. Optional.
e -line <number>

Starts the compiler on the specified linein the Verilog source file. Optional. By default, the
compiler starts at the beginning of thefile.

e -|int

Instructs Model Sim to perform the following lint-style checks: 1) warn when Module ports
are NULL; 2) warn when assigning to an input port; 3) warn when referencing undeclared
variables/nets in an instantiation; 4) warn when an index for a Verilog unpacked variable
array reference is out of bounds. The warnings are reported as WARNING[8]. Y ou can aso
enabl e this option using the Show_Lint variable in the modelsim.ini file.

This argument generates additional array bounds-checking code by inserting checks for out-
of-bound indexing into arrays. This functionality can slow down simulation.

ModelSim Reference Manual, v6.3g 265
May 2008

Commands

viog

+maxdelays

Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

+mindelays

Selects minimum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

-mixedansiports
Permits partia port redeclarations.
-mfcu

Instructs the compiler to treat all files within a compilation command line asasingle
compilation unit. Optional. The default behavior isto treat each file listed in acommand as
aseparate compilation unit, per the SystemV erilog standard. Prior versions concatenated the
contents of the multiple filesinto a single compilation unit by default. Y ou can also enable
this option using the MultiFileCompilationUnit variable in the modelsim.ini file.

-nocovercealls <filename>

Disables code coverage of modules, within the specified file, defined by * celldefine and
"endcelldefine compiler directives, or compiled with the -v or -y arguments. Optional. Can
be used to override the CoverCells compiler control variable in the modelsim.ini file.

-nodbgsym
Disables the generation of the symbols debugging database in the compiled library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

Y ou should only specify this switch if you know that anyone using the library will not
require thisinformation for design analysis purposes.

-noincr
Disablesincremental compile previously turned on with -incr. Optional.
+nolibcell

By default all modules compiled from a source library are treated as though they contain a
“celldefine compiler directive. This option disables this default. The “celldefine directive
only affects the PLI access routines acc_next_cell and acc_next_cell_load. Optional.

-nologo
Disables the startup banner. Optional.

266

ModelSim Reference Manual, v6.3g
May 2008

Commands
viog

e +nospecify
Disables specify path delays and timing checks. Optional.
e -note <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

* +notimingchecks
Removes all timing check entries from the design asit is parsed. Optional.
e +nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings that
can be disabled include the <CODE> name in sgquare brackets in the warning message. For
example,

** Warning: test.v(15): [RDGN] - Redundant digits in numeric
literal.

This warning message can be disabled by specifying +nowarnRDGN.
e -nowarn <category_number>

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. Multiple -nowar n switches are
allowed. Warnings may be disabled for all compiles viathe Main window Compile >
Compile Options menu command or the modelsim.ini file (refer to “VHDL Compiler
Control Variables’).

The warning message categories are described in Table 2-6:

Table 2-6. Warning Message Categories for vlog -nowarn

Category | Description

number
12 non-LRM compliance in order to match Cadence behavior
13 constructs that code coverage can't handle

« -0O0

L ower the optimization to aminimum with -OO0 (capital oh zero). Optional. Use thisto work
around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out. Add the DisableOpt variable
to [vlog] section of the modelsim.ini file to set a permanent default.

e -Quiet
Disables 'L oading’ messages. Optional.

ModelSim Reference Manual, v6.3g 267
May 2008

Commands

viog

-R [<smargs>]

Instructs the compiler to invoke vsim after compiling the design. The compiler
automatically determines which top-level modules are to be ssmulated. The command line
arguments following -R are passed to the simulator, not the compiler. Place the -R option at
the end of the command line or terminate the simulator command line arguments with a
single "-" character to differentiate them from compiler command line arguments.

The -R option isnot a Verilog-XL option, but it is used by ModelSim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. Itis
not recommended that you regularly use this option because you will incur the unnecessary
overhead of compiling your design for each simulation run. Mainly, it is provided to ease
the transition to Model Sim.

-refresh

Regenerates alibrary image. Optional. By default, the work library is updated. To update a
different library, use -work <library_name> with -refresh (for example, viog -work
<your_lib_name> -refresh). If a dependency checking error occurs which prevents the
refresh, use the vliog -for ce refresh argument. See vlog examples for more information.

Y ou may use a specific design name with -r efr esh to regenerate alibrary image for that
design, but you may not use afile name.

-sfeu

Instructs the compiler to treat al files within a compilation command line as a separate
compilation units. Thisis the default behavior and is the inverse of the behavior of -mfcu.

This switch will override the MultiFileCompilationUnit variable if itisset to "1" in the
modelsim.ini file.

-source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-S

Instructs the compiler not to load the standar d package. Optional. This argument should
only be used when you are compiling the sv_std package.

-Sv

Enables SystemV erilog features and keywords. Optional. By default Model Sim follows the
rules of |IEEE Std 1364-2001 and ignores SystemV erilog keywords. If a source file hasa
".sv" extension, Model Sim will automatically parse SystemV erilog keywords.

-suppress <msg_number>[,<msg_number>,...]

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. Y ou cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “ Changing message Severity Level” for more information.

268

ModelSim Reference Manual, v6.3g
May 2008

Commands
viog

e -time

Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if many
processes are running on the same system, wall clock time may differ greatly from the
actua "cpu time" spent on vlog.

» -timescale <time_units>/<time_precision>

Specifies the default timescale for modules not having an explicit timescale directive in
effect during compilation. Optional. The format of the -timescale argument is the same as
that of the "timescale directive. The format for <time_units> and <time_precision> is
<n><units>. The value of <n> must be 1, 10, or 100. The value of <units> must befs, ps,
ns, us, ms, or S. In addition, the <time_units> must be greater than or equal to the
<time_precision>.

» -togglecountlimit

Limits the toggle coverage count for atoggle node. Optional. After the limit is reached,
further activity on the node isignored for toggle coverage. All possible transition edges
must reach this count for the limit to take effect. For example, if you are collecting toggle
dataon 0->1 and 1->0 transitions, both transition counts must reach the limit. If you are
collecting "full" data on 6 edge transitions, all 6 must reach the limit. Overrides the global
value set by the ToggleCountLimit modelsim.ini variable.

e -togglewidthlimit

Sets the maximum width of signals that are automatically added to toggle coverage with the
-cover t argument. Optional. Can be set on design unit basis. Overrides the default value
(128) of the ToggleWidthLimit modelsim.ini variable.

e +typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

e -u

Convertsregular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

e -v<library_file>

Specifies a source library file containing module and UDP definitions. Optional. Refer to
“Verilog-XL Compatible Compiler Arguments’ for more information.

After all explicit filenames on the viog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet defined.
Modules and UDPs within the file are compiled only if they match previously unresolved
references. Multiple -v options are allowed. See additional discussion in the examples.

e -version
Returns the version of the compiler as used by the licensing tools. Optional.

ModelSim Reference Manual, v6.3g 269
May 2008

Commands

viog

-vlog0lcompat
Ensures compatibility with rules of IEEE Std 1364-2001. Default.
-vlog95compat

Disables Verilog 2001 keywords, which ensures that code that was valid according to the
1364-1995 spec can still be compiled. By default Model Sim follows the rules of |EEE Std
1364-2001. Some requirements in 1364-2001 conflict with requirements in 1364-1995.
Optional. Edit the vlog95compat variable in the modelsim.ini file to set a permanent default.

-warning <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “ Changing
Message Severity Level” for more information.

-work <library_name>

Specifies alogical name or pathname of alibrary that isto be mapped to the logical library
wor k. Optional; by default, the compiled design units are added to the work library. The
specified pathname overrides the pathname specified for work in the project file.

-y <library_directory>

Specifiesasource library directory containing module and UDP definitions. Optional. Refer
to “Verilog-XL Compatible Compiler Arguments’ for more information.

After all explicit filenames on the viog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet defined.
Fileswithin this directory are compiled only if the file names match the names of previously
unresolved references. Multiple -y options are allowed. Y ou will need to specify afile suffix
by using -y in conjunction with the +libext+<suffix> option if your filenames differ from
your module names. See additional discussion in the examples.

Note

Any -y arguments that follow a-refr esh argument on a viog command line are ignored.
Any -y arguments that come before the -r efr esh argument on avliog command line are
processed.

<filename>

Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

Examples

* Compilethe Verilog source code contained in the file example.vig.

vl og exanple.vlg

» After compiling top.v, vliog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

270

ModelSim Reference Manual, v6.3g
May 2008

Commands
viog

vlog top.v -v undl

After compiling top.v, vliog will scan the viog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
impliesfilenameswith a.v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y viog_lib

The -work option specifies mylib asthe library to regenerate. -r efr esh rebuilds the
library image without using source code, alowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of Model Sim.

If your library contains VHDL design units, be sure to regenerate the library with the
vcom command using the -r efr esh option as well. Refer to “Regenerating Y our Design
Libraries” for more information.

viog -work nylib -refresh

The -incr option determines whether or not the module source or compile options have
changed as modulel.v is parsed. If no changeis found, the code generation phaseis
skipped. Differences in compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match
exactly

.vlog nodulel.v -u -Q0 -incr

The -timescal e option specifies the default timescale for modulel.v, which did not have
an explicit timescale directive in effect during compilation. Quotes are necessary
because the argument contains white spaces.viog modulel.

v -timescale "1 ns / 1 ps"

ModelSim Reference Manual, v6.3g 271

May 2008

Commands
vmake

vmake

The vmake utility allows you to use a UNIX or Windows MAKE program to maintain
individual libraries. Y ou run vmake on a compiled design library. This utility operates on
multiple source files per design unit; it supports Verilog include files as well as Verilog and
VHDL PSL vunit files.

Note
D If adesignis spread across multiple libraries, then each library must have its own

makefile and you must build each one separately.

By default, the output of vmake is sent to stdout—however, you can send the output to a
makefile by using the shell redirect operator (>) along with the name of the file. Y ou can then
run the makefile with a version of MAKE (not supplied with Model Sim) to reconstruct the
library. This command must be invoked from either the UNIX or the Windows/DOS prompt.

A MAKE program isincluded with Microsoft Visual C/C++, aswell as many other program
devel opment environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. Y ou run vmake only once; then you can simply run MAKE
to rebuild your design. If you add new design units or delete old ones, you should re-run vmake
to generate a new makefile.

The vmake utility ignores library objects compiled with -nodebug.

Syntax
vmake [-du <design_unit_name>] [-f <filename>] [-fullsrcpath] [-help] [-ignore]
[<library_name>]

Arguments
* -du<design unit_name>

Specifies that avmake file will be generated only for the specified design unit. Optional.
Y ou can specify this argument any number of times for a single vmake command.

o -f <filename>
Specifies afile to read command line arguments from. Optional .

o -fullsrcpath

Produces compl ete source file paths within generated makefiles. Optional. By default source
file paths are relative to the directory in which compiles originally occurred. This argument
makes it possible to copy and evaluate generated makefiles within directories that are
different from where compiles originally occurred.

* -help
Displays the command’ s options and arguments. Optional.

272 ModelSim Reference Manual, v6.3g
May 2008

Commands
vmake

* -ignore

Omits amake rule for the named primary design unit and its secondary design units.
Optional.

* <library_name>
Specifies the library name; if none is specified, then work is assumed. Optional.
Examples
» To produce a makefile for the work library:
vimake >nyl i b. mak
* Torunvmakeon libraries other than work:
vimake nylib >nylib. mak
» Torebuild mylib, specify its makefile when you run MAKE:
make -f nylib. mak
* Tousevmakeand MAKE on your work library:

C.\M XEDHDL> vrmake >makefil e

» Toedit an HDL source file within the work library:

C.\ M XEDHDL> make

Y our design gets recompiled for you. Y ou can change the design again and re-run
MAKE to recompile additional changes.

e Torunvmakeon libraries other than work:

C.\ M XEDHDL> vreke nylib >nylib. mak

» Torebuild mylib, specify its makefile when you run MAKE:
C.\M XEDHDL> make -f nylib. mak

ModelSim Reference Manual, v6.3g 273
May 2008

Commands

vmap

vmap

The vmap command defines a mapping between alogical library name and a directory by
modifying the modelsim.ini file.

With no arguments, vmap reads the appropriate modelsim.ini file(s) and prints the current
logical library to physical directory mappings. Returns nothing.

Syntax

vmap [-help] [-c] [-del] [<logical _name>] [<path>]

Arguments

-help
Displays the command’ s options and arguments. Optional.
-C

Copies the default modelsim.ini file from the Model Sim installation directory to the current
directory. Optional.

This argument is intended only for making a copy of the default modelsim.ini file to the
current directory. Do not use it while making your library mappings or the mappings may
end up in the incorrect copy of the modelsim.ini.

-del

Deletes the mapping specified by <logical_name> from the current project file. Optional.
<logical_name>

Specifies the logical name of the library to be mapped. Optional.

<path>

Specifies the pathname of the directory to which the library is to be mapped. Optional. If
omitted, the command displays the mapping of the specified logical name.

274

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

vsim
The vsim command is used to invoke the VSIM simulator, to view the results of a previous

simulation run (when invoked with the -view switch), or to view coverage data stored in the
UCDB from a previous simulation run (when invoked with the -viewcov switch).

Y ou can ssmulate aVHDL configuration or an entity/architecture pair; a Verilog module or
configuration. If you specify a VHDL configuration, it isinvalid to specify an architecture.
During elaboration vsim determinesif the source has been modified since the last compile.

This command may be used in batch mode from the Windows command prompt. Refer to
“Batch Mode” for more information on the VSIM batch mode.

To manually interrupt design loading use the Break key or <Ctrl-c> from a shell.

Y ou can invoke vsim from a command prompt or in the Transcript pane of the Main window.
Y ou can aso invoke it from the GUI by selecting Simulate > Start Simulation.

All arguments to the vsim command are case sensitive: -g and -G are not equivalent.
Syntax

Note
D This Syntax section presents all of the vsim switches in alphabetical order, while the

Arguments section groups the arguments into the following sections:

Arguments, all languages
Arguments, VHDL
Arguments, Verilog
Arguments, object

vsim
[-absentisempty] [+alt_path_delays] [-assertfile <filename>]

[-c] [-capacity] [-colormap new]

[-debugDB=<db_pathname>] [+delayed_timing_checks] [-display <display_spec>]
[-do “<command_string>" | <macro_file_name>] [-dpiexportobj <objfile>]
[+dumpports+collapse] [+dumpports+direction]
[+dumpports+no_strength_range]

[+dumpportst+unique]

[-error <msg_number>[,<msg_number>,...]]
[-errorfile <filename>]

[-f <filename>] [-fatal <msg_number>[,<msg_number>,...]]

