27/06/2016 www.embedded.com/print/4438660

Modern C++ in embedded systems a€“ Part 1:
Myth and Reality

Dominic Herity - February 17, 2015

In 1998, I wrote an article for Embedded Systems Programming called C++ in Embedded Systems a
€“ Myth and Reality. The article was intended to inform C programmers concerned about adopting
C++ in embedded systems programming.

A lot has changed since 1998. Many of the myths have been dispelled, and C++ is used a lot more in
embedded systems. There are many factors that may contribute to this, including more powerful
processors, more challenging applications, and more familiarity with object-oriented languages.

C99 (an informal name for ISO/TEC 9899:1999) adopted some C++ features including const
qualification and inline functions. C++ has also changed. C++11 and C++14 have added some cool
features (how did I manage without the auto type specifier?) and some challenges, like deciding when
to use constexpr functions.

But C++ has not displaced C, as I thought it would in 1998. C is alive and well in the Linux kernel,
and there is a body of opinion implacably opposed to C++ in that environment.

The suspicion lingers that C++ is somehow unsuitable for use in small embedded systems. For 8- and
16-bit processors lacking a C++ compiler, that may be a concern, but there are now 32-bit
microcontrollers available for under a dollar supported by mature C++ compilers. As this article series
will make clear, with the continued improvements in the language most C++ features have no impact
on code size or on speed. Others have a small impact that is generally worth paying for. To use C++
effectively in embedded systems, you need to be aware of what is going on at the machine code level,
just as in C. Armed with that knowledge, the embedded systems programmer can produce code that is
smaller, faster and safer than is possible without C++.

My history with C++

When I started a new microcontroller project a few years ago, I had to choose a tool-chain for the
project. The MCU used (NXP LPC2458) was a 72MHz ARM7 with 512KB FLASH and 64KB RAM.
Some toolchain vendors were surprised to be asked about the memory footprint of C++ libraries.
When one vendor was pressed on the issue of a bloated library component, they said not many people
are using C++ in such resource-constrained devices and ita€™s hard to justify the cost of improving
the library. Bear in mind that this a€ceresource-constrained devicea€ was somewhat more powerful
than the DOS platform that ran commercial software written in C++ in the 90s.

So in 2015, it seems that therea€™s still a need to de-mystify C++ for software engineers who are
expert in embedded systems and in C, but wary of C++. If youa€™re not familiar with C++, if you
find that not many people are using it for applications like yours and if ita€™s considered unsuitable
for the Linux kernel, this wariness is understandable.

This is a revised version of the 1998 article addressing this issue. Less attention is given to features
present in C99, since C programmers are likely to be familiar with them. The reader is assumed to be
familiar with C99, which is used in the C code examples. The reader is also assumed to understand the
C++ language features discussed, but doesna€™t need to be a C++ expert. A reader that is unfamiliar
with some language features can still get value from this article by skipping over those features. The
intended use of C++ language features and why they might be preferable to alternatives is also beyond

http://www.embedded.com/print/4438660 1/18

http://www.embedded.com/user/Dominic%20Herity
http://www.eetindia.co.in/ARTICLES/1998FEB/PDF/EEIOL_1998FEB02_EMS_TA.pdf

27/06/2016 www.embedded.com/print/4438660

the scope of this article.

This article aims to provide a detailed understanding of what C++ code does at the machine code
level, so that readers can evaluate for themselves the speed and size of C++ code as naturally as they
do for C code.

To examine the nuts and bolts of C++ code generation, we will discuss the major features of the
language and how they are implemented in practice. Implementations will be illustrated by showing
pieces of C++ code followed by the equivalent (or near equivalent) C code. We will then discuss some
pitfalls specific to embedded systems and how to avoid them.

We will not discuss the uses and subtleties of the C++ language or object-oriented design, as these
topics have been well covered elsewhere. See http://en.cppreference.com/w/ for explanations of
specific C++ language features.

