GD4017B 5-STAGE JOHNSON COUNTER

DESCRIPTION – The 4017B is a 5-Stage Johnson Decade Counter with ten glitch free decoded active HIGH Outputs $(O_0$ – O_0), an active LOW Output from the most significant flip-flop $(\overline{O_{5-9}})$, active HIGH and active LOW Clock Inputs $(CP_0, \overline{CP_1})$ and an overriding asynchronous Master Reset Input (MR).

The counter is advanced by either a LOW-to-HIGH transition at CP₀ while $\overline{\text{CP}_1}$ is LOW or a HIGH-to-LOW transition at CP₁ while CP₀ is HIGH (see Functional Truth Table). When cascading 4017B counters, the $Q_{5,9}$ output, which is LOW while the counter is in states 5, 6, 7, 8 and 9, can be used to drive the CP₀ input of the next 4017B.

A HIGH on the Master Reset Input (MR) resets the counter to zero ($O_0 = \overline{Q_{5-9}} = \text{HIGH}$, $O_1 - O_9 = \text{LOW}$) independent of the Clock Inputs (CP₀, $\overline{\text{CP}_1}$).

- TYPICAL COUNT FREQUENCY OF 13.8 MHz AT VDD = 10 V
- ACTIVE HIGH DECODED OUTPUTS
- TRIGGERS ON EITHER A HIGH-TO-LOW OR LOW-TO-HIGH TRANSITION
- CASCADABLE

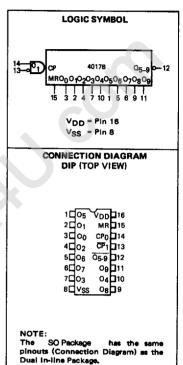
PIN NAMES

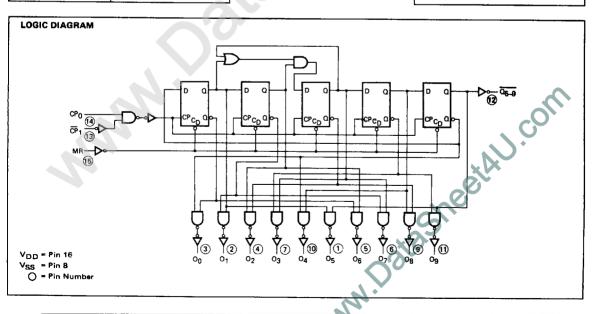
CPO Clock Input (L→H Triggered)
CP1 Clock Input (H→L Triggered)
MR Master Reset Input

Mester Reset Input

Og Decoded Outputs

25-9 Carry Output (Active LOW)


FUNCTIONAL TRUTH TABLE


MR	CP ₀	CP ₁	OPERATION
Н	x	×	O ₀ = Q ₅₋₉ = H; O ₁ - O ₉ = L
L	н	H→L	Counter Advances
L	L → H	L	Counter Advances
L	L	x	No Change
L	X	н	No Change
L	H	$L \rightarrow H$	No Change
L	H → L	L	No Change

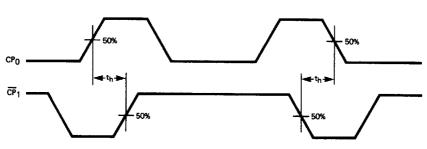
H = HIGH Level L = LOW Level

L→H = LOW-to-HIGH Transition H→L = HIGH-to-LOW Transition

X = Don't Care

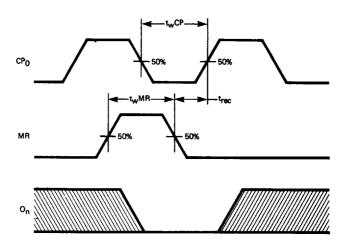
DC CHARACTERISTICS: V_{DD} as shown, V_{SS} = 0 V (See Note 1)

		LIMITS								1				
SYMBOL	PARAMETER		V _{DD} = 5 V			V _{DD} = 10 V		V _{DD} = 15 V			UNITS	TEMP	TEST CONDITIONS	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent				20			40			80		MIN, 25°C	
	Power Supply Current	xc			150			300			600	μА	MAX	All inputs at 0 V or VDD
ססי		· · · · AM			5			10			20	μА	MIN, 25°C	
					150			300			600		MAX	


AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, V_{SS} = 0 V, T_A = 25°C (See Note 2)

SYMBOL	PARAMETER	LIMITS										
		V _{DD} = 5 V			V _{DD} = 10 V			V _{DD} = 15V			UNITS	TEST CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	<u> </u>	
™ tPLH	Propagation Dalay,		278	700		114	285		82	228	ns	
tPHL	CPO or CP1 to On		226	550		94	240		67	192	ns	
tPLH	Propagation Delay,		205	525		87	225		63	180	ns	
ФHL	CPO or CP1 to Q5-9		261	650		105	250		73	200	ns	
tPHL.	Propegation Delay, MR to On		170	430		80	175		52	140	ns]
^t PLH	Propagation Dalay, MR to Q5.9		125	300		65	130		40	104	ns .	CL = 50 pF,
TLH	Output Transition T!me		59	135		31	70		23	45	ns	R _L = 200 kΩ
THL			63	135		26	70		19	45	ns	
twCP	Min. CP ₀ or CP ₁ Pulse Width	200	85		70	37		56	28		ns	Times < 20 ns
twMR	Minimum MR Pulse Width	130	52		55	22		44	18		ns	1111100 7 20 110
t _{rec}	MR Recovery Time	50	16		25	6		20	3		ns	
th	Hold Time, CP ₀ to CP ₁	200	90		90	39		72	26		ns	
th	Hold Time, CP ₁ to CP ₀	200	89		90	39		72	22		ns	
fMAX	Input Count Frequency (Note 3)	2.5	5.8		7	13.8		8	16		MHz	

NOTES:


- 1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
- 2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
- 3. For f_{MAX}, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns.
 4. It is recommended that input rise and fall times to either Clock input (CP₀ or CP₁) be less than 15 µs at V_{DD} = 5 V, 4 µs at V_{DD} = 10 V, and 3 μ s at V_{DD} = 15 V.

SWITCHING WAVEFORMS

HOLD TIMES, CPO TO CPT AND CPT TO CPO

Hold Times are shown as positive values, but may be specified as negative values.

MINIMUM PULSE WIDTHS FOR CP AND MR AND RECOVERY TIME FOR MR

 $\begin{array}{ll} \textbf{CONDITIONS: } \overline{CP_1} = \textbf{LOW while } CP_0 \text{ is triggered on a LOW-to-HIGH} \\ \textbf{transition. } t_wCP \text{ and } t_{rec} \text{ also apply when } CP_0 = \textbf{HIGH and } \overline{CP_1} \text{ is} \\ \textbf{triggered on a HIGH-to-LOW transition.} \end{array}$