[-g<Name>=<Value> ...] [-G<Name>=<Vaue> ...] [-gblso <filename>]
[-geometry <geometry spec>] [-gui]

ModelSim Reference Manual, v6.3g 275
May 2008

Commands
vsim

[-hazards] [-help]
[-i] [-installcolormap]
[-keeploaded] [-keeploadedrestart] [-keepstdout]

[-I <filename>] [-lib <libname>] [-L <library_name> ...]
[-Lf <library_name> ...] [<library_name>.<design_unit>]

[+maxdelays] [+mindelays]

[-msgmode both | tran | wif] [-multisource _delay min | max | latest]
[+multisource int_delays]

[-name <name>] [-noautol dlibpath] [-nodpiexports] [+no_cancelled e msg]
[+no_glitch_msg] [+no_neg_tchk] [+no_natifier] [+no_path_edge] [+no_pulse msg]
[-no_risefall_delaynets] [+no_show_cancelled €] [+no_tchk _msg] [-nocollapse]
[-nocapacity] [-nocompress] [-noexcludehiz] [-nofileshare] [-noglitch] [+nosdferror]
[+nosdfwarn] [+nospecify] [-note <msg_number>[,<msg_number>,...]] [+notimingchecks]
[+nowarn<CODE>] [+ntc_warn] [-onfinish ask | stop | exit]

[-pli "<object list>"] [+<plusarg>] [-printsimstats]
[+pulse_el<percent>] [+pulse e style ondetect] [+pulse e style onevent]
[+pulse_r/<percent>]

[-quiet]

[+sdf_iopath to prim ok]
[+sdf _nocheck celltype]
[-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=|<sdf_filename>]
[-sdfmaxerrors <n>] [-sdfnoerror] [-sdfnowarn] [+sdf verbose] [-std_input <filename>]
[-std_output <filename>] [+show_cancelled €]
[-strictvital] [-suppress <msg_number>[,<msg_number>,...]] [-sv_lib <shared _obj>]
[-sv_liblist <filename>] [-sv_root <dirname>]
[-sync]

[-t [<multiplier>]<time_unit>] [-tab <tabfile>] [-tag <string>] [-title <title>] [-togglecountlimit]
[-toggleMaxIntV a ues <int>] [-toggleNolntegers] [-togglenovlogints]
[-togglevlogints][-togglewidthlimit] [-trace foreign <int>] [+transport_int_delays]
[+transport_path delays| [+typdelays]

[-v2k_int_delays][-vcdstim [<instance>=]<filename>] [-version]
[-view [<dataset_name>=]<WLF_filename>]
[-viewcov [<dataset_name>=|<UCDB_filename>] [-visual <visual>] [-vital2.2b]

[-warning <msg_number>[,<msg_number>,...]] [-wIf <filename>] [-wlfcachesize <n>]
[-wlifcollapsedelta] [-wlifcollapsetime] [-wIfcompress] [-wlifdeleteonquit] [-wiflock]
[-wlIfnocollapse] [-wlfnocompress] [-wIfnodel eteonquit] [-wifnolock] [-wifnoopt] [-wifopt]
[-wlfsimcachesize <n>] [-wIfdim <size>] [-wIftlim <duration>]

[-wlifthreads | -wlfnothreads]

276 ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

Arguments, all languages

-assertfile <filename>

Designates an alternative file for recording VHDL assertion messages. Optional. An
alternate file may also be specified by the AssertFile modelsim.ini variable. By defaullt,
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (refer to “Creating a Transcript File”).

-C

Specifies that the simulator is to be run in command-line mode. Optional. Refer to “Modes
of Operation” for more information.

-capacity
Enablesthe fine-grain analysis display of memory capacity (coarse-grain analysisis enabled
by default). Optional.

-colormap new

Specifies that the window should have a new private colormap instead of using the default
colormap for the screen. Optional.

-display <display spec>
Specifies the name of the display to use. Optional. Does not apply to Windows platforms.
For example:

-display : 0

-displaymsgmode both | tran | wif

Controls the transcription of $display system task messages to the transcript and/or the
Message Viewer. Refer to the section "Message Viewer Tab" in the User’s Manual for more
information and the displaymsgmode .ini file variable.

both — outputs messages to both the transcript and the WLF file.

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer. Default behavior

wIf — outputs messages only to the WLF file/Message Viewer, therefore they are not
available in the transcript.

The display system tasks displayed with this functionality include: $display, $strobe,
$monitor, $write as well as the analogous file 1/0 tasks that write to STDOUT, such as
$fwrite or $fdisplay.

-debugDB=<db_pathname>

Instructs Model Sim to generate database of simulation resultsto be used for post-sim debug.
Optional. The database pathname should have a .dbg extension. If a database pathnameis
not specified, Model Sim creates a database file named vsim.dbg in the current directory.

ModelSim Reference Manual, v6.3g 277
May 2008

Commands

vsim

-do “<command_string>" | <macro_file_name>

Instructs vsim to use the command(s) specified by <command_string> or the macro file
named by <macro_file_name> rather than the startup file specified in the .ini file, if any.
Optional. Multiple commands should be separated by semi-colons (;).

+dumpports+collapse

Collapses vectors (VCD id entries) in dumpports output. Optional. The default behavior can
be changed by setting the DumpportsCollapse variable in the modelsim.ini file.

+dumpports+direction
Modifies the format of extended VCD filesto contain direction information. Optional.
+dumpports+no_strength_range

Ignores strength ranges when resolving driver values for an extended VCD file. Optional.
This argument is an extension to the |EEE 1364 specification. Refer to “Resolving Values’
for additional information.

+dumpportstunique

Generates unique VCD variable names for portsin aVCD file even if those ports are
connected to the same collapsed net. Optional.

-error <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "error.” Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

-errorfile <filename>

Designates an alternative file for recording error messages. Optional. An alternate file may
also be specified by the ErrorFile modelsim.ini variable. By default, error messages are
output to the file specified by the TranscriptFile variable in the modelsim.ini file (refer to
“Creating a Transcript File").

-f <filename>

Specifies afile with more vsim command arguments. Optional. Allows complex argument
strings to be reused without retyping.

Refer to the section "Argument Files" for more information.
-fatal <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "fatal." Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

-g<Name>=<Vadue> ...

Assigns avaueto all specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-level

278

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

generics/parameters and generics/parameters that would otherwise receive their default
values). Optional. Note there is no space between -g and <Name>=<Value>.

"Name" is the name of the generic/parameter, exactly asit appearsin the VHDL source
(caseisignored) or Verilog source. "Value" is an appropriate value for the declared data
type of aVHDL generic or any legal value for a Verilog parameter. Make sure the Value
you specify for aVHDL generic is appropriate for VHDL declared data types.

No spaces are allowed anywhere in the specification, except within quotes when specifying
astring value. Multiple -g options are allowed, one for each generic/parameter.

Name may be prefixed with arelative or absolute hierarchical path to select genericsin an
instance-specific manner. For example, specifying -g/top/ul/tpd=20ns on the command line
would affect only the tpd generic on the /top/ul instance, assigning it a value of 20ns.
Specifying -gul/tpd=20ns affects the tpd generic on all instances named ul. Specifying -
gtpd=20ns affects all generics named tpd.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram ul/tpd_hl =10ns -gtpd_hl =15ns top
This command setstpd_hl to 10ns for the /top/ranvul instance. However, al other tpd _hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records) cannot
be set from the command line. However, you can set string arrays, std_logic vectors, and bit
vectorsif they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this command
from ashell, put single quotes (') around the string. For example:

-gstrgen=""This is a string"'

If working within the Model Sim GUI, you would enter the command as follows:
{-gstrgen="This is a string"}

¢ -G<Name>=<Vdue> ...

Same as -g (see above) except that it will also override generics/parameters that received
explicit values in generic maps, instantiations, or via defparams. Optional. Note thereis no
space between -G and <Name>=<Vaue>. Thisargument isthe only way for you to ater the
generic/parameter, such asitslength, (other than it’s value) after the design has been loaded.

» -ghlso <filename>

On UNIX platforms, loads PLI/FLI shared objects with global symbol visibility. Essentially
al data and functions are exported from the specified shared object and are available to be

ModelSim Reference Manual, v6.3g 279
May 2008

Commands

vsim

referenced and used by other shared objects. This option may also be specified with the
Global SharedObjectsList variable in the modelsim.ini file. Optional.

* -geometry <geometry spec>
Specifiesthe size and location of the main window. Optional. Where <geometry _spec> is of
the form:

WK HHEX+Y

* -Qui
Starts the Model Sim GUI without |oading a design and redirects the standard output (stdout)
to the GUI Transcript window. Optional.

* -help
Displays the command’ s options and arguments. Optional.

o i
Specifies that the smulator isto be run in interactive mode. Optional.

* -installcolormap
For UNIX only. Causes vsim to use its own colormap so as not to hog al the colors on the
display. Thisis similar to the -install switch on Netscape. Optional.

* -keeploaded
Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries when it
restarts or loads a new design. Optional. The shared libraries will remain loaded at their
current positions. User application code in the shared libraries must reset itsinternal state
during arestart in order for thisto work effectively.

» -keeploadedrestart
Prevents the simulator from unloading/reloading any FLI/PL1/VPI shared libraries during a
restart. Optional. The shared libraries will remain loaded at their current positions. User
application code in the shared libraries must reset itsinternal state during arestart in order
for thisto work effectively.
We recommend using thisoption if you’ll be doing warm restores after arestart and the user
application code has set callbacksin the simulator. Otherwise, the callback function pointers
might not be valid if the shared library isloaded into a new position.

» -keepstdout
For use with foreign programs. Instructs the simulator to not redirect the stdout stream to the
Main window. Optional.

o | <filename>
Saves the contents of the Transcript pane to <filename>. Optional. Default is taken from the
TranscriptFile variable (initially set to transcript) in the modelsim.ini.

280 ModelSim Reference Manual, v6.3g

May 2008

Commands
vsim

e -L <library_name> ...

Specifiesthe library to search for design units instantiated from Verilog and for VHDL
default component binding. Refer to “Library Usage” for more information. If multiple
libraries are specified, each must be preceded by the -L option. Libraries are searched in the
order in which they appear on the command line.

e -Lf<library_name> ...

Sameas-L but libraries are searched before * uselib directives. Refer to “Library Usage” for
more information. Optional.

e -ib <libname>

Specifies the default working library where vsim will ook for the design unit(s). Optional.
Default is"work".

e -msgmode both | tran | wif

Specifiesthe location(s) for the simulator to output el aboration and runtime messages. Refer
to the section "Message Viewer Tab" in the User’s Manual for more information.

both — outputs messages to both the transcript and the WLF file. Default behavior

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer.

wIf — outputs messages only to the WLF file/Message Viewer, therefore they are not
available in the transcript.

e -multisource_delay min | max | latest

Controls the handling of multiple PORT or INTERCONNECT constructs that terminate at
the same port. Optional. By default, the Module Input Port Delay (MIPD) is set to the max
value encountered in the SDF file. Alternatively, you may choose the min or latest of the
values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisour ce_int_delays argument.

e +multisource_int_delays

Enables multisource interconnect delay with pulse handling and transport delay behavior.
Works for both Verilog and VITAL cells. Optional.

Use this argument when you have interconnect datain your SDF file and you want the delay
on each interconnect path modeled independently. Pulse handling is configured using the
+pulse_int_eand +pulse_int_r switches (described below).

The +multisour ce_int_delays argument cannot be used if you compiled using the -novital
argument to vcom. The -novital argument instructs vcom to implement VITAL
functionality using VHDL code instead of accelerated code, and multisource interconnect
delays cannot be implemented purely within VHDL.

* -name <name>

Specifies the application name used by the interpreter for send commands. This does not
affect the title of the window. Optional.

ModelSim Reference Manual, v6.3g 281
May 2008

Commands

vsim

-noautol dlibpath

Disables the default internal setting of LD_LIBRARY_PATH, enabling you to set it
yourself. Optional. Thisargument only valid for batch mode use (vsim invoked from a shell
prompt, rather than inside the GUI).

-nocapacity
Disables the display of both coarse-grain and fine-grain analysis of memory capacity.
Optional.

-NOCoOMpress

Causes VSIM to create uncompressed checkpoint files. Optional. This option may also be
specified with the CheckpointCompressM ode variable in the modelsim.ini file.

+no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is atiming check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
in both Verilog and VITAL for the entire design.

+no_tchk_msg

Disables error messages generated when timing checks are violated. Optional. For Verilog,
It disables messages issued by timing check system tasks. For VITAL, it overrides the
MsgOn arguments and generics.

Notifier registers are still toggled and may result in the propagation of Xs for timing check
violations.

-note <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Changing Message
Severity Level” for more information.

+notimingchecks

Disables Verilog timing checks. (It does NOT set the generic TimingChecksOn to FALSE
for all VHDL Vital modelswith the Vital levelO or Vital levell attribute. Generics with the
name TimingChecksOn on non-Vital models are unaffected.) Optional. By default, VVerilog
timing check system tasks ($setup, $hold,...) in specify blocks are enabled. For VITAL, the
timing check default is controlled by the ASIC or FPGA vendor, but most default to
enabled.

-plicompatdefault { latest | 2005 | 2001 }

Specifies the VPI object model behavior within vsim. This switch applies globally, not to
individual libraries.

latest — Thisisequivalent to the "2005" argument. Thisisthe default behavior if you do
not specify this switch or if you specify the switch without an argument.

282

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

2005 — Instructs vsim to use the object models as defined in IEEE Std 1800-2005 and
|EEE Std 1364-2005. Y ou can also use "05" as an alias.

2001 — Instructs vsim to use the object models as defined in IEEE Std 1364-2001.
When you specify this argument, SystemV erilog objects will not be accessible. You
can also use "01" as an alias.

Y ou can aso control this behavior with the PliCompatDefault variable in the modelsim.ini
file, where the -plicompatdefault argument will override the PliCompatDefault variable.

Y ou should note that there are afew cases where the 2005 VPl object model isincompatible
with the 2001 model, which is inherent in the specifications.

Refer to the appendix "Verilog PLI/VPI/DPI" in the User’s Manual for more information.
e -printsmstats

Prints the output of the simstats command to the screen at the end of simulation before
exiting. Edit the PrintSimStats variable in the modelsim.ini file to set the simulation to print
the simstats data by default.

e +pulse_int_e/<percent>

Controls how pulses are propagated through interconnect delays, where <percent>isa
number between 0 and 100 that specifies the error limit as a percentage of the interconnect
delay. Optional. Used in conjunction with +multisource int_delays (see above). This
option works for both Verilog and VITAL cells, though the destination of the interconnect
must be aVerilog cell. The source may be VITAL or Verilog.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the regjection limit (see +pulse_int_r/<percent>
below) propagates to the output as an X. If the rgjection limit is not specified, then it
defaults to the error limit. For example, consider an interconnect delay of 10 along with a
+pulse_int_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. Thisresultsin the propagation of pulses greater than or equal to 8, while al other
pulses are filtered.

* +pulse_int_r/<percent>

Controls how pulses are propagated through interconnect delays, where <percent> isa
number between 0 and 100 that specifies the regjection limit as a percentage of the
interconnect delay. Optional. This option works for both Verilog and VITAL cells, though
the destination of the interconnect must be a Verilog cell. The source may be VITAL or
Verilog.

A pulse less than the regjection limit isfiltered. If the error limit is not specified by
+pulse_int_ethen it defaults to the rejection limit.

e -Quiet
Disable 'L oading' messages during batch-mode simulation. Optional.