C++11 and C++14 features are discussed separately in sections towards the end. The bulk of the
article applies to the C++03 version of the language. C++11 is backward compatible with C++03 and
C++14 is backward compatible with C++11. This helps the reader to ignore advanced features on a
first reading and come back to them later.

Myths about C++. Some of the perceptions that discourage the use of C++ in embedded systems are:

e C++isslow.

C++ produces bloated machine code.
Objects are large.

Virtual functions are slow.

C++ isna€™t ROMable.

Class libraries make large binaries.
Abstraction leads to inefficiency.

Most of these ideas are wrong. When the details of C++ code generation are examined in detail,
hopefully it will be clear what the reality behind these myths is.

Anything C does, C++ can do. One property of C++ is so obvious that it is often overlooked. This
property is that C++ is almost exactly a superset of C. If you write a code fragment (or an entire
source file) in the C subset, the compiler will usually act like a C compiler and the machine code
generated will be what you would get from a C compiler. (See Compatibility of C and C++ for
information about C constructs that wona€™t compile as C++)

Because of this simple fact, anything that can be done in C can also be done in C++. Existing C code
can typically be re-compiled as C++ with about the same amount of difficulty that adopting a new C
compiler entails. This also means that migrating to C++ can be done gradually, starting with C and
working in new language features at your own pace. Although this is not the best way to reap the
benefits of object-oriented design, it minimizes short term risk and provides a basis for iterative
changes to a working system.

Front end features - a free lunch
Many of the features of C++ are strictly front-end issues. They have no effect on code generation. The
benefits conferred by these features are therefore free of cost at runtime.

Default arguments to functions are an example of a cost-free front end feature. The compiler inserts
default arguments to a function call where none are specified by the source.

http://www.embedded.com/print/4438660 2/18

http://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B

27/06/2016 www.embedded.com/print/4438660

A less obvious front end feature is &€ function name overloadinga€™. Function name overloading is
made possible by a remarkably simple compile time mechanism. The mechanism is commonly called
a€ name manglinga€™, but has also been termed &€ name decorationa€™. Anyone who has seen a
linker error about the absence of ?my_function@@YAHH@Z knows which term is more
appropriate.

Name mangling modifies the label generated for a function using the types of the function arguments,
or function signature. So a call to a function void my_function(int) generates a label like ?
my_function@@YAXH@Z and a call to a function void my_function(my_class™) generates a
label like ?my_function@@YAXPAUmy_class@@@Z. Name mangling ensures that functions are
not called with the wrong argument types and it also allows the same name to be used for different
functions provided their argument types are different.

Listing 1 shows a C++ code fragment with function name overloading. There are two functions called
my_function, one taking an int argument, the other taking a char const* argument.

// C++ function name overload example
void my_function(int 1) {

//
b

void my_function(char const* s) {
//

}

int main() {
my_function(1);
my_function("Hello world");
return 0,

Listing 1: Function name overloading

Listing 2 shows how this would be implemented in C. Function names are altered to add argument
types, so that the two functions have different names.

/* C substitute for function name overload */

void my_function_int(int i) {
/* C */
}

void my_function_charconststar(char const* s) {
VAV
}

int main() {
my_function_int(1);
my_function_charconststar ("Hello world");
return 0;

Listing 2: Function name overloading in C

http://www.embedded.com/print/4438660 3/18

27/06/2016 www.embedded.com/print/4438660

References

A reference in C++ is physically identical to a pointer. Only the syntax is different. References are
safer than pointers because they cana€™t be null, they cana€™t be uninitialized, and they cana€™t be
changed to point to something else. The closest thing to a reference in C is a const pointer. Note that
this is not a pointer to a const value, but a pointer that cana€™t be modified. Listing 3 shows a C++
code fragment with a reference.

// C++ reference example
void accumulate(int& i, int j) {
i+=3;

}

Listing 3: C++ reference
Listing 4 shows how this would be implemented in C.