ModelSim Reference Manual, v6.3g 283
May 2008

Commands

vsim

o +sdf_iopath_to_prim_ok
Preventsvsim from issuing an error when it cannot locate specify path delaysto annotate. If
you specify this argument, IOPATH statements are annotated to the primitive driving the
destination port if a corresponding specify path is not found. Optional. Refer to “SDF to
Verilog Construct Matching” for additional information.

e -sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf filename>
Annotates VITAL or Verilog cellsin the specified SDF file (a Standard Delay Format file)
with minimum, typical, or maximum timing. Optional.
The optional argument @<delayScale> scales all values by the specified value. For
example, if you specify -sdfmax@1.5..., all maximum valuesin the SDF file will be scaled
to 150% of their original value.
The use of [<instance>=] with <sdf _filename> isalso optional; it is used when the
backannotation is not being done at the top level. Refer to “ Specifying SDF Files for
Simulation”.

» -sdfmaxerrors <n>
Controls the number of Verilog SDF missing instance messages that will be emitted before
terminating vsim. Optional. <n> is the maximum number of missing instance error
messages to be emitted. The default number is 5.

e -sdfnoerror
Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

e -sdfnowarn
Disables warnings from the SDF reader. Optional. Refer to “VHDL Simulation” for an
additional discussion of SDF.

e +odf verbose
Turns on the verbose mode during SDF annotation. The Transcript pane provides detailed
warnings and summaries of the current annotation as well as information including the
module name, source file name and line number. Optional.

e -suppress <msg_number>[,<msg_number>,...]
Prevents the specified message(s) from displaying. Optional. Y ou cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Changing Message Severity Level” for more information.

* -sync
Executes all X server commands synchronously, so that errors are reported immediately.
Does not apply to Windows platforms.

e -t [<multiplier>]<time_unit>
Specifiesthe simulator time resolution. Optional. <time_unit> must be one of the following:

284 ModelSim Reference Manual, v6.3g

May 2008

Commands
vsim

fs, ps, ns, us, ns, sec

The default is 1ps; the optional <multiplier> may be 1, 10 or 100. Note that thereis no space
between the multiplier and the unit (i.e., 10fs, not 10 fs).

If you omit the -t argument, the default time resolution depends on design type: in aVerilog
design with ‘timescal e directives, the minimum time precision is used; in Verilog designs
without any timescale directives, or in a VHDL or mixed design, the value specified for the
Resolution variable in the modelsim.ini file is used.

Once you’ ve begun simulation, you can determine the current simulator resolution by
invoking the report command with the simulator state option.

o -tab <tabfile>

Specifies the location of a Synopsys VCStable file (.tab), which the ssmulator uses to
automate the registration of PLI functionsin the design.

<tabfile> — The location of a.tab file contains information about PLI functions. The
tool expectsthe .tab file to be based on Synopsys VCS version 7.2 syntax. Because
the format for thisfile is non-standard, changes to the format are outside of the
control of Mentor Graphics.

* -tag <string>

Specifies a string tag to append to foreign trace filenames. Optional. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.

o title<title>

Specifiesthetitle to appear for the Model Sim Main window. Optional. If omitted the current
Model Sim version is the window title. Useful when running multiple simultaneous
simulations. Text strings with spaces must be in quotes (e.g., "my title").

» -togglecountlimit

Overrides the global toggle coverage count limit for toggle nodes in an entire simulation.
Optional. After the limit is reached, further activity on the node will be ignored for toggle
coverage. All possible transition edges must reach this count for the limit to take effect. For
example, if you are collecting toggle data on 0->1 and 1->0 transitions, both transition
counts must reach the limit. If you are collecting "full" dataon 6 edge transitions, all 6 must
reach the limit. Overrides the global value set by the ToggleCountLimit modelsim.ini
variable.

e -togglewidthlimit

Sets the maximum width of signals that are automatically added to toggle coverage with the
-cover t argument for vcom or vliog. Optional. Can be set on design unit basis. Overridesthe
global value set by the ToggleWidthLimit modelsim.ini variable.

e -trace foreign <int>

Creates two kinds of foreign interface traces: alog of what functions were called, with the
value of the arguments, and the results returned; and a set of C-language filesto replay what
the foreign interface side did.

ModelSim Reference Manual, v6.3g 285
May 2008

Commands

vsim

The purpose of the logfile is to aid the debugging of your PLI/VPI code. The primary
purpose of the replay facility isto send the replay fileto MTI support for debugging co-
simulation problems, or debugging problemsfor which it isimpractical to send the PLI/VPI
code.

+transport_int_delays

Selects transport mode with pulse control for single-source nets (one interconnect path).
Optional. By default interconnect delays operate in inertial mode (pulses smaller than the
delay arefiltered). In transport mode, narrow pulses are propagated through interconnect
delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisource_int_delays.

-vcdstim [<instance>=]<filename>

SpecifiesaVCD file from which to re-simulate the design. Optional. The VCD file must
have been created in a previous Model Sim simulation using the ved dumpports command.
Refer to “Using Extended VCD as Stimulus’ for more information.

-version
Returns the version of the simulator as used by the licensing tools. Optional.
-view [<dataset_name>=]<WLF_filename>

Specifiesawavelog format (WLF) filefor vaim to read. Allowsyou to use vsim to view the
results from an earlier ssmulation. The Structure, Objects, Wave, and List windows can be
opened to look at the results stored in the WLF file (other Model Sim windows will not show
any information when you are viewing a dataset). See additional discussion in the
Examples.

-viewcov [<dataset_name>=]<UCDB _filename>

Invokes vsim in the coverage view mode to display UCDB data.
-visual <visua>
Specifies the visual to use for the window. Optional. Does not apply to Windows platforms.
Where <visual> may be:
<class> <depth> — One of the following:

{directcolor | grayscale | greyscale | pseudocolor | staticcolor | staticgray | staticgrey |
truecolor}

followed by:
<depth> — Specifies how many bits per pixel are needed for the visual.
default — Instructs the tool to use the default visual for the screen
<number> — Specifiesavisual X identifier.

286

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

best <depth> — Instructs the tool to choose the best possible visual for the specified
<depth>, where:

<depth> — Specifies how many bits per pixel are needed for the visual.
e -warning <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “ Changing
Message Severity Level” for more information.

o -wif <filename>

Specifies the name of the wave log format (WLF) file to create. The default is vsim.wif.
Optional. This option may also be specified with the WLFFilename variable in the
modelsim.ini file.

« -wifcachesize <n>

Specifies the size in megabytes of the WLF reader cache. Optional. By default the cache
sizeis set to zero. WLF reader caching caches blocks of the WLF file to reduce redundant
file1/O. This should have significant benefit in slow network environments. This option
may also be specified with the WL FCacheSize variable in the modelsim.ini file.

» -wifcollapsedelta

Instructs Model Sim to record values in the WLF file only at the end of each simulator delta
step. Any sub-deltavalues are ignored. May dramatically reduce WLF file size. This option
may also be specified with the WL FCollapseM ode variable in the modelsim.ini file. Default.

e -wlifcollapsetime

Instructs Model Sim to record values in the WLF file only at the end of each simulator time
step. Any delta or sub-delta values are ignored. May dramatically reduce WLF file size.
This option may also be specified with the WL FCollapseM ode variable in the modelsim.ini
file. Optional.

* -wlfcompress

Creates compressed WLF files. Default. Use -wlfnocompress to turn off compression. This
option may also be specified with the WLFCompress variable in the modelsim.ini file.

» -wlfdeleteonquit

Deletes the current simulation WLF file (vsim.wif) automatically when the simulator exits.
Optional. This option may also be specified with the WLFDeleteOnQuiit variable in the
modelsim.ini file.

o -wiflock

LocksaWLF file. Optional. An invocation of ModelSim will not overwrite a WLF file that
is being written by a different invocation.

ModelSim Reference Manual, v6.3g 287
May 2008

Commands

vsim

-wlfnocollapse

Instructs Model Sim to preserve all events and event order. May result in relatively larger
WLF files. This option may also be specified with the WLFCollapseM ode variable in the
modelsim.ini file. Optional.

-wlfnocompress

Causes vsim to create uncompressed WLF files. Optional. WLF files are compressed by
default in order to reduce file size. This may slow simulation speed by one to two percent.
Y ou may want to disable compression to speed up simulation or if you are experiencing
problems with faulty datain the resulting WLF file. This option may also be specified with
the WLFCompress variable in the modelsm.ini file.

-wlfnodel eteonquit

Preserves the current ssimulation WLF file (vsim.wlf) when the simulator exits. Default.
This option may also be specified with the WLFDeleteOnQuit variable in the modelsim.ini
file.

-wlfnolock

Disables WLF file locking. Optional. Thiswill prevent vsim from checking whether aWLF
fileislocked prior to opening it as well as preventing vsim from attempting to lock aWLF
once it has been opened.

-wlfnoopt

Disables optimization of waveform display in the Wave window. Optional. This option may
also be specified with the WL FOptimize variable in the modelsm.ini file.

-wlifopt

Optimizes the display of waveformsin the Wave window. Default. Optional. This option
may also be specified with the WL FOptimize variable in the modelsim.ini file.

-wlfsimcachesize <n>

Specifies the size in megabytes of the WLF reader cache for the current simulation dataset
only. Optional. By default the cache sizeis set to zero. This makes it easier to set different
sizes for the WLF reader cache used during ssmulation and those used during post-
simulation debug. WLF reader caching caches blocks of the WLF file to reduce redundant
filel/O. If neither -wlfsimcachesize nor WL FSimCacheSize modelsim.ini variable are
specified, the -wlfcachesize or WL FCacheSize settings will be used.

-wlfglim <size>

Specifies asize restriction in megabytes for the event portion of the WLF file. Optional. The
default isinfinite size (0). The <size> must be an integer.

Note that a WLF file contains event, header, and symbol portions. The sizerestriction is
placed on the event portion only. When Model Sim exits, the entire header and symbol
portion of the WLF file iswritten. Consequently, the resulting file will be larger than the
size specified with -wlifglim.

288

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

If used in conjunction with -wlftlim, the more restrictive of the limits takes precedence.

This option may also be specified with the WLFSizeLimit variable in the modelsim.ini file.
(See Limiting the WLF File Size.)

* -wlifthreads | -wlfnothreads

Specifies whether the logging of information to the WLF file is performed using
multithreading.

This behavior ison (-wlfthreads) by default on Solaris and Linux platforms where there are
more than one processor on the system. If there is only one processor available, or you are
running on a Windows system, this behavior is off by default (-wlfnothreads).

When this behavior is enabled, the logging of information is performed on the secondary
processor while the simulation and other tasks are performed on the primary processor.

Y ou can turn this option off with the -wlfnothreads option, which you may want to do if you
are performing several simulations with logging at the same time.

Y ou can also control this behavior with the WLFUseThreads variable in the modelsim.ini
file.

o -wiftlim <duration>

Specifies the duration of simulation time for WLF file recording. Optional. The default is
infinite time (0). The <duration> is an integer of simulation time at the current resolution;
you can optionally specify the resolution if you place curly braces around the specification.
For example,

{5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time for
the specified duration. For example,

vsim-w ftlim 5000
writes at most the last 5000ns of the current ssmulation to the WLF file (the current
simulation resolution in this case is ns).
If used in conjunction with -wlifslim, the more restrictive of the limits will take effect.
This option may also be specified with the WLFTimeLimit variable in the modelsm.ini file.

The -wlfslim and -wliftlim switches were designed to help users limit WLF file sizes for
long or heavily logged simulations. When small values are used for these switches, the
values may be overridden by the internal granularity limits of the WLF file format. (See
Limiting the WLF File Size.)

Arguments, VHDL
e -absentisempty

Causes VHDL files opened for read that target non-existent files to be treated as empty,
rather than Model Sim issuing fatal error messages. Optional.

ModelSim Reference Manual, v6.3g 289
May 2008

Commands

vsim

-nocollapse
Disables the optimization of internal port map connections. Optional.
-nofileshare

Turns off file descriptor sharing. Optional. By default Model Sim shares afile descriptor for
all VHDL files opened for write or append that have identical names.

-noglitch

Disables VITAL glitch generation. Optional.

Refer to “VHDL Simulation” for additional discussion of VITAL.
+no_glitch_msg

Disable VITAL glitch error messages. Optional.

-std_input <filename>

Specifiesthefile to use for the VHDL TextlO STD_INPUT file. Optional.
-std_output <filename>

Specifiesthe file to use for the VHDL TextlO STD_OUTPUT file. Optional.
-strictvital

Specifies to exactly match the VITAL package ordering for messages and delta cycles.
Optional. Useful for eliminating delta cycle differences caused by optimizations not
addressed inthe VITAL LRM. Using this argument negatively impacts simulator
performance.

-toggleMaxIntValues <int>

Specifies the maximum number of VHDL integer values to record for toggle coverage.
Optional. Thislimit variable may be changed on a per-signal basis. The default value of
<int>is 100 values.

-toggleNol ntegers

Turns off toggle coverage recording of VHDL integer values. Optional.
-vital2.2b

Selects SDF mapping for VITAL 2.2b (default is VITAL 2000). Optional.

Arguments, Verilog

+alt_path _delays

Configures path delays to operate in inertial mode by default. Optional. In inertial mode, a
pending output transition is cancelled when a new output transition is scheduled. The result
isthat an output may have no more than one pending transition at atime, and that pulses
narrower than the delay are filtered. The delay is selected based on the transition from the
cancelled pending value of the net to the new pending value. The +alt_path_delays option
modifies the inertial mode such that a delay is based on atransition from the current output
value rather than the cancelled pending value of the net. This option has no effect in

290

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

transport mode (see +pulse_e/<percent> and
+pulse _r/<percent>).

» +delayed_timing_checks

Causes timing checks to be performed on the delayed versions of input ports (used when
there are negative timing check limits). Optional.

e -dpiexportobj <objfile>

Generates the C export wrappers and associated compiled object code for your design. The
C wrapper code iswritten to your <work>/_dpi/ directory, so it must have the proper
permissions. The object file(s) are written to whatever |ocation you specify with the
<objfile> argument.

For Windows platforms, thisis arequired switch when using DPI that generates a .obj file
suitable for linking into a.dll. Refer to “DPI Use Flow” for additional information.

For Linux and UNIX platforms, this switch generates both a.o and asofile. The .o fileis
suitable for linking into alarger .so file, which may contain import code. The .so file can be
used directly, for example as an argument to the vsim -gblso switch or as a dependent
library in the link command for an import shared object.

Once you compile the export wrapper code into a shared object or .dll, you can manually
load it into the ssmulation using -sv_lib, or perhaps -gblso. When you do manually load the
export wrapper code, you should use the -nodpiexports switch so that the simulation does
not automatically generate and load the <work>/_dpi/exportwrapper.so file, which would
cause symbol collisions.

¢ -hazards

Enables event order hazard checking in Verilog modules. Optional. Y ou must also specify
this argument when you compile your design with vlog. Refer to “Hazard Detection” for
more details.

Note
D Enabling -hazards implicitly enables the -compat argument. As aresult, using this
argument may affect your ssmulation results.

e +maxdelays

Selects the maximum value in min:typ:max expressions. Optional. The default is the typical
value. Has no effect if you specified the min:typ:max selection at compile time.

e +mindelays
Selects the minimum value in min:typ:max expressions. Optional. The default is the typical
value. Has no effect if you specified the min:typ:max selection at compile time.

e +no_cancelled e msg

Disables negative pulse warning messages. Optional. By default vsim issues a warning and
then filters negative pulses on specify path delays. Y ou can drive an X for a negative pulse
using +show_cancelled_e.