/* C substitute for reference example */

void accumulate(int* const i_ptr, int j) {
*i_ptr += j;

+

Listing 4: Reference in C

Classes, member functions and objects

Classes and member functions are the most important new concept in C++. Unfortunately, they are
usually introduced without explanation of how they are implemented, which tends to disorient C
programmers from the start. In the subsequent struggle to come to terms with object-oriented design,
hope of understanding code generation quickly recedes.

But a class is almost the same as a C struct. Indeed, in C++, a struct is defined to be a class
whose members are public by default. A member function is a function that takes a pointer to an
object of its class as an implicit parameter. So a C++ class with a member function is equivalent, in
terms of code generation, to a C struct and a function that takes that Struct as an argument.

Listing 5 shows a trivial class A with one member variable x and one member function f().

// A trivial class

class A {
private:

int x;
public:

void f();
Iy

void A::f() {
X = 0;
}
Listing 5: A trivial class with member function

Parts of a class are declared as private, protected, or public. This allows the programmer to prevent

http://www.embedded.com/print/4438660 4/18

27/06/2016 www.embedded.com/print/4438660

misuse of interfaces. There is no physical difference between private, protected, and public members.
These specifiers allow the programmer to prevent misuse of data or interfaces through compiler
enforced restrictions.

Listing 6 shows the C substitute for Listing 5. Struct A has the same member variable as class A
and the member function A: : (') is replaced with a function f_A(struct A*). Note that the
name of the argument of f_A(struct A*) has been chosen as a€cethisa€, which is a keyword in
C++, but not in C. The choice is made deliberately to highlight the point that in C++, an object pointer
named this is implicitly passed to a member function.

/* C substitute for trivial class A */

struct A {
int x;

+,

void f_A(struct A* this) {
this->x = 0;
b

Listing 6: C substitute for trivial class with member function

An object in C++ is simply a variable whose type is a C++ class. It corresponds to a variable in C
whose type is a struct. A class is little more than the group of member functions that operate on
objects belonging to the class. When an object-oriented application written in C++ is compiled, data is
mostly made up of objects and code is mostly made up of class member functions.

Clearly, arranging code into classes and data into objects is a powerful organizing principle. Clearly
also, dealing in classes and objects is inherently no less efficient than dealing with functions and data.
Title-1

Constructors and destructors

In C++, a constructor is a member function that is guaranteed to be called when an object is
instantiated or created. This typically means that the compiler generates a constructor call at the point
where the object is declared. Similarly, a destructor is guaranteed to be called when an object goes out
of scope. So a constructor typically contains any initialization that an object needs and a destructor
does any tidying up needed when an object is no longer needed.

The insertion of constructor and destructor calls by the compiler outside the control of the
programmer is something that makes the C programmer uneasy at first. Indeed, programming
practices to avoid excessive creation and destruction of so-called temporary objects are a
preoccupation of C++ programmers in general. However, the guarantee that constructors and
destructors provide - that objects are always initialized and are always tidied up - is generally worth
the sacrifice. In C, where no such guarantees are provided, consequences include frequent
initialization bugs and resource leakage.

Namespaces

C++ namespaces allow the same name to be used in different contexts. The compiler adds the
namespace to the definition and to name references at compile time. This means that names don’t
have to be unique in the application, just in the namespace in which they are declared. This means that
we can use short, descriptive names for functions, global variables, classes, etc. without having to
keep them unique in the entre application. Listing 7 shows an example using the same function name
in two namespaces.

http://www.embedded.com/print/4438660 5/18

27/06/2016

// Namespace
namespace nl
void f()

}
void g()

(),
}
Iy

namespace n2
void f()

}
void g()

(),
}
+;

int main() {
nil::f();
n2::f();
return 0;

When large applications are written in C, which lacks namespaces, this is often achieved by adding

www.embedded.com/print/4438660
example

{
{

{
// Calls ni1::f() implicitly

N A

/ Calls n2::f() implicitly

Listing 7: Namespaces

prefixes to names to ensure uniqueness. See Listing 8.

/* C substitu

void n1_f() {

b

void n1_g() {
ni_f();

b

void n2_f() {

+

void n2_g() {
n2_f();

b

int main() {
ni_f();
n2_f();
return 0;

b

te for namespace */

Listing 8: C substitute for namespaces using prefixes

http://www.embedded.com/print/4438660

6/18

27/06/2016 www.embedded.com/print/4438660

Inline functions
Inline functions are available in C99, but tend to be used more in C++ because they help achieve
abstraction without a performance penalty.

Indiscriminate use of inline functions can lead to bloated code. Novice C++ programmers are often
cautioned on this point, but appropriate use of inline functions can significantly improve both size and
speed.

To estimate the code size impact of an inline function, estimate how many bytes of code it takes to
implement it and compare that to the number of bytes needed to do the corresponding function call.
Also consider that compiler optimization can tilt the balance dramatically in favor of the inline
function. If you conduct actual comparisons studying generated code with optimization turned on, you
may be surprised by how complex an inline function can profitably be. The breakeven point is often
far beyond what can be expressed in a legible C macro.

Operator overloading

A C++ compiler substitutes a function call when it encounters an overloaded operator in the source.
Operators can be overloaded with member functions or with regular, global functions. So the
expression X+Y results in a call to operator+(x, y) or x.operator+(y) if one of these is
declared. Operator overloading is a front end issue and can be viewed as a function call for the
purposes of code generation.

New and delete
In C++, new and delete do the same job asmalloc() and free() in C, except that they add
constructor and destructor calls, eliminating a source of bugs.

Simplified container class
To illustrate the implementation of a class with the features we have discussed, let us consider an
example of a simplified C++ class and its C alternative.

Listing 9 shows a (not very useful) container class for integers featuring a constructor and destructor,
operator overloading, new and delete. It makes a copy of an int array and provides access to array
values using the operator[], returning O for an out of bounds index. It uses the (nothrow)
variant of new to make it easier to compare to the C alternative.

#include <iostream>
#include <new>

class int_container {
public:
int_container(int const* data_in, unsigned len_in) {
data = new(std::nothrow) int[len_in];
len = data == 0? 0: len_in;
for (unsigned n = 0; n < len; ++n)
data[n] = data_in[n];

}

~int_container() {
delete [] data;
b

int operator[](int index) const {
return index >= 0 && ((unsigned)index) < len?

http://www.embedded.com/print/4438660 7/18

27/06/2016 www.embedded.com/print/4438660
data[index]: 0;
private:
int* data;
unsigned len;

+;

int main() {
int my_data[4] = {0, 1, 2, 3};
int_container container(my_data, 4);
std::cout << container[2] << "\n";

}

Listing 9: A simple integer container class featuring constructor, destructor, operator overloading, new and delete

Listing 10 is a C substitute for the class in Listing 9. Operator overload
int_container::operator[](int) is replaced with function
int_container_value(..). The constructor and destructor are replaced with
int_container_create(..) and int_container_destroy(..). These must be called by
the user of the class, rather than calls being added automatically by the compiler.

#include <stdio.h>
#include <stdlib.h>

struct int_container {
int* data;
unsigned len;

+s

void int_container_create(struct int_container* this, int
const* data_in, unsigned len_in) {
this->data = malloc(len_in * sizeof(int));
this->len = this->data == 0? 0: len_in;
for (unsigned n = 0; n < len_in; ++n)
this->data[n] = data_in[n];

}

void int_container_destroy(struct int_container®* this) {
free(this->data);
b

int int_container_value(struct int_container const* this, int
index) {
return index >= 0 && index < this->len? this->data[index]:
0;
b

int main() {
int my_data[4] = {0, 1, 2, 3};
struct int_container container;
int_container_create(&container, my_data, 4);

http://www.embedded.com/print/4438660 8/18

27/06/2016 www.embedded.com/print/4438660

printf("%d\n", int_container_value(&container, 2));
int_container_destroy(&container);

}

Listing 10: C substitute for simple string class

Note how much easier to read main() is in Listing 9 than in Listing 10. It is also safer, more
coherent, more maintainable, and just as fast. Consider which version of main() is more likely to
contain bugs. Consider how much bigger the difference would be for a more realistic container class.
This is why C++ and the object paradigm are safer than C and the procedural paradigm for
partitioning applications.