ModelSim Reference Manual, v6.3g 291
May 2008

Commands

vsim

+no_neg_tchk

Disables negative timing check limits by setting them to zero. Optional. By default negative
timing check limits are enabled. Thisisjust the opposite of Verilog-XL, where negative
timing check limits are disabled by default, and they are enabled with the +neg_tchk option.

+no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is atiming check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
on timing violations for the entire design.

+no_path _edge

Causes Model Sim to ignore the input edge specified in a path delay. Optional. The result of
thisargument isthat all edges on the input are considered when selecting the output delay.
Verilog-XL awaysignores the input edges on path delays.

+no_pulse_msg

Disables the warning message for specify path pulse errors. Optional. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection limit
and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error results
in awarning message, and the pulseis propagated as an X. The +no_pulse_msg option
disables the warning message, but the X is still propagated.

-no_risefall_delaynets

Disables the rise/fall delay net delay negative timing check algorithm. Optional. This
argument is provided to return Model Sim to its pre-6.0 behavior where violation regions
must overlap in order to find a delay net solution. In 6.0 versions and later, Model Sim uses
separate rise/fall delays, so violation regions need not overlap for adelay solution to be
found.

+no_show_cancelled_e

Filters negative pul ses on specify path delays so they don’t show on the output. Default. Use
+show_cancelled_eto drive a pulse error state.

+no_tchk_msg

Disables error messages issued by timing check system tasks when timing check violations
occur. Optional. Notifier registers are still toggled and may result in the propagation of Xs
for timing check violations.

-nodpiexports

Instructs the command to not generate C wrapper code for DPI export task and function
routines found at elaboration time. More specifically, the command does not generate the
exportwrapper.so shared object file in <work>/_dpi/. For a description on when you should
use this switch, refer to the section * Integrating Export Wrappers into an Import Shared
Object” in the User’s Manual.

292

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

* -noexcludehiz

Instructs Model Sim to include truth table rows that contain Hi-Z states in the coverage
count. Without this argument, these rows are automatically excluded. Optional.

* +nosdferror

Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

e +nosdfwarn

Disables warnings from the SDF annotator. Optional.
e +nospecify

Disables specify path delays and timing checks. Optional.
e +nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example:

** Warning: (vsim3017) test.v(2): [TFMPC] - Too few port
connections. Expected <mp, found <n>.

This warning message can be disabled with +nowarnTFM PC.
¢ +ntc_warn

Enables warning messages from the negative timing constraint algorithm. Optional. By
default, these warnings are disabled.

This agorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If thereis no solution for this set of limits, then the algorithm sets one of the
negative limitsto zero and recal culates the delays. This processisrepeated until asolutionis
found. A warning message isissued for each negative limit set to zero.

e -onfinish ask | stop | exit
Customizes the simulator shutdown behavior when it encounters $finish in the design:
e ask —
o In batch mode, the simulation exits.

o InGUI mode, adialog box pops up and asks for user confirmation on whether to
quit the ssmulation.

* stop — stops simulation and leave the simulation kernal running
* exit — exitsout of the simulation without a prompt

By default, the simulator exits in batch mode; prompts you in GUI mode. Edit the OnFinish
variable in the modelsim.ini file to set the default operation of $finish.

ModelSim Reference Manual, v6.3g 293
May 2008

Commands

vsim

-pli "<object list>"

L oads a space-separated list of PLI shared objects. Optional. The list must be quoted if it
contains more than one object. Thisis an alternative to specifying PLI objectsin the
Veriuser entry in the modelsim.ini file, refer to “ Simulator Control Variables’. Y ou can use
environment variables as part of the path.

+<plusarg>

Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). Optional.

+pulse_e/<percent>

Controls how pulses are propagated through specify path delays, where <percent> isa
number between 0 and 100 that specifies the error limit as a percentage of the path delay.
Optional.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rejection limit is not specified, then it defaults to the
error limit. For example, consider a path delay of 10 along with a+pulse_e/80 option. The
error limit is 80% of 10 and the rejection limit defaults to 80% of 10. Thisresultsin the
propagation of pulses greater than or equal to 8, while all other pulses are filtered. Note that
you can force specify path delays to operate in transport mode by using the +pulse_e/0
option.

+pulse_e style ondetect

Selects the "on detect" style of propagating pulse errors (see +pulse_e). Optional. A pulse
error propagates to the output as an X, and the "on detect” style isto schedule the X
immediately, as soon asit has been detected that a pulse error has occurred. "on event” style
Is the default for propagating pulse errors (see +pulse_e _style onevent).

+pulse_e style onevent

Selects the "on event” style of propagating pulse errors (see +pulse_e). Default. A pulse
error propagates to the output as an X, and the "on event" styleisto schedule the X to occur
at the same time and for the same duration that the pulse would have occurred if it had
propagated through normally.

+pulse_r/<percent>

Controls how pulses are propagated through specify path delays, where <percent> isa
number between 0 and 100 that specifies the rejection limit as a percentage of the path
delay. Optional.

A pulselessthan thergjection limit is suppressed from propagating to the output. If the error
limit is not specified by +pulse_e then it defaults to the rejection limit.

294

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

» +sdf_nocheck_celltype

Disables the error check afor mismatch between the CELLTY PE name in the SDF file and
the module or primitive name for the CELL instance. It isan error if the names do not
match. Optional.

» +show_cancelled e

Drives apulse error state (' X’) for the duration of a negative pulse on a specify path delay.
Optional. By default Model Sim filters negative pul ses.

e -sv_lib <shared_obj>
Specifies the name of the DPI shared object with no extension. Required for use with DPI
import libraries. Refer to “DPI Use Flow” for additional information.

e -sv _liblist <filename>
Specifies the name of a bootstrap file containing names of DPI shared objects to load.
Optional.

e -sv_root <dirname>

Specifies the directory name to be used as the prefix for DPI shared object |ookups.
Optional.

e -togglenovlogints

Disables toggle coverage of Verilog integer types (except SystemVerilog enumeration
types). Optional. Not needed unless the ToggleVloglntegers modelsim.ini variableis set to
1 (on).

e -togglevlogints

Enables toggle coverage of Verilog integer types. Optional. Disables the
ToggleVloglntegers modelsim.ini variable' s default setting of off(0).

e +transport_path _delays

Selects transport mode for path delays. Optional. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

e +typdelays

Selectsthe typical valuein min:typ:max expressions. Default. Has no effect if you specified
the min:typ:max selection at compile time.

e -vzk int_delays
Causes interconnect delaysto be visible at the load module port per the IEEE 1364-2001
spec. Optional. By default Model Sim annotates INTERCONNECT delays in a manner
compatible with Verilog-XL. If you have $sdf _annotate() callsin your design that are not
getting executed, add the Verilog task $sdf _done() after your last $sdf _annotate() to remove

any zero-delay MIPDs that may have been created. May be used in tandem with the
+multisour ce_int_delays argument (see above).

ModelSim Reference Manual, v6.3g 295
May 2008

Commands

vsim

Arguments, object

The object arguments may be a[<library_name>].<design_unit>, a.mpf file, a.wif file, or a
text file. Multiple design units may be specified for Verilog modules and mixed
VHDL/Verilog configurations.

<library_name>.<design_unit>

Specifiesalibrary and associated design unit; multiple library/design unit specifications can
be made. Optional. If no library is specified, the work library is used. Environment
variables can be used. <design_unit> may be one of the following:

<configuration> Specifiesthe VHDL configuration to simulate.

<module> ... Specifies the name of one or more top-level Verilog modulesto

be simulated. Optional.

<entity> [(<architecture>)] Specifiesthe name of thetop-level VHDL entity to be simulated.

Optional. The entity may have an architecture optionally
specified; if omitted the last architecture compiled for the
specified entity issimulated. An entity isnot valid if a
configuration is specified.!

1. Most UNIX shells require arguments containing () to be single-quoted to prevent specia parsing by the
shell. See the examples below.

<MPF _file_name>

Opens the specified project. Optional.

<WLF _file_name>

Opens the specified dataset. Optional.

<text_file_name>

Opens the specified text file in a Source window. Optional.

Examples

* Invoke vsim on the entity cpu and assigns values to the generic parameters edge and
VCC.

vsi m - gedge=""I1 ow high"' -gVCC=4.75 cpu
If working within the Model Sim GUI, you would enter the command as follows:
vsi m {-gedge="1 ow high"} -gVCC=4.75 cpu

Instruct Model Sim to view the results of a previous simulation run stored in the WLF
file sm2.wif. The smulation is displayed as a dataset named test. Use the -wIf option to
specify the name of the WLF fileto create if you plan to create many filesfor later
viewing.

vsim-view test=sin2. W f

For example:

296

ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim

vsim-wlf ny_design.iOl my_asic structure
vsim-wlf ny _design.i02 ny_asic structure

Annotate instance /top/ul using the minimum timing from the SDF file myasic.sdf.
vsim -sdf mn /top/ul=nyasic. sdf
Use multiple switches to annotate multiple instances:

vsim-sdfmn /top/ul=sdfl -sdfnmin /top/u2=sdf2 top

This example searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

vsim’'nylib.top(only)’ gatelib.cache_set

Invokevsim ontest_counter and run the simulation until abreak event, then quit when it
encounters a $finish task.

vsim-do "set PrefMain(forceQuit) 1; run -all" work.test_counter

ModelSim Reference Manual, v6.3g 297

May 2008

Commands

vsim<info>
vsim<info>
The vsim<info> commands return information about the current vsim executable.
e vsimAuth
Returns the authorization level (PE/SE, VHDL/Verilog/PLUYS).
e vsimDate
Returns the date the executable was built, such as"Apr 10 2000".
e vsimid

Returns the identifying string, such as"ModelSim 6.1".
* vsmVersion

Returns the version as used by the licensing tools, such as "1999.04".
e vsimVersionString

Returns the full vsim version string.

This same information can be obtained using the -ver sion argument of the vsim command.

298 ModelSim Reference Manual, v6.3g
May 2008

Commands
vsim_break

vsim_break

Stop (interrupt) the current simulation before it runs to completion. To stop asimulation and
then resume it, use this command in conjunction with run -continue.

Syntax
vsim_break

Arguments
None.

Example

* Interrupt asimulation, then restart it from the point of interruption.

vsi m_break
run -continue

ModelSim Reference Manual, v6.3g 299
May 2008

Commands
vsource

vsource
The vsour ce command specifies an alternative file to use for the current sourcefile.

This command is used when the current source file has been moved. The alternative source
mapping exists for the current ssimulation only.

Syntax
vsource [<filename>]

Arguments
o <filename>
Specifies arelative or full pathname. Optional. If filename is omitted, the source file for the
current design context is displayed.
Examples

vsour ce design.vhd
vsource /ol d/ design. vhd

300 ModelSim Reference Manual, v6.3g
May 2008

Commands
wave

wave

A number of wave commands are available to manipulate the Wave window.

The following tables summarize the available options for manipulating cursors, for zooming,
and for adjusting the wave display view in the Wave window:

Table 2-7.

Wave Window Commands for Cursor

Cursor Commands

Description

wave activecursor

Sets the active cursor to the specified cursor or, if no cursor is
specified, reports the active cursor

wave addcursor

Adds a new cursor at specified time and returns the number of
the newly added cursor

wave cursortime

Moves or reports the time of the specified cursor or, if no
cursor is specified, the time of the active cursor

wave deletecursor Deletes the specified cursor or, if no cursor is specified, the
active cursor
wave Seecursor Positions the wave display such that the specified or active

cursor appears at the specified percent from the left edge of the
display — 0% isthe left edge, 100% is the right edge.

Table 2-8. Wave Window Commands for Zooming

Zooming Commands

Description

wave zoomin Zoom in the wave display by the specified factor. The default
factor is 2.0.

wave zoomout Zoom out the wave display by the specified factor. The default
factor is 2.0.

wave zoomfull Zoom the wave display to show the full simulation time.

wave zoomlast

Return to last zoom range.

wave zoomrange

Sets |eft and right edge of wave display to the specified start
time and end time. If times are not specified, reports left and
right edge times.

Table 2-9. Wave

Window Commands for Controlling Display

Display view Commands

Description

wave interrupt

Immediately stops wave window drawing

wave refresh

Cleans wave display and redraws waves

ModelSim Reference Manual, v6.3g
May 2008

301

Commands
wave

Table 2-9. Wave Window Commands for Controlling Display (cont.)

Display view Commands | Description

wave seecursor Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display — 0% isthe left edge, 100% is the right edge.

wave seetime Positions the wave display such that the specified time appears
at the specified percent from the left edge of the display — 0%
isthe left edge, 100% is the right edge.

Syntax
wave activecursor [-window <win>] [<cursor-num>]
wave addcursor [-window <win>] [-time <time>] [-name <name>] [-lock <0|1>]
wave configcursor [<cursor-num>] [-window <win>] [<option> [<value>]]
wave cursortime [-window <win>] [-time <time>] [<cursor-num>]
wave deletecursor [-window <win>] [<cursor-num>]
wave interrupt [-window <win>]
wave refresh [-window <win>]
wave seecursor [-window <win>] [-at <percent>] [<cursor-num>]
wave seetime [-window <win>] [-at <percent>] <time>
wave zoomin [-window <win>] [<factor>]
wave zoomout [-window <win>] [<factor>]
wave zoomfull [-window <win>]
wave zoomlast [-window <win>]

wave zoomrange [-window <win>] [<start-time>] [<end-time>]

Arguments
e [-at <percent>]

Positions the display such that the time or cursor is the specified <percent> from the left
edge of the wave display. 0% is the left edge; 100% is the right edge. Optional. Default is
50%.

* [<cursor-num>]
Specifies a cursor number. Optional. If not specified, the active cursor is used.
e [<factor>]

A number that specifies how much you want to zoom into or out of the wave display.
Optional. Default value is 2.0.

302 ModelSim Reference Manual, v6.3g
May 2008

Commands
wave

* [-lock <0|1>]
Specify the lock state of the cursor. Optional. Default is’0’, unlocked.
e [-name <name>]

Specify the name of the cursor. Optional. Default is " Cursor <n>" where <n> is the cursor
number.

e <option> [<value>]

Specify avalue for the designated option. Currently supported options are -name, -time, and
-lock. Optional. If no option is specified, current value of all options are reported.

o [<dtart-time>]
[<end-time>]

start-time and end-time are times that specify a zoom range. If neither number is specified,
the command returns the current zoom range. If only one time is specified, then the zoom
rangeis set to start at 0 and end at specified time.

e [-time<time>]
Specifies acursor time. Optional.
e [-window <win>]

All commands default to the active Wave window unless this argument is used to specify a
different Wave window. Optional.

Examples

» Either of these commands creates a zoom range with a start time of 20 nsand an end
time of 100 ns.

wave zoonrange 20ns 100ns
wave zoonrange 20 100

¢ Return the name of cursor 2:
wave configcursor 2 -nane
* Name cursor 2, "reference cursor” and return that name with:

wave configcursor 2 -nanme {reference cursor}

* Return the values of all wave configcursor options for cursor 2:

wave configcursor 2

ModelSim Reference Manual, v6.3g 303
May 2008

Commands
when

when

The when command instructs Model Sim to perform actions when the specified conditions are
met.