All C++ features so far discussed confer substantial benefits at no runtime cost.

Inheritance

In discussing how C++ implements inheritance, we will limit our discussion to the simple case of
single, non-virtual inheritance. Multiple inheritance and virtual inheritance are more complex and
their use is rare by comparison.

Let us consider the case where class B inherits from class A. (We can also say that B is derived from
A or that A is a base class of B.)

We know from the previous discussion what the internal structure of an A is. But what is the internal
structure of a B? We learn in object-oriented design (OOD) that inheritance models an ‘is a’
relationship — that we should use inheritance when we can say that a B ‘is a’ A. So if we inherit Circle
from Shape, we’re probably on the right track, but if we inherit Shape from Color, there’s something
wrong.

What we don’t usually learn in OOD is that the ‘is a’ relationship in C++ has a physical as well as a
conceptual basis. In C++, an object of derived class B is made up of an object of base class A, with
the member data of B tacked on at the end. The result is the same as if the B contains an A as its first
member. So any pointer to a B is also a pointer to an A. Any member functions of class A called on an
object of class B will work properly. When an object of class B is constructed, the class A constructor
is called before the class B constructor and the reverse happens with destructors.

Listing 11 shows an example of inheritance. Class B inherits from class A and adds the member
function B::g() andthe member variable B::secondValue.

// Simple example of inheritance

class A {
public:

A();

int f();
private:

int value;
Iy
A:A() {

value = 1;
b
int A::f() {

http://www.embedded.com/print/4438660 9/18

27/06/2016 www.embedded.com/print/4438660

return value;

b
class B: public A {
private:
int secondValue;
public:
B();
int g();
iy
B::B() {
secondValue = 2;
b
int B::g() {
return secondValue;
b
int main() {
B b;
b.f();
b.g();
return 0;
+

Listing 11: Inheritance

Listing 12 shows how this would be achieved in C. Struct B containsa struct A as its first

member, to which it adds a variable secondValue. The function BConstructor(struct B*)
calls AConstructor to ensure initialization of its ‘base class’. Where the function main() calls

b.f() in Listing 11, f_A(struct A*) is called in Listing 12 with a cast.

/* C Substitute for inheritance */

struct A {
int value;

Iy
void AConstructor(struct A* this) {

this->value = 1;
3

int f_A(struct A* this) {
return this->value;

}
struct B {

struct A a;

int secondValue;
Iy

http://www.embedded.com/print/4438660

10/18

27/06/2016 www.embedded.com/print/4438660

void BConstructor(struct B* this) {
AConstructor(&this->a);
this->secondvalue = 2;

int g_B(struct B* this) {
return this->secondValue;

b

int main() {
struct B b;
BConstructor(&b);
f_A ((struct A*)&b);
g_B (&b);
return 0;

}

Listing 12: C Substitute for inheritance

It is startling to discover that the rather abstract concept of inheritance corresponds to such a
straightforward mechanism. The result is that well-designed inheritance relationships have no runtime
cost in terms of size or speed.

Inappropriate inheritance, however, can make objects larger than necessary. This can arise in class
hierarchies, where a typical class has several layers of base class, each with its own member variables,
possibly with redundant information.

Title-1

Virtual functions

Virtual member functions allow us to derive class B from class A and override a virtual member
function of A with one in B and have the new function called by code that knows only about class A.
Virtual member functions provide polymorphism, which is a key feature of object-oriented design.

A class with at least one virtual function is referred to as a ‘polymorphic’ class. The distinction
between a polymorphic and a non-polymorphic class is significant because they have different trade-
offs in runtime cost and functionality.

Virtual functions have been controversial because they exact a price for the benefit of polymorphism.
Let us see, then, how they work and what the price is.

Virtual functions are implemented using an array of function pointers, called a vtable, for each class
that has virtual functions. Each object of such a class contains a pointer to that class’s vtable. This
pointer is put there by the compiler and is used by the generated code, but it is not available to the
programmer and it cannot be referred to in the source code. But inspecting an object with a low level
debugger will reveal the vtable pointer.

When a virtual member function is called on an object, the generated code uses the object’s vtable
pointer to access the vtable for that class and extract the correct function pointer. That pointer is then
called.

Listing 13 shows an example using virtual member functions. Class A has a virtual member function
f(), which is overridden in class B. Class A has a constructor and a member variable, which are

http://www.embedded.com/print/4438660 11/18

27/06/2016 www.embedded.com/print/4438660
actually redundant, but are included to show what happens to vtables during object construction.

// Classes with virtual functions

class A {
private:
int value;
public:
A();
virtual int f();
Iy
A:A()
value = 0;
b
int A::f() {
return 0;
}
class B: public A {
public:
B();
virtual int f();
Iy
B::B() {
b
int B::f() {
return 1,
b
int main() {
B b;
A* aPtr = &b;
aPtr->f();
return 0;
}

Listing 13: Virtual Functions

Listing 14 shows what a C substitute would look like. The second last line in main() is a dangerous
combination of casting and function pointer usage.

/* C substitute for virtual functions */

struct A {
void **vTable;
int value;

Iy

http://www.embedded.com/print/4438660 12/18

27/06/2016 www.embedded.com/print/4438660

int f_A(struct A* this);

void* vTable_A[] = {
(void*) &f_A
};

void AConstructor(struct A* this) {
this->vTable = vTable_A;
this->value = 1;

}

int f_A(struct A* this) {
return 0,
b

struct B {
struct A a;

i
int f_B(struct B* this);

void* vTable_B[] = {
(void*) &f_B
i¥

void BConstructor(struct B* this) {
AConstructor((struct A*) this);
this->a.vTable = vTable_B;

b

int f_B(struct B* this) {
return 1;

b

int main() {
struct B b;
struct A* aPtr;

BConstructor(&b);
typedef void (*f_A_Type)(struct A*);

aPtr = (struct A*) &b;

((f_A_Type)aPtr->vTable[0]) (aPtr);
return 0;

Listing 14: C substitute for virtual functions

This is the first language feature we have seen that entails a runtime cost. So let us quantify the costs

http://www.embedded.com/print/4438660 13/18

27/06/2016 www.embedded.com/print/4438660
of virtual functions.

The first cost is that it makes objects bigger. Every object of a class with virtual member functions
contains a vtable pointer. So each object is one pointer bigger than it would be otherwise. If a class
inherits from a class that already has virtual functions, the objects already contain vtable pointers, so
there is no additional cost. But adding a virtual function can have a disproportionate effect on a small
object. An object can be as small as one byte and if a virtual function is added and the compiler
enforces four-byte alignment, the size of the object becomes eight bytes. But for objects that contain a
few member variables, the cost in size of a vtable pointer is marginal.

The second cost of using virtual functions is the one that generates most controversy. That is the cost
of the vtable lookup for a function call, rather than a direct one. The cost is a memory read before
every call to a virtual function (to get the object’s vtable pointer) and a second memory read (to get
the function pointer from the vtable). This cost has been the subject of heated debate and it is hard to
believe that the cost is typically less than that of adding an extra parameter to a function. We hear no
arguments about the performance impact of additional function arguments because it is generally
unimportant, just as the cost of a virtual function call is generally unimportant.

A less discussed, but more significant, cost of virtual functions is their impact on code size. When an
application is linked after compilation, the linker can identify regular, non-virtual functions that are
never called and remove them from the memory footprint. But because each class with virtual
functions has a vtable containing pointers to all its virtual functions, the pointers in this vtable must be
resolved by the linker. This means that all virtual functions of all classes used in a system are linked.
Therefore, if a virtual function is added to a class, the chances are that it will be linked, even if it is
never called.