For example, you can use the when command to break on asignal value or at a specific
simulator time. Use the nowhen command to deactivate when commands.

Syntax
when [[-fast] [-id <id#>] [-label <label>] {<when_condition_expression>} { <command>}]
Description

The when command uses awhen_condition_expression to determine whether or not to
perform the action. Conditions can include VHDL signals and Verilog nets and registers. The
when_condition_expression uses a simple restricted language (that is not related to Tcl),
which permits only four operators and operands that may be either HDL object names,
signame’ event, or constants. Model Sim eval uates the condition every time any object in the
condition changes, hence the restrictions.

Here are some additional pointsto keep in mind about the when command:

» Thewhen command creates the equivalent of a VHDL process or aVerilog always
block. It does not work like alooping construct you might find in other languages such
asC.

» Virtual signals, functions, regions, types, etc. cannot be used in the when command.
Neither can ssimulator state variables other than $now.

* With no arguments, when will list the currently active when statements and their |abels
(explicit or implicit).

Syntax
when [[-fast] [-id <id#>] [-label <label>] { <when_condition_expression>} {<command>}]
Embedded Commands Allowed with the -fast Argument

Y ou can use any Tcl command as a <command>, along with any of the following vaim

commands:
* Dbp, bd
» change

+ disablebp, enablebp
* echo

e examine

» force, noforce

* log, nolog

304 ModelSim Reference Manual, v6.3g
May 2008

Commands
when

e Stop
* when, nowhen
Embedded Commands Not Allowed with the -fast Argument
* Any do commands
* Any Tk commands or widgets
* References to U/I state variables or tcl variables
* Virtual signals, functions, or types

Using Global Tcl Variables with the -fast Argument

Embedded commands that use global Tcl variables for passing a state between the when
command and the user interface need to declare the state using the Tcl uivar command. For
example, the variable i below isvisible in the GUI. From the command prompt, you can
display it (by entering echo $i) or modify it (for example, by entering set i 25).

set i 10

when -fast {clk == "'0"} {
ui var i
set i [expr {$i - 1}]
if {$i <=0} {

force reset 1 0, 0 250

}

}

when -fast {reset == '0"} {
ui var i
set i 10

}

Additional Restrictions on the -fast Argument

Accessing channels (such asfiles, pipes, sockets) that were opened outside of the embedded
command will not work. For example:
set fp [open nylog.txt w

when -fast {bus} {
puts $fp "bus change: [exam ne bus]"

The channel that $fp refersto is not available in the simulator, only in the user interface.
Even using the uivar command does not work here because the value of $fp has no meaning
in the context of the -fast argument.

The following method of rewriting this example opens the channel, writes to it, then closes
it within the when command:

when -fast {bus} {
set fp [open nylog.txt a]
puts $fp "bus change: [exam ne bus]"
close $fp

}

ModelSim Reference Manual, v6.3g 305
May 2008

Commands

when

The following example is alittle more sophisticated method of doing the same thing:

when -fast {$now == Ons} {
set fp [open nylog.txt w

}
when -fast {bus} {
puts $fp "bus change: [exam ne bus]"

}

when -fast {$now == 1000ns} {
close $fp

}

The general principleisthat any embedded command done using the -fast argument is
global to al other commands used with the -fast argument. Here, { $now == 0ns} isaway to
define Tcl processes that the -fast commands can use. These processes have the same
restrictions that when bodies have, but the advantage is again speed as a proc will tend to
execute faster than code in the when body itself.

It is recommended not to use virtual signals and expressions.

Arguments

-fast

Causes the embedded <command> to execute within the simulation kernel, which provides
faster execution and reduces impact on simulation runtime performance. Optional.
Limitations on using the -fast argument are described above (in “ Embedded Commands Not
Allowed with the -fast Argument”). Disallowed commands still work, but they slow down
the simulation.

-label <label>
Used to identify individual when commands. Optional.
-id <id#>

Attempts to assign thisid number to the when command. Optional. If the id number you
specify is already used, ModelSim will return an error.

Note

[

Ids for when commands are assigned from the same pool as those used for the bp
command. So, even if you haven't used an id number for awhen command, it’s possible
it is used for a breakpoint.

{<when_condition_expression>}

Specifies the conditions to be met for the specified <command> to be executed. Required if
acommand is specified. The condition is evaluated in the simulator kernel and can be an
object name, in which case the curly braces can be omitted. The command will be executed
when the object changes value. The condition can be an expression with these operators:

Name Operator
equa|s == =

306

ModelSim Reference Manual, v6.3g
May 2008

Commands
when

Name Operator
not equal I=, /=
greater than >
less than <

greater than or equal >=

less than or equal <=
AND &&, AND
OR I, OR

The operands may be object names, signame’ event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is evaluated
asTRUE or 1.

The formal BNF syntax is:

condition ::= Nane | { expression }

expression ::= expression AND rel ation
| expression OR relation
| relation

relation ::= Nane = Literal

| Nanme /= Literal

| Name ' EVENT

| (expression)

Literal ::= '<char>'" | "<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals, i.e., Name = Name is not possible.

Tcl variables can be used in the condition expression but you must replace the curly braces
({}) with double quotes (""). Thisworks like a macro substitution where the Tcl variables
are evaluated once and the result is then evaluated as the when condition. Condition
expressions are evaluated in the vsim kernel, which knows nothing about Tcl variables.
That's why the condition expression must be evaluated in the GUI before it is sent to the
vsim kernel. See below for an example of using a Tcl variable.

The">","<", ">=" and "<=" operators are the standard ones for vector types, not the
overloaded operatorsin the std_logic_1164 package. This may cause unexpected results
when comparing objects that contain values other than 1 and 0. Model Sim does a lexical
comparison (position number) for values other than 1 and 0. For example:

0000 < 1111 ## This evaluates to true

HOOO0 < 1111 ## This evaluates to fal se
001X >= 0010 ## This al so evaluates to fal se

{<command>}

The command(s) for thisargument are evaluated by the Tcl interpreter within the ModelSim
GUI. Any ModelSim or Tcl command or series of commands are valid with one

ModelSim Reference Manual, v6.3g 307
May 2008

Commands

when

exception—the run command cannot be used with the when command. Required if awhen
expression is specified. The command sequence usually contains a stop command that setsa
flag to break the ssmulation run after the command sequence is completed. Multiple-line
commands can be used.

Note

[

If you want to stop the ssmulation using awhen command, you must use a stop command
within your when statement. DO NOT use an exit command or a quit command. The
stop command acts like a breakpoint at thetime it is evaluated.

Examples

The when command below instructs the simulator to display the value of object cin
binary format when there isaclock event, the clock is 1, and the value of bis01100111.
Finally, the command tells Model Sim to stop.

when -l abel whenl {clk’event and clk="1 and b = "01100111"} {
echo "Signal ¢ is [exa -bin c]"
stop

}

The commands below show an example of using a Tcl variable within awhen
command. Note that the curly braces ({}) have been replaced with double quotes ("").

set clkb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_ramclkb

when -1 abel whenl "$cl kb_path' event and $cl kb_path ="1'" {
echo "Detected C k edge at path $cl kb_pat h"
}

The when command below is labeled a and will cause Model Sim to echo the message
“b changed” whenever the value of the object b changes.

when -l abel a b {echo "b changed"}

The multi-line when command bel ow does not use alabel and has two conditions. When
the conditions are met, an echo and a stop command will be executed.

when {b =1
and ¢ /= 0} {
echo "bis 1 and ¢ is not 0"
stop

}

In the example below, for the declaration "wire [15:0] &", the when command will
activate when the selected bits match a 7:

when {a(3:1) = 3'h7} {echo "matched at tine " $now}

In the exampl e below, we want to sample the values of the address and data bus on the
first falling edge of clk after sstrb has gone high.

308

ModelSim Reference Manual, v6.3g
May 2008

Commands

when
::strobe is our state variable
set ::strobe Zero
This signal breakpoint only fires when sstrb changes to a '1'
when -1 abel checkStrobe {/top/sstrb == "1"} {
Qur state Zero condition has been nmet, nove to state One
set ::strobe One
This signal breakpoint fires each time clk goes to '0
when {/top/clk == "'0"} {
if {$::strobe eq "One"} {
Qur state One condition has been net
Sampl e the busses
echo Sanpl e paddr=[exam ne -hex /top/paddr] :: sdata=[exam ne

- hex

/ t op/ sdat a]

reset our state variable until next rising edge of sstrb
(back to

state Zero)

set ::strobe Zero

Ending the simulation with the stop command

Batch mode simulations are often structured as "run until condition X istrue,”" rather than "run
for X time" simulations. The multi-line when command below sets a done condition and
executes an echo and a stop command when the condition is reached.

The simulation will not stop (even if aquit -f command is used) unless a stop command is
executed. To exit the simulation and quit Model Sim, use an approach like the following:

onbreak {resune}
when {/done_condition == "1"} {
echo "End condition reached"
i f [batch_node] {
set DoneConditi onReached 1
stop

}

}

run 1000 us

i f {$DoneConditionReached == 1} {
quit -f

}

Here' s another example that stops 100ns after a signal transition:

when {a = 1} {
If the 100ns delay is already set then let it go.
if {[when -label a_100] == ""} {
when -l abel a_100 { $now = 100 } {
del ete this breakpoint then stop
nowhen a_100
stop
}
}
}

ModelSim Reference Manual, v6.3g 309
May 2008

Commands
when

Time-based breakpoints
Y ou can build time-based breakpoints into a when statement with the following syntax.
For absolute time (indicated by @) use:
when {$now = @750 ns} {stop}

Y ou can aso use:
when {errorFlag = '1'" OR $now = 2 ns} {stop}
This example adds 2 ms to the simulation time at which the when statement is first evaluated,

then stops. The white space between the value and time unit is required for the time unit to be
understood by the simulator.

Y ou can also use variables, as shown in the following example:

set tine 1000
when "\ $now = $time" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop
Notethat "$now" hasthe’$ escaped. This prevents Tcl from expanding the variable, because if
it did, you would get:

when "0 = 1000" stop

See also
bp, disablebp, enablebp, nowhen

310 ModelSim Reference Manual, v6.3g
May 2008

Commands
where

where

The where command displays information about the system environment. This command is
useful for debugging problems where Model Sim cannot find the required libraries or support
files. mg67000

The command displays two results on consecutive lines:
e current directory

Thisisthe current directory that Model Sim was invoked from, or that was specified on
the Model Sim command line.

* current project file

Thisisthe.mpf file ModelSim isusing. All library mappings are taken from here when a
project is open. If the design is not loaded through a project, this line displays the
modelsim.ini file in the current directory.

Syntax
where

Arguments
* None.
Examples
» Designisloaded through a project:

VSI M> wher e
Current directory is: D:\dient
Project is: D/dient/nmonproj. npf

» Designisloaded with no project (indicates the modelsim.ini file is under the mydesi gn
directory):

VSI M> wher e

Current directory is: C\dient\testcase\nydesign
Project is: nodelsimini

ModelSim Reference Manual, v6.3g 311
May 2008

Commands
wlf2log

wlf2log
The wlf2log command translates a Model Sim WLF file (vsim.wif) to a QuickSim I1 logfile.

The command reads the vsim.wif WLF file generated by the add list, add wave, or log
commands in the simulator and converts it to the QuickSim |1 logfile format.

Note

This command should be invoked only after you have stopped the simulation using quit -
sim or dataset close sim.

Syntax

wlif2log [-bits] [-fullname] [-help] [-inout] [-input] [-internal] [-| <instance path>] [-lower]

[-0 <outfile>] [-output] [-quiet] <wlIffile>

Arguments

-bits

Forces vector nets to be split into 1-bit wide netsin the log file. Optional .
-fullname

Shows the full hierarchical pathname when displaying signal names. Optional.
-help

Displays alist of command options with a brief description for each. Optional.
-inout

Lists only the inout ports. Optional. This may be combined with the -input, -output, or
-internal switches.

-input

Lists only the input ports. Optional. This may be combined with the -output, -inout, or
-internal switches.

-interna

Listsonly the internal signals. Optional. This may be combined with the -input, -output, or -
inout switches.

-| <instance_path>

Liststhe signals at or below the specified HDL instance path within the design hierarchy.
Optional.

-lower

Shows all logged signalsin the hierarchy. Optional. When invoked without the -lower
switch, only the top-level signals are displayed.

312

ModelSim Reference Manual, v6.3g
May 2008

Commands
wif2log

*« -o<outfile>

Directs the output to be written to the file specified by <outfile>. Optional. The default
destination for the logfile is standard out.

« -output

Lists only the output ports. Optional. This may be combined with the -input, -inout, or
-internal switches.

e -Quiet
Disables error message reporting. Optional.
o <wiffile>
Specifies the Model Sim WLF file that you are converting. Required.

ModelSim Reference Manual, v6.3g 313
May 2008

Commands
wlf2ved

wlf2vcd

The wlf2ved command translates aModel Sim WLF file to astandard VCD file. Complex data
types that are unsupported in the VCD standard (records, memories, etc.) are not converted.

Note
This command should be invoked only after you have stopped the simulation using quit -

sim or dataset close sim.

Syntax
wlif2vcd [-help] [-0 <outfile>] [-quiet] <wlffile>

Arguments
* -help
Displays alist of command options with a brief description for each. Optional.
e -0 <outfile>
Specifies afilename for the output. By default, the VCD output goes to stdout. Optional.
e -Quiet

Disables warning messages that are produced when an unsupported type (e.g., records) is
encountered in the WLF file. Optional.

o <wiffile>
Specifies the Model Sim WLF file that you are converting. Required.

314 ModelSim Reference Manual, v6.3g
May 2008

Commands
wlfman

wifman
The wlifman command allows you to get information about and manipulate WLF files.
The command performs four functions depending on which mode you use:
* wlfman info generates file information, resolution, versions, etc.

» wlfman items generates alist of HDL objects (i.e., signals) from the source WLF file
and outputsit to stdout. When redirected to afile, the output is called an object_list_file,
and it can be read in by wifman filter. The object_list_fileisalist of objects, one per
line. Comments start with a'# and continue to the end of the line. Wildcards arelegal in
the leaf portion of the name. Hereis an example:

/top/ foo # signal foo

/top/ull* # all signals under ul

/top/ul # same as |ine above

-r /top/u2 # recursively, all signals under u2

Note that you can produce these files from scratch but be careful with syntax. wlifman
items always creates alegal object_list_file.

* wilfman filter readsin aWLF file and optionally an object_list file and writes out
another WLF file containing filtered information from those sources. Y ou determine the
filtered information with the arguments you specify.

» wlfman profile generates areport of the estimated percentage of file space that each
signal istaking in the specified WLF file. This command can identify signals that
account for alarge percentage of the WLF file size (e.g., alogged memory that uses a
zero-delay integer loop to initialize the memory). Y ou may be able to drastically reduce
WLF file size by not logging those signals.