So virtual functions have little impact on speed, but their effects on code size and data size should be
considered. Because they involve overheads, virtual functions are not mandatory in C++ as they are in
other object-oriented languages. So if, for a given class, you find the costs outweigh the benefits, you
can choose not to use virtual functions.

Templates

C++ templates are powerful, as shown by their use in the Standard C++ Library. A class template is
rather like a macro that produces an entire class as its expansion. Because a class can be produced
from a single statement of source code, careless use of templates can have a devastating effect on code
size. Older compilers will expand a templated class every time it is encountered, producing a different
expansion of the class in each source file where it is used. Newer compilers and linkers, however, find
duplicates and produce at most one expansion of a given template with a given parameter class.

Used appropriately, templates can save a lot of effort at little or no cost. After all, it’s a lot easier and
probably more efficient to use complex<float> from the Standard C++ Library, rather than write your
own class.

Listing 15 shows a simple template class A<T>. An object of class A<T> has a member variable of
type T, a constructor to initialize and a member function A: : () to retrieve it.

// Sample template class

template<typename T> class A {
private:

T value;
public:

A(T);

http://www.embedded.com/print/4438660 14/18

27/06/2016 www.embedded.com/print/4438660
T ()7
iy

template<typename T> A<T>::A(T initial) {
value = initial;
b

template<typename T> T A<T>::f() {
return value;
b

int main() {
A<int> a(1),
a.f();
return 0,

Listing 15: A C++ template

The macro A(T) in Listing 16 approximates a template class in C. It expands to a Struct
declaration and function definitions for functions corresponding to the constructor and the member
function. We can see that although it is possible to approximate templates in C, it is impractical for
any significant functionality.

/* C approximation of template class */

#define A(T)
struct A_##T {
T value;

+,

void AConstructor_##T(struct A_##T* this, T initial) {
(this)->value = initial;
}

T A_T_##T(struct A_##T* this) {
return (this)->value;
b

A(int) /* Macro expands to ‘class’ A_int */

P AP A A A A G e

int main() {
struct A_int a;
AConstructor_int(&a, 1);
A_f_int(&a);
return 0;

Listing 16: A C ‘template’

Exceptions
Exceptions are to setjmp() and 1longjmp () what structured programming is to goto. They

http://www.embedded.com/print/4438660 15/18

27/06/2016 www.embedded.com/print/4438660

impose strong typing, guarantee that destructors are called, and prevent jumping to a disused stack
frame.

Exceptions are intended to handle conditions that do not normally occur, so implementations are
tailored to optimize performance for the case where no exceptions are thrown. With modern
compilers, exception support results in no runtime cost unless an exception is thrown. The time taken
to throw an exception is unpredictable and may be long due to two factors. The first is that the
emphasis on performance in the normal case is at the expense of performance in the abnormal case.
The second factor is the runtime of destructor calls between an exception being thrown and being
caught.

The use of exceptions also causes a set of tables to be added to the memory footprint. These tables are
used to control the calling of destructors and entry to the correct catch block when the exception is
thrown.

For detailed information on the costs of exceptions with different compilers, see Effective C++ in an
Embedded Environment.

Because of the cost of exception support, some compilers have a ‘no exceptions’ option, which
eliminates exception support and its associated costs.