» wlfman merge combines two WLF files with different signalsinto one WLF file. It
does not combine wif files containing the same signals at different runtime ranges (i.e.,
mixedhdl _Ons_100ns.wif & mixedhdl _100ns_200ns.wilf).

The different modes are intended to be used together. For example, you might run wifman
profile and identify asignal that accounts for 50% of the WLF file size. If you don’t actually
need that signal, you can then run wifman filter to remove it from the WLF file.

Syntax
wlfman info <wlffile>
wifman items[-n] [-v] <wlIffile>

wlifman filter [-begin <time>] [-end <time>] [-f <object_list_file>] [-r <object>]
[-s <symbol>] [-t <resolution>] -0 <outwlffile> <sourcewlffile>

wlfman profile [-rank] [-top <number>] <wlffile>
wlfman merge [-noopt] [-opt] -0 <outwlffile> [<wiffilel> <wlffile2>]

ModelSim Reference Manual, v6.3g 315
May 2008

Commands
wlfman

Arguments for wifman info

<wlIffile>
Specifies the WLF file from which you want information. Required.

Arguments for wifman items

-n
Listsregions only (no signals). Optional.

-V

Produces verbose output that lists the object type next to each object. Optional.
<wlffile>

Specifies the WLF file for which you want a profile report. Required.

Arguments for wifman filter

-begin <time>

Specifies the simulation time at which you want to begin reading information from the
source WLF file. Optional. By default the output includes the entire time that is recorded in
the source WLF file.

-end <time>

Specifies the simulation time at which you want to end reading information from the source
WLFfile. Optional.

-f <object_list_file>

Specifies an object_list_file created by wlfman itemsto include in the output WLF file.
Optional.

-r <object>

Specifies an object (region) to recursively include in the output. If <object>isasignal, the
output would be the same as using -s. Optional.

-s <symbol>
Specifies an object to include in the output. Optional. By default all objects are output.
-t <resolution>

Specifies the time resolution of the new WLF file. Optional. By default the resolution isthe
same as the source WLF file.

-0 <outwlffile>

Specifies the name of the output WLF file. Required. The output WLF file will contain al
objects specified by -f <object_list_file>, -r <object>, and -s <symbol>. Output WLF files
are always written in the latest WLF version regardless of the source WLF file version.

<sourcewlffile>
Specifies the source WLF file from which you want objects. Required.

316

ModelSim Reference Manual, v6.3g
May 2008

Commands
wlfman

Arguments for wifman profile

-rank
Sorts the report by percentage. Optional.
-top <number>

Filters the report so that only the top <number> signals in terms of file space percentage are
displayed. Optional.

<wlffile>
Specifies the WLF file from which you want object information. Required.

Arguments for wifman merge

-noopt

Disables WLF file optimizations when writing output WLF file. Optional.

-opt

Forces WLF file optimizations when writing output WLF file. Optional. Defaullt.
-0 <outwlffile>

Specifies the name of the output WLF file. Required. The output WLF file will contain al
objects from <wilffilel> and <wlffile2>. Output WLF files are always written in the latest
WLF version regardless of the source WLF file version.

<wlffilel> <wilffile2>
Specifies the WLF files whose objects you want to copy into one WLF file. Optional.

Examples

» The output from this command would look something like this:

w fman profile -rank top_vh.w f

ModelSim Reference Manual, v6.3g 317
May 2008

Commands
wlfman

#Repeated I D # s nmean those
#space in the wf file.

I D Transitions File
.....................
1 2192 33
1
1
1
1
1
1
2 1224 18
3 1216 18
3
3
4 675 10
5 423 6
6 135 3

« wifman profile -top 3 top_vh.wif

signal s share the sane

%
%

%
%
%

/top_vh/ pdat a

/top_vh/ processor/data
/top_vh/ cache/ pdat a
/top_vh/ cache/gen__0/s/data
/top_vh/ cache/gen__1/s/data
/top_vh/ cache/gen__2/s/data
/top_vh/ cache/gen__3/s/data
/top_vh/ ptrans

/top_vh/ sdat a

/top_vh/ cache/ sdat a
/top_vh/ nenory/ dat a
/top_vh/ strans

/top_vh/ cache/gen__3/s/data_

/top_vh/ paddr.

The output from this command would look something like this:

See also

I D Transi ti ons File
Hemm e e e e e eiiao e aao-
1 2192 33
1
1
1
1
1
1
2 1224 18
3 1216 18
3
3

%

“Recording Simulation Results With Datasets’

/top_vh/ pdat a

/top_vh/ processor/data
/top_vh/ cache/ pdat a
/top_vh/ cache/gen__0/s/data
/top_vh/ cache/gen__1/s/data
/top_vh/ cache/gen__2/s/data
/top_vh/ cache/gen__3/s/data
/top_vh/ptrans

/top_vh/ sdat a

/top_vh/ cache/ sdat a
/top_vh/ menory/ dat a

out

318

ModelSim Reference Manual, v6.3g

May 2008

Commands
wlfrecover

wlfrecover

The wlfrecover tool attemptsto "repair” WLF filesthat are incomplete due to a crash or thefile
being copied prior to completion of the simulation. Y ou can run the tool from the VSIM> or
Model Sim> prompt or from a shell.

Syntax
wlfrecover <filename> [-force] [-q]
Arguments
o <filename>
Specifiesthe WLF file to repair. Required.

« -force
Disregards file locking and attempts to repair the file. Optional.
°q

Hides al messages unless thereis an error while repairing the file. Optional.

ModelSim Reference Manual, v6.3g 319
May 2008

Commands
write format

write format

The write format command records the names and display options of the HDL objects
currently being displayed in the List or Wave window.

Thefile created is primarily alist of add listor add wave commands, though afew other
commands are included (see "Output” below). Thisfile may be invoked with the do command
to recreate the List or Wave window format on a subsequent simulation run.

When you load awave or list format file, Model Sim verifies the existence of the datasets
required by the format file. Model Sim displays an error message if the requisite datasets do not
all exist. To force the execution of thewave or list format file even if all datasets are not present,
use the -for ce switch with your do command. For example:

VSI M> do wave. do -force

Note that thiswill result in error messages for signals referencing nonexistent datasets. Also,
-force is recognized by the format file not the do command.

Syntax
write format list | wave <filename>

Arguments
e list|wave

Specifies that the contents of either the List or the Wave window are to be recorded.
Required.

o <filename>
Specifies the name of the output file where the datais to be written. Required.
Examples
» Savethecurrent datain the List window in afile named alu_list.do.
wite format list alu_list.do
» Savethe current datain the Wave window in afile named alu_wave.do.

wite format wave al u_wave. do

Output
» Below isan example of a saved Wave window format file.

320 ModelSim Reference Manual, v6.3g
May 2008

Commands
write format

onerror {resune}

qui ety WaveActi vat eNext Pane {} O

add wave -noupdate -format Logic /cntr_struct/Id
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q
TreeUpdat e [Set Def aul t Tr ee]

qui ety WaveActi vat eNext Pane

add wave -noupdate -format Logic /cntr_struct/pl
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdat e [Set Def aul t Tr ee]

WaveRest or eCursors {0 ns}

WaveRest oreZzoom {0 ns} {1 us}

configure wave -nanecol wi dth 150

configure wave -val uecol w dth 100

configure wave -signal namewi dth 0

configure wave -justifyvalue |eft

In the example above, five signals are added with the -noupdate argument to the default
window pane. The TreeUpdate command then refreshes al five waveforms. The
second WaveA ctivateNextPane command creates a second pane which contains three
signals.The WaveRestor eCur sor s command restores any cursors you set during the
original simulation, and the WaveRestor eZoom command restores the Zoom range you
set. These four commands are used only in saved Wave format files; therefore, they are
not documented elsewhere.

See also
add list, add wave

ModelSim Reference Manual, v6.3g 321
May 2008

Commands
write list

write list
The write list command records the contents of the List window in alist output file.

Thisfile contains simulation datafor all HDL objects displayed in the List window: VHDL
signals and variables and Verilog nets and registers.

Syntax
writelist [-events] <filename>

Arguments
* -events
Specifies to write print-on-change format. Optional. Default is tabular format.
o <filename>
Specifies the name of the output file where the datais to be written. Required.

Examples
e Savethe current datain the List window in afile named alu.lst.

wite |list alu.lst

See also

write tssi

322 ModelSim Reference Manual, v6.3g
May 2008

Commands
write preferences

write preferences

The write prefer ences command saves the current GUI preference settingsto a Tcl preference
file. Settings saved include Wave, Objects, and Locals window column widths; Wave, Objects,
and Locals window value justification; and Wave window signal name width.

Syntax
write preferences <preference file name>

Arguments
» <preference file name>

Specifies the name for the preference file. Optional. If the file is named modelsim.tcl,
Model Sim will read the file each time vaim isinvoked. To use a preference file other than
modelsim.tcl you must specify the aternative file name with the MODELSIM_TCL
environment variable.

See also
Y ou can modify variables by editing the preference file with the Model Sim notepad:

not epad <preference file nanme>

ModelSim Reference Manual, v6.3g 323
May 2008

Commands
write report

write report

Thewritereport command prints a summary of the design being ssmulated including alist of
all design units (VHDL configurations, entities, and packages, and V erilog modules) with the
names of their source files. The summary includes alist of all source files used to compile the
given design.

Syntax

write report [-capacity [-| | -s] [-assertions | -classes | -cvg | -qdas | -solver]] | [-I | -s] [-tcl]

[<filename>]

Arguments

<filename>

Specifies the name of the output file where the datais to be written. Optional. If the
<filename> is omitted, the report is written to the Transcript pane.

-capacity

Reports data on memory usage of various types of SystemV erilog constructs in the design.
Optional. Model Sim collects memory usage data for assertions, classes, covergroups,
dynamic objects, and the solver. Each of these design object types has a switch that you can
specify along with -capacity in order to display its memory data. To display memory data
for all object types, specify -capacity -I.

-assertions
Reports memory usage data for SystemV erilog assertions and cover directives.
-classes

Reports memory usage data for the current number of objects allocated, the current memory
allocated for class object, the peak memory allocated and peak time.

-cvg

Reports memory usage data for the number of covergroups, cross, bins and memory
allocated.

-qdas

Reports memory usage data for queues, dynamic arrays, and associative arrays.
-solver

Reports memory usage data for calls to randomize() and memory usage.

-|

Generates more detailed information about the design, including alist of sparse memories or
the memory capacity for all object types. Default.

-S
Generates a short list of design information. Optional.

324

ModelSim Reference Manual, v6.3g
May 2008

Commands
write report

* -tcl
GeneratesaTcl list of design unit information. Optional. This argument cannot be used with
afilename.
Examples

* Saveinformation about the current design in afile named alu_rpt.txt.

wite report alu_rpt.txt

» Display ashort list of information regarding the memory capacity for covergroupsin the
design during the simulation so far.

Wwite report -capacity -s cvg

» Digplay information on al of the calls to randomize() made during simulation so far,
along with the memory usage of those calls, number of calls, and callsite information.

wite report -capacity -solver

ModelSim Reference Manual, v6.3g 325
May 2008

Commands
write timing

write timing

The write timing command displays path delays and timing check limits, unadjusted for delay
net delays, for the specified instance.

Syntax
write timing [-recursive] [-file <filename>] [<instance _namel>...<instance_nameN>]
[-simvalues]
Arguments
* -recursive

Generatestiming information for the specified instance and all instances underneath it in the
design hierarchy. Optional.

o -file<filename>

Specifies the name of the output file where the datais to be written. Optional. If the -file
argument is omitted, timing information is written to the Transcript pane.

e <instance_namel>...<instance_nameN>

The name(s) of the instance(s) for which timing information will be written. Required.
e -simvalues

Displays optimization-adjusted values for delay net delays. Optional.

Examples

» Write timing about /top/ul and all instances underneath it in the hierarchy to thefile
timing.txt.

wite timng -r -f timng.txt /top/ul
* Writetiming information about the designated instances to the Transcript pane.

wite timng /top/ul /top/u2 /top/u3 /top/u8

326 ModelSim Reference Manual, v6.3g
May 2008

Commands
write transcript

write transcript

Thewritetranscript command writes the contents of the Transcript pane to the specified file.
The resulting file can be used to replay the transcribed commands as a DO file (macro).

The command cannot be used in batch mode. In batch mode use the standard Transcript file or
redirect stdout.

Syntax

write transcript [<filename>]

Arguments
o <filename>

Specifies the name of the output file where the datais to be written. Optional. If the
<filename> is omitted, the transcript is written to afile named transcript.

See also
do

ModelSim Reference Manual, v6.3g 327
May 2008

Commands
write tssi

write tssi
Thewrite tssi command records the contents of the List window in a"TSSI format" file.

The file contains simulation data for all HDL objects displayed in the List window that can be
converted to TSSI format (VHDL signals and Verilog nets). A signal definition fileis aso
generated.

The List window needs to be using symbolic radix in order for writetssi to produce useful
output.

Syntax
write tss <filename>

Arguments
o <filename>
Specifies the name of the output file where the datais to be written. Required.

Description

If the <filename> has afile extension (e.g., listfile.Ist), then the definition file is given the same
file name with the extension .def (e.g., listfile.def). The valuesin the listfile are produced in the
same order that they appear in the List window. The directionality is determined from the port
typeif the object is a port, otherwise it is assumed to be bidirectional (mode INOUT).

Objects that can be converted to SEF are VHDL enumerations with 255 or fewer elements and
Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and - (the enumeration values
defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF values
according to the table below. Other values are converted to a question mark (?) and cause an
error message. Though the write tss command was developed for use with std_ulogic, any
signal which uses only the values defined for std_ulogic (including the VHDL standard type
bit) will be converted.

std_ulogic State SEF State Characters

Characters I nput Output Bidirectional
U N X ?

X N X ?

0 D L 0

1 U H 1

Z Z T F

W N X ?

L D L 0

H U H 1

328 ModelSim Reference Manual, v6.3g

May 2008

Commands
write tssi

std_ulogic State SEF State Characters
Characters I nput Output Bidirectional
- N X ?

Bidirectional logic values are not converted because only the resolved value is available. The
TSSI TDS ASCII In Converter and ASCII Out Converter can be used to resolve the
directionality of the signal and to determine the proper forcing or expected value on the port.
Lowercase values x, z, w, |, and h are converted to the same values as the corresponding
capitalized values. Any other values will cause an error message to be generated the first time
an invalid value is detected on asignal, and the value will be converted to a question mark (?).

Note
D The TDS ASCII In Converter and ASCII Out Converter are part of the TDS software.

Model Sim outputs a vector file, and TSSI tools determine whether the bidirectional
signals are driving or not.

See also

tssi2mti

ModelSim Reference Manual, v6.3g 329
May 2008

Commands
write wave

write wave
The write wave command records the contents of the Wave window in PostScript format.

The output file can then be printed on a PostScript printer.

Syntax

write wave[-width <real _num>] [-height <real num>]

[-margin <real_num>] [-start <time>] [-end <time>] [-perpage <time>] [-landscape]
[-portrait] <filename>

Arguments

-width <real_num>

Specifies the paper width in inches. Optional. Default is 8.5.

-height <real_num>

Specifies the paper height in inches. Optional. Default is 11.0.

-margin <real_num>

Specifies the margin in inches. Optional. Default is 0.5.

-start <time>

Specifies the start time (on the waveform timescale) to be written. Optional .
-end <time>

Specifies the end time (on the waveform timescale) to be written. Optional.
-perpage <time>

Specifies the time width per page of output. Optional.

-landscape

Use landscape (horizontal) orientation. Optional. Thisis the default orientation.
-portrait

Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).
<filename>

Specifies the name of the PostScript output file. Required.

Examples

» Savethe current datain the Wave window in afile named alu.ps.

wite wave al u.ps

» Write two separate pages to top.ps. The first page contains data from 600ns to 700ns,
and the second page contains data from 701ns to 800ns.

wite wave -start 600ns -end 800ns -perpage 100ns top.ps

330

ModelSim Reference Manual, v6.3g
May 2008

Commands
write wave

To make the job of creating a PostScript waveform output file easier, use the File >
Print Postscript menu selection in the Wave window.

ModelSim Reference Manual, v6.3g 331
May 2008

Commands
write wave

332 ModelSim Reference Manual, v6.3g
May 2008

ABCDEFGHI

JKLMNOPQRSTUVWXYZ

Index

— Symbols —

$finish behavior, customizing, 293
+typdelays, 269

{},15

"hasX, hasX, 26

— Numerics —
2001, keywords, disabling, 270

— A —
abort command, 41
absolute time, using @, 19
add list command, 44
add log command, 120
add memory command, 48
add watch command, 50
add wave command, 51
add _cmdhelp command, 57
addTime command, 187
alias command, 58
analog
signal formatting, 52
annotating interconnect delays,
v2k_int_delays, 295
archives, library, 259
argument, 266
arrays
indexes, 13
dices, 13, 15
arrays, VHDL, searching for, 22
assertions
testing for with onbreak command, 145
attributes, of signals, using in expressions, 26

— B —
batch_mode command, 59
batch-mode simulations

halting, 309
bd (breakpoint delete) command, 60
binary radix, mapping to std logic values, 31
bookmark add wave command, 61

bookmark delete wave command, 62
bookmark goto wave command, 63
bookmark list wave command, 64
bp (breakpoint) command, 65
brackets, escaping, 15
break

on signal value, 304
breakpoints

conditional, 304

continuing simulation after, 170

deleting, 60

listing, 65

setting, 65

signal breakpoints (when statements), 304

time-based

in when statements, 310

busses

escape charactersin, 15

user-defined, 54

—C—
case choice, must be locally static, 218
case sensitivity

VHDL vs. Verilog, 16
cd (change directory) command, 69
change command, 70
-check_synthesis argument, 215
combining signals, busses, 54
commands

abort, 41

add list, 44

add memory, 48

add watch, 50

add wave, 51

alias, 58

batch_mode, 59

bd (breakpoint delete), 60

bookmark add wave, 61

bookmark delete wave, 62

bookmark goto wave, 63

ModelSim Reference Manual, v6.3g
May 2008

333

ABCDEFGH

JKLMNOPQRSTUVWXY Z

bookmark list wave, 64
bp (breakpoint), 65
cd (change directory), 69
change, 70
configure, 72
dataset dlias, 77
dataset clear, 78
dataset close, 79
dataset config, 80
dataset info, 81
dataset list, 82
dataset open, 83
dataset rename, 84, 86
dataset restart, 85
dataset snapshot, 87
delete, 89

describe, 90
disablebp, 91

do, 92

drivers, 93
dumplog64, 94
echo, 95

edit, 96

enablebp, 97
environment, 98
examine, 100

exit, 104

find, 105

force, 113

help, 117

history, 118
layout, 119

log, 120

Ishift, 122

Isublist, 123

mem compare, 124
mem display, 125
mem list, 127

mem load, 128
mem save, 131
mem search, 133

messages clearfilter, 136, 137

noforce, 139
nolog, 140
notation conventions, 11

notepad, 142

noview, 143

nowhen, 144

onbreak, 145
onElabError, 147
onerror, 148

pause, 149

printenv, 150, 151
pwd, 154

quietly, 155

quit, 156

radix, 157

radix define, 159
radix list, 162

radix name, 161
readers, 164

report, 165

restart, 167

resume, 169

run, 170

searchlog, 174

setenv, 177

shift, 178

show, 179

status, 182

step, 183

stop, 184

suppress, 185

tb (traceback), 186
transcript, 190
transcript file, 191
TreeUpdate, 321
tssi2mti, 192
unsetenv, 193
variables referenced in, 18
vcd add, 194

vcd checkpoint, 196
vcd comment, 197
vcd dumpports, 198
ved dumpportsall, 200
ved dumpportsflush, 201
vcd dumpportslimit, 202
ved dumpportsoff, 203
vcd dumpportson, 204
vcd file, 205

334

ModelSim Reference Manual, v6.3g

May 2008

ABCDEFGH

JKLMNOPQRSTUVWXY Z

vcd files, 207

ved flush, 209

ved limit, 210

ved off, 211

ved on, 212

vcom, 214

vdel, 224

vdir, 226
vencrypt, 229
verror, 231
vgencomp, 233
view, 235

virtual count, 237
virtual define, 238
virtual delete, 239
virtual describe, 240
virtual expand, 241
virtua function, 242
virtua hide, 245
virtual log, 246
virtual nohide, 248
virtual nolog, 249
virtual region, 251
virtual save, 252
virtual show, 253
virtual signal, 254
virtual type, 257
vlib, 259

vlog, 261

vmake, 272

vmap, 274

vsim, 275
vsimDate, 298
vsimld, 298
vsimVersion, 298
wave, 301

WaveA ctivateNextPane, 321
WaveRestoreCursors, 321
WaveRestoreZoom, 321

when, 304
where, 311
wlf2log, 312
wif2ved, 314
wlfman, 315
wifrecover, 319

write format, 320
write list, 322
write preferences, 323
write report, 324
write timing, 326
write transcript, 327
writetssi, 328
write wave, 330
comment charactersin VSIM commands, 11
compatibility, of vendor libraries, 226
compiling
range checking in VHDL, 221
Verilog, 261
VHDL, 214
at a specified line number, 217
selected design units (-just eapbc), 217
standard package (-s), 221, 268
compressing files
VCD files, 198, 207
concatenation
directives, 30
of signals, 29, 254
conditional breakpoints, 304
configurations, simulating, 275
configure command, 72
constants
In case statements, 218
values of, displaying, 90, 100
conversion
radix, 157

—D—
dataset alias command, 77
dataset clear command, 78
dataset close command, 79
dataset config command, 80
dataset info command, 81
dataset list command, 82
dataset open command, 83
dataset rename command, 84, 86
dataset restart command, 85
dataset snapshot command, 87
datasets
environment command, specifying with, 98
declarations, hiding implicit with explicit, 223
+definet, 262

ModelSim Reference Manual, v6.3g
May 2008

335

ABCDEFGHI JKLMNOPQRSTUVWXY Z

delay

interconnect, 281
+delay_mode_distributed, 263
+delay_mode_path, 263
+delay_mode _unit, 263
+delay_mode_zero, 263
'delayed, 26
delete command, 89
deltas

collapsing in WLF files, 287

hiding in the List window, 73
dependencies, checking, 226
dependency errors, 216, 263
describe command, 90
design loading, interrupting, 275
design units

report of units simulated, 324

Verilog

adding to alibrary, 261

directories

mapping libraries, 274
disablebp command, 91
dividers

adding from command line, 52
divTime ccommand, 187
do command, 92
DO files (macros), 92
drivers command, 93
dump files, viewing in the simulator, 213
dumplog64 command, 94

— E—
echo command, 95
edit command, 96
enablebp command, 97
entities, specifying for ssmulation, 296
enumerated types
user defined, 257
environment command, 98
environment variables
reading into Verilog code, 262
specifying UNIX editor, 96
state of, 151
using in pathnames, 16
environment, displaying or changing
pathname, 98

eqTime command, 187
errors
getting details about messages, 231
onerror command, 148
SDF, disabling, 284
escape character, 15
event order
changing in Verilog, 262
examine command, 100
exit command, 104
exiting the simulator, customizing behavior,
293
extended identifier, 25
extended identifiers, 16

— F—
-f, 263
file compression
VCD files, 198, 207
find command, 105
force command, 113
format file
List window, 320
Wave window, 320
formatTime command, 188

— G —
generics
assigning or overriding values with -g and -
G, 279
examining generic values, 100
limitation on assigning composite types,
279
glitches
disabling generation
from command line, 290
global visibility
PLI/FLI shared objects, 279
gteTime command, 187
gtTime command, 187
GUI_expression_format, 23
syntax, 24

— H—
"hasX, 26
hazards

336

ModelSim Reference Manual, v6.3g
May 2008

ABCDEFGHI JKLMNOPQRSTUVWXY Z

-hazards argument to vlog, 264
-hazards argument to vsim, 291
help command, 117
history
of commands
shortcuts for reuse, 20
history command, 118

implicit operator, hiding with vcom -explicit,

223
+incdir+, 264

indexed arrays, escaping square brackets, 15

interconnect delays, 281

annotating per Verilog 2001, 295
internal signals, adding to aVCD file, 194
interrupting design loading, 275
intToTime command, 187

— K —

keywords
disabling 2001 keywords, 270

enabling SystemV erilog keywords, 268

— L —
layout command, 119
LD_LIBRARY_PATH, disabling default
internal setting of, 282
libraries
archives, 259
dependencies, checking, 226
design libraries, creating, 259
listing contents, 226
refreshing library images, 221, 268
vendor supplied, compatibility of, 226
Verilog, 281
lint-style checks, 265
List window
adding itemsto, 44
loading designs, interrupting, 275
log command, 120
log file
log command, 120
nolog command, 140
QuickSim Il format, 312
redirecting with -1, 280, 281

virtual log command, 246
virtual nolog command, 249
Ishift command, 122
Isublist command, 123
[teTime command, 187
[tTime command, 187

— M —
macros (DO files)
breakpoints, executing at, 67
executing, 92
forcing signals, nets, or registers, 113
parameters
passing, 92
relative directories, 92
shifting parameter values, 178
+maxdelays, 266
mc_scan_plusargs, PLI routine, 294
mem compare command, 124
mem display command, 125
mem list command, 127
mem load command, 128
mem save command, 131
mem search command, 133
memory window
add memory command, 48
adding itemsto, 48
memory, comparing contents, 124
memory, displaying contents, 125
memory, listing, 127
memory, loading contents, 128
memory, saving contents, 131
memory, searching for patterns, 133
messages
echoing, 95
getting more information, 231
loading, disabling with -quiet, 267
loading, disbling with -quiet, 220
messages clearfilter command, 136, 137
-mfcu, 266
+mindelays, 266
mnemonics, assigning to signal values, 257
mul Time command, 187
multi-source interconnect delays, 281

ModelSim Reference Manual, v6.3g
May 2008

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

— N —
name case sensitivity, VHDL vs. Verilog, 16
negative pulses

driving an error state, 295
neqTime command, 187
nets

drivers of, displaying, 93

readers of, displaying, 164

stimulus, 113

values of

examining, 100

-no_risefall_delaynets, 292
noforce command, 139
+nolibcell, 266
nolog command, 140
notepad command, 142
noview command, 143
+nowarn<CODE>, 267
nowhen command, 144

— 00—
object_list file, WLF files, 315
onbreak command, 145
onElabError command, 147
onerror command, 148
optimizations
disabling for Verilog designs, 267
disabling for VHDL designs, 220
order of events
changing in Verilog, 262

override mapping for work directory with
vlog, 270
propagation, preventing X propagation, 282
pulse error state, 295
pwd command, 154

QuickSim 11 logfile format, 312
quietly command, 155
quit command, 156

— R—
radix
character strings, displaying, 257
display valuesin debug windows, 157
of signals being examined, 102
user defined, 159
radix command, 157
radix define command, 159
radix list command, 162
radix name command, 161
range checking
disabling, 219
enabling, 221
readers command, 164
Rea ToTime command, 187
record field selection, syntax, 13
refresh, dependency check errors, 216, 263
refreshing library images, 221, 268
report command, 165

reporting
— P — variable settings, 18
parameters resolution
using with macros, 92 specifying with -t argument, 284
pathnames restart command, 167
in VSIM commands, 12 resume command, 169
spacesin, 12 run command, 170
pause command, 149 S
PLI o
loading shared objects with global symbol ~ SCAl€Time command, 187
visibility, 279 scope r&eo! ution operator, 13
printenv command, 150, 151 scope, setting region environment, 98
projects SDF .
override mapping for work directory with annotatl'on verbqse mode, 284
veom. 222 controlling missing instance messages, 284
’ errors on loading, disabling, 284
338 ModelSim Reference Manual, v6.3g

May 2008

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

warning messages, disabling, 284
search libraries, 281
searching
binary signal valuesin the GUI, 31
List window
signa values, transitions, and names,
23
VHDL arrays, 22
searchlog command, 174
setenv command, 177
shared objects
loading with global symbol visibility, 279
shift command, 178
shortcuts
command history, 20
command line cavest, 20
show command, 179
signas
alternative names in the Wave window (-
label), 53
attributes of, using in expressions, 26
breakpoints, 304
combining into a user-defined bus, 54
drivers of, displaying, 93
environment of, displaying, 98
finding, 105
force time, specifying, 115
log file, creating, 120
pathnamesin VSIM commands, 12
radix
specifying for examine, 102
specifying in List window, 45, 55
readers of, displaying, 164
states of, displaying as mnemonics, 257
stimulus, 113
values of
examining, 100
replacing with text, 257
simulating
delays, specifying time unitsfor, 18
design unit, specifying, 275
saving simulations, 120, 287
stepping through a simulation, 183
stopping simulation in batch mode, 309
simulations

saving results, 86, 87
Simulator commands, 41
simulator resolution
vsim -t argument, 284
simulator version, 286, 298
simultaneous eventsin Verilog
changing order, 262
source annotation, 173
spaces in pathnames, 12
Sparse memories
listing with write report, 324
specify path delays, 295
square brackets, escaping, 15
startup
alternate to startup.do (vsim -do), 278
status command, 182
Std logic
mapping to binary radix, 31
step command, 183
stop command, 184
subTime command, 187
suppress command, 185
symbolic constants, displaying, 257
symbolic names, assigning to signal values,
257
synthesis
rule compliance checking, 215
SystemVerilog
enabling with -sv argument, 268
multiple files in a compilation unit, 266
scope resolution, 13

— T—
tb command, 186
Tcl

history shortcuts, 20

variable

in when commands, 307

TFMPC

disabling warning, 293
time

absolute, using @, 19

simulation time units, 18
time collapsing, 287
time resolution

setting

ModelSim Reference Manual, v6.3g
May 2008

339

ABCDEFGHI JKLMNOPQRSTUVWXY Z

with vsim command, 284

time, time units, simulation time, 18
timescale directive warning

disabling, 293
timing

disabling checks, 267

disabling checks for entire design, 282
title, Main window, changing, 285
transcript

redirecting with -1, 280, 281

reducing file size, 191
transcript command, 190
transcript file command, 191
TreeUpdate command, 321
TSCALE, disabling warning, 293
TSSI, 328
tssi2mti command, 192