// C++ Exception example

#include <iostream>
using namespace std;

int factorial(int n) throw(const char*) {

if (n<0)
throw "Negative Argument to factorial';
if (n>0)
return n*factorial(n-1);
return 1,
b
int main() {
try {
int n = factorial(10);
cout << "factorial(10)=" << n;
} catch (const char* s) {
cout << "factorial threw exception: " << s << "\n";
}
return 0,
b

Listing 17: A C++ exception example

Listing 17 above shows an example of an exception and Listing 18 below shows a C substitute that
has several shortcomings. It uses global variables. It allows
longjmp(ConstCharStarException) to be called either before it is initialized by
setjmp(ConstCharStarException) or after main() has returned. In addition, substitutes
for destructor calls must be done by the programmer before a Longjmp(). There is no mechanism to
ensure that these calls are made.

http://www.embedded.com/print/4438660 16/18

http://www.aristeia.com/books.html

27/06/2016 www.embedded.com/print/4438660
/* C approximation of exception handling */

#include <stdio.h>
#include <setjmp.h>

jmp_buf ConstCharStarException;
const char* ConstCharStarExceptionValue;

int factorial(int n) {
if (n<0) {
ConstCharStarExceptionValue = '"Negative Argument to
factorial';

b

if (n>0)

return n*factorial(n-1);
return 1,

longjmp(ConstCharStarException, 0);

}

int main() {
if (setjmp(ConstCharStarException)==0) {
int n = factorial(10);
printf("factorial(10)=%d", n);
} else {
printf("factorial threw exception: %s\n",
ConstCharStarExceptionValue);

}

return 0;

b
Listing 18: A C ‘exception’ example

For language features discussed up to this point, it has been possible to entertain the possibility of a C
substitute as a practical proposition. In this case of exceptions, however, the additional complexity and
opportunities for error make a C substitute impractical. So if you’re writing C, the merits of
exception-safe programming are a moot point.

Runtime type information

The term ‘runtime type information’ suggests an association with purer object-oriented languages like
Smalltalk. This association raises concerns that efficiency may be compromised. This is not so. The
runtime cost is limited to the addition of a type_info object for each polymorphic class and type_info
objects aren’t large.

To measure the memory footprint of a type_info object, the code in Listing 19 was compiled to
assembly. The output was put through the name demangler at www.demangler.com and the result was
annotated to highlight the size of the type_info object and the class name string. The result was 30
bytes. This is about the cost of adding a one line member function to each class.

Many compilers have an option to disable runtime type information, which avoids this cost for an
application that does not use type_info objects.

// type_info test classes //////////////7//77

http://www.embedded.com/print/4438660 17/18

27/06/2016 www.embedded.com/print/4438660

class Base {
public:
virtual ~Base() {}
Iy
class Derived: public Base {};
class MoreDerived: public Derived {};

/* type_info for more_derived generated by g++ 4.5.3 for cygwin.
Total 30 bytes */
_typeinfo for MoreDerived:

.long _vtable for __cxxabivl::__si_class_type_info 8
/* 4 bytes */
.long _typeinfo name for MoreDerived
/* 4 bytes */
.long _typeinfo for Derived
/* 4 bytes */
VARV
_vtable for MoreDerived:
.long 0
.long _typeinfo for MoreDerived
/* 4 bytes */
.long _MoreDerived: :~MoreDerived()
.long _MoreDerived: :~MoreDerived()
VAV 4

_typeinfo name for MoreDerived:
.ascii "11MoreDerived\0"
/*14 bytes */

Listing 19: type_info Memory Footprint Measurement

Part 2: Modern C++ in Embedded Systems: Evaluating C++

Dominic Herity is a Principal Software Engineer at Faz Technology Ltd. He has 30 years’
experience writing software for platforms from 8 bit to 64 bit with full life cycle experience in several
commercially successful products. He served as Technology Leader with Silicon & Software Systems
and Task Group Chair in the Network Processing Forum. He has contributed to research into
Distributed Operating Systems and High Availability at Trinity College Dublin. He has publications
on various aspects of Embedded Systems design and has presented at several conferences in Europe
and North America. He can be contacted at dherity@gmail.com.

http://www.embedded.com/print/4438660 18/18

http://www.embedded.com/design/programming-languages-and-tools/4438679/Modern-C--embedded-systems---Part-2--Evaluating-C--?isCmsPreview=true
http://www.faztechnology.com/
mailto:dherity@gmail.com