—U—
-u, 269

undeclared nets, reporting an error, 265
unsetenv command, 193

user-defined bus, 54

user-defined radix, 159

—V —
-v, 269
v2k_int_delays, 295
validTime command, 188
values
describe HDL items, 90
examine HDL item values, 100
replacing signal values with strings, 257
variable settings report, 18
variables
describing, 90
referencing in commands, 18
value of
changing from command line, 70
examining, 100
vcd add command, 194
vecd checkpoint command, 196
vced comment command, 197
vcd dumpports command, 198
ved dumpportsall command, 200
ved dumpportsflush command, 201

vcd dumpportslimit command, 202

ved dumpportsoff command, 203

vcd dumpportson command, 204

vcd file command, 205

VCD files
adding itemsto thefile, 194
capturing port driver data, 198
converting to WLF files, 213
creating, 194
dumping variable values, 196
flushing the buffer contents, 209
generating from WLF files, 314
inserting comments, 197
internal signals, adding, 194
specifying maximum file size, 210
specifying name of, 207
specifying the file name, 205
state mapping, 205, 207
turn off VCD dumping, 211
turn on VCD dumping, 212
viewing files from another tool, 213

vcd files command, 207

ved flush command, 209

ved limit command, 210

vcd off command, 211

ved on command, 212

ved2wlf command, 213

vcom command, 214

vcom Examples, 222

vdel command, 224

vdir command, 226

vector elements, initializing, 70

vencrypt command, 229

vendor libraries, compatibility of, 226

Verilog
$finish behavior, customizing, 293

capturing port driver datawith -dumpports,

205
Verilog 2001
disabling support, 270
verror command, 231
version
obtaining with vsim command, 286

obtaining with vsim<info> commands, 298

vgencomp command, 233

340

ModelSim Reference Manual, v6.3g
May 2008

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

VHDL
arrays
searching for, 22
conditions and expressions, automatic
conversion of Hand L., 218
field naming syntax, 13
VHDL-1993, enabling support for, 214
VHDL-2002, enabling support for, 215
view command, 235
viewing
waveforms, 287
virtual count commands, 237
virtual define command, 238
virtual delete command, 239
virtual describe command, 240
virtual expand commands, 241
virtual function command, 242
virtual hide command, 245
virtual log command, 246
virtual nohide command, 248
virtual nolog command, 249
virtual region command, 251
virtual save command, 252
virtual show command, 253
virtual signal command, 254
virtual type command, 257
vlib command, 259
viog
multiple file compilation, 266
vlog command, 261
vmake command, 272
vmap command, 274
vsim
disabling internal setting of
LD_LIBRARY_PATH, 282
vsim build date and version, 298
vsim command, 275
vsim Examples, 296

— W —
WARNING]8], -lint argument to vlog, 265
warnings
SDF, disabling, 284
suppressing VCOM warning messages,
219, 267
suppressing VLOG warning messages, 267

suppressing VSIM warning messages, 293
watch window
add watch command, 50
adding itemsto, 50
watching signal values, 50
wave commands, 301
wave log format (WLF) file, 287
of binary signal values, 120
Wave window
adding itemsto, 51
WaveA ctivateNextPane command, 321
waveform logfile
log command, 120
waveforms
optimizing viewing of, 288
saving and viewing, 120
WaveRestoreCursors command, 321
WaveRestoreZoom command, 321
when command, 304
when statement
time-based breakpoints, 310
where command, 311
wildcard characters
for pattern matching in simulator
commands, 17
windows
List window
output file, 322
saving the format of, 320
opening
from command line, 235
Wave window
path elements, changing, 74
WLFfiles
collapsing deltas, 287
collapsing time steps, 287
converting to VCD, 314
creating from VCD, 213
filtering, combining, 315
limiting size, 288
log command, 120
optimizing waveform viewing, 288
repairing, 319
saving, 86, 87
specifying name, 287

ModelSim Reference Manual, v6.3g
May 2008

341

ABCDEFGHI JKLMNOPQRSTUVWXY Z

wlif2log command, 312
wlf2ved command, 314
wlfman command, 315
wlfrecover command, 319
write format command, 320
write list command, 322

write preferences command, 323
write report command, 324
write timing command, 326
write transcript command, 327
write tssi command, 328
write wave command, 330

— X —
X propagation
disabling for entire design, 282

zoom
wave window
returning current range, 301

342

ModelSim Reference Manual, v6.3g
May 2008

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/terms_conditions/enduser.cfm

IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH

IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND
CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (*Agreement”)

Thisis a legal agreement concerning the use of Software between you, the end user, as an authorized
representative of the company acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited acting directly or through their subsidiaries (collectively “Mentor Graphics’). Except for license
agreements related to the subject matter of this license agreement which are physically signed by you and an
authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties
entire under standing relating to the subject matter and supersedeall prior or contemporaneous agreements. | f you
do not agree to these terms and conditions, promptly return or, if received electronically, certify destruction of
Softwar e and all accompanying items within five days after receipt of Software and receive a full refund of any
license fee paid.

GRANT OF LICENSE. The software programs, including any updates, modifications, revisions, copies, documentation
and design data (“ Software”), are copyrighted, trade secret and confidential information of Mentor Graphics or its
licensors who maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics grants to you, subject to payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your internal business purposes; (c) for the license
term; and (d) on the computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half
mile (800 meter) radius. Mentor Graphics' standard policies and programs, which vary depending on Software, license
fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be
limited, for example, to execution of asingle session by a single user on the authorized hardware or for arestricted period
of time (such limitations may be technically implemented through the use of authorization codes or similar devices); and
(c) support services provided, including eligibility to receive telephone support, updates, modifications, and revisions.

EMBEDDED SOFTWARE. If you purchased a license to use embedded software development (“ESD”) Software, if
applicable, Mentor Graphics grants to you a nontransferable, nonexclusive license to reproduce and distribute executable
files created using ESD compilers, including the ESD run-time libraries distributed with ESD C and C++ compiler
Software that are linked into a composite program as an integral part of your compiled computer program, provided that
you distribute these files only in conjunction with your compiled computer program. Mentor Graphics does NOT grant
you any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating systems or other
embedded software products into your products or applications without first signing or otherwise agreeing to a separate
agreement with Mentor Graphics for such purpose.

BETA CODE. Software may contain code for experimental testing and evaluation (“Beta Code"), which may not be used
without Mentor Graphics' explicit authorization. Upon Mentor Graphics authorization, Mentor Graphics grants to you a
temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code without charge
for alimited period of time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to release
commercialy in any form. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the
Beta Code under normal conditions as directed by Mentor Graphics. Y ou will contact Mentor Graphics periodically
during your use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements. Y ou agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceived or made during or subsequent to this
Agreement, including those based partly or wholly on your feedback, will be the exclusive property of Mentor Graphics.
Mentor Graphics will have exclusive rights, title and interest in all such property. The provisions of this section 3 shall
survive the termination or expiration of this Agreement.

http://www.mentor.com/terms_conditions/enduser.cfm

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the authorized use. Each
copy must include all notices and legends embedded in Software and affixed to its medium and container as received from
Mentor Graphics. All copies shall remain the property of Mentor Graphics or its licensors. Y ou shall maintain arecord of
the number and primary location of all copies of Software, including copies merged with other software, and shall make
those records available to Mentor Graphics upon request. Y ou shall not make Software available in any form to any
person other than employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Y ou shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does not disclose it or useit except as
permitted by this Agreement. Except as otherwise permitted for purposes of interoperability as specified by applicable
and mandatory local law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way derive from
Software any source code. Y ou may not sublicense, assign or otherwise transfer Software, this Agreement or the rights
under it, whether by operation of law or otherwise (“attempted transfer”), without Mentor Graphics' prior written consent
and payment of Mentor Graphics' then-current applicable transfer charges. Any attempted transfer without Mentor
Graphics prior written consent shall be amaterial breach of this Agreement and may, at Mentor Graphics option, result in
the immediate termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement,
including without limitation, the licensing and assignment provisions shall be binding upon your successors in interest
and assigns. The provisions of this section 4 shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly installed, will substantially
conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant
that Software will meet your requirements or that operation of Software will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. Y ou
must notify Mentor Graphics in writing of any nonconformity within the warranty period. This warranty shall not be
valid if Software has been subject to misuse, unauthorized modification or improper installation. MENTOR
GRAPHICS ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR
GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS
LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED WITH THIS AGREEMENT.
MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE
WHICH IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST; OR
(C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “ASIS.

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH
RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY
WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS
OR ITSLICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
(INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS
LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR
GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE
PROVISIONS OF THIS SECTION 6 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS
AGREEMENT.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE
LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN
ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 7 SHALL SURVIVE THE
EXPIRATION OR TERMINATION OF THISAGREEMENT.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS

10.

11.

12.

13.

14.

DESCRIBED IN SECTION 7. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE EXPIRATION OR
TERMINATION OF THIS AGREEMENT.

INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against you alleging that
Software infringes a patent or copyright or misappropriates a trade secret in the United States, Canada, Japan, or
member state of the European Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. Y ou understand and agree that as conditions to Mentor
Graphics' obligations under this section you must: (a) notify Mentor Graphics promptly in writing of the action;
(b) provide Mentor Graphics all reasonable information and assistance to defend or settle the action; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a) replace or modify Software so
that it becomes noninfringing; (b) procure for you the right to continue using Software; or (c) require the return of
Software and refund to you any license fee paid, |ess a reasonable allowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (&) the combination of Software with any
product not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing process, (€) a
product that you make, use or sell; (f) any Beta Code contained in Software; (g) any Software provided by Mentor
Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphicsfor its attorney fees and other costs
related to the action upon afina judgment.

9.4. THIS SECTION IS SUBJECT TO SECTION 6 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO
ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION
BY ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

TERM. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate
upon notice if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 1, 2, or
4. For any other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days
written notice if you are in material breach and fail to cure such breach within the 30 day notice period. If Software was
provided for limited term use, this Agreement will automatically expire at the end of the authorized term. Upon any
termination or expiration, you agree to cease all use of Software and return it to Mentor Graphics or certify deletion and
destruction of Software, including all copies, to Mentor Graphics' reasonable satisfaction.

EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit export
or diversion of certain products, information about the products, and direct products of the products to certain countries
and certain persons. Y ou agree that you will not export any Software or direct product of Software in any manner without
first obtaining all necessary approval from appropriate local and United States government agencies.

RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense and is commercial computer
software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S.
Government subcontractor is subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (¢)(1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics
Corporation, 8005 SW Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics from Microsoft
or other licensors, Microsoft or the applicable licensor is athird party beneficiary of this Agreement with the right to
enforce the obligations set forth herein.

AUDIT RIGHTS. You will monitor access to, location and use of Software. With reasonable prior notice and during
your normal business hours, Mentor Graphics shall have the right to review your software monitoring system and
reasonably relevant records to confirm your compliance with the terms of this Agreement, an addendum to this
Agreement or U.S. or other local export laws. Such review may include FLEXIm or FLEXnet report log files that you
shall capture and provide at Mentor Graphics' request. Mentor Graphics shall treat as confidential information all of your
information gained as aresult of any request or review and shall only use or disclose such information as required by law
or to enforce its rights under this Agreement or addendum to this Agreement. The provisions of this section 14 shall
survive the expiration or termination of this Agreement.

15.

16.

17.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF OREGON, USA, IF YOU ARE
LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF IRELAND IF YOU ARE LOCATED
OUTSIDE OF NORTH OR SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the
laws of Ireland apply. Notwithstanding the foregoing, all disputesin Asia (except for Japan) arising out of or in relation to
this Agreement shall be resolved by arbitration in Singapore before a single arbitrator to be appointed by the Chairman of
the Singapore International Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the
Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by reference
in this section 15. This section shall not restrict Mentor Graphics' right to bring an action against you in the jurisdiction
where your place of businessis located. The United Nations Convention on Contracts for the International Sale of Goods
does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisionswill remainin
full force and effect.

PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in the currency specified on the
applicable invoice, within 30 days from the date of such invoice. Any past due invoices will be subject to the imposition
of interest charges in the amount of one and one-half percent per month or the applicable legal rate currently in effect,
whichever is lower. Some Software may contain code distributed under a third party license agreement that may provide
additional rights to you. Please see the applicable Software documentation for details. This Agreement may only be
modified in writing by authorized representatives of the parties. Waiver of terms or excuse of breach must be in writing
and shall not constitute subsequent consent, waiver or excuse.

Rev. 060210, Part No. 227900

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Syntax and Conventions
	Documentation Conventions
	File and Directory Pathnames
	Design Object Names
	Object Name Syntax
	SystemVerilog Scope Resolution Operator
	Specifying Names
	Escaping Brackets and Spaces in Array Slices
	Further Details

	Environment Variables and Pathnames
	Name Case Sensitivity
	Extended Identifiers

	Wildcard Characters
	Filtering Wildcard Matching for Certain Commands
	WildcardFilter Preference Variable

	Simulator Variables
	Simulation Time Units
	Argument Files
	Command Shortcuts
	Command History Shortcuts
	Numbering Conventions
	VHDL Numbering Conventions
	VHDL Style 1
	VHDL Style 2
	Searching for VHDL Arrays in the Wave and List Windows

	Verilog Numbering Conventions

	GUI_expression_format
	Expression Typing
	Scalar Types
	Array Types

	Expression Syntax
	Tcl Macros
	Constants
	Array Constants, Expressed in Any of the Following Formats
	Variables
	Array variables
	Signal attributes
	Operators
	Casting
	Examples of Expression Syntax

	Signal and Subelement Naming Conventions
	Grouping and Precedence
	Concatenation of Signals or Subelements
	Concatenation Syntax for VHDL
	Concatenation Syntax for Verilog
	Concatenation Directives
	Examples of Concatenation

	Record Field Members
	Searching for Binary Signal Values in the GUI

	Chapter 2 Commands
	abort
	add dataflow
	add list
	add memory
	add watch
	add wave
	add_cmdhelp
	alias
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	cd
	change
	configure
	dataset alias
	dataset clear
	dataset close
	dataset config
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset restart
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	do
	drivers
	dumplog64
	echo
	edit
	enablebp
	environment
	examine
	exit
	find
	find infiles
	find insource
	formatTime
	force
	help
	history
	layout
	log
	lshift
	lsublist
	mem compare
	mem display
	mem list
	mem load
	mem save
	mem search
	messages clearfilter
	messages setfilter
	modelsim
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	pause
	precision
	printenv
	project
	pwd
	quietly
	quit
	radix
	radix define
	radix names
	radix list
	radix delete
	readers
	report
	restart
	resume
	run
	runStatus
	searchlog
	see
	setenv
	shift
	show
	simstats
	status
	step
	stop
	suppress
	tb
	Time
	transcript
	transcript file
	tssi2mti
	unsetenv
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vdel
	vdir
	vencrypt
	verror
	vgencomp
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsim_break
	vsource
	wave
	when
	where
	wlf2log
	wlf2vcd
	wlfman
	wlfrecover
	write format
	write list
	write preferences
	write report
	write timing
	write transcript
	write tssi
	write wave

	Index
	End-User License Agreement

