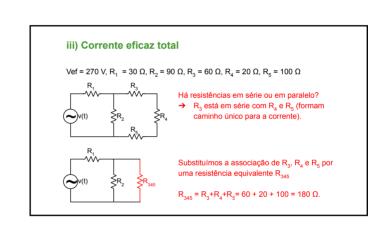
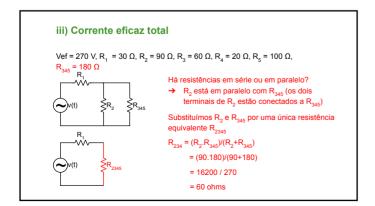
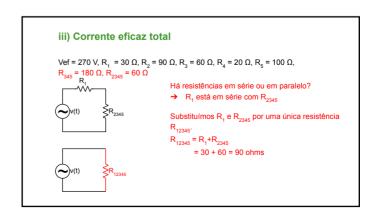

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA Área de Conhecimento: Eletricidade Prof. Pedro Armando da Silva Jr.

LISTA DE EXERCÍCIOS RESOLVIDOS Eletricidade em Corrente Alternada


1 Dodos:
$$Icc = 7.5A$$
 $Pcc = PcA \Rightarrow Vcc = Vegreat$
 $Vcc = 120V$ $Vmax = V2. 120 = 169, 71 V$
 $PcA = Veg . Ief = 120.7.5 = 900W$


2.1 $Vmax = 50V$ $Pea = Pall/R_2 = 20.45 = 13.85N$
 $Vmax = 50V$ $Pea = Rall/R_2 = 20.45 = 13.85N$
 $Veg = Vmax = 35.35V$ $Veg = 35.35^2 = 90.28W$
 $Veg = Vmax = 35.35V$ $Veg = Vag = 35.35 = 2.55A$
 $Iau = Vag = 35.35 = 0.73A$ $Iag = Vag = 35.35 = 2.55A$
 $Iam = Vag = 35.35 = 0.73A$ $Iag = Vag = 35.35 = 1.77A$
 $Iam = Vag = 1.11A$ $Iam = Vag = 2.5A$
 $Iam = Vag = 1.11A$ $Iam = Vag = 2.5A$
 $Vag = Vag = 1.11A$ $Vag = 1.1$



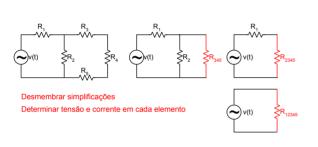
iii) Corrente eficaz total $v(t)=381,8.sen(314,16t), R_1=30 \ \Omega, R_2=90 \ \Omega, R_3=60 \ \Omega, R_4=20 \ \Omega, R_5=100 \ \Omega$ $R_1 = R_3 = R_4 = R_4$

iii) Corrente eficaz total

 $\begin{aligned} \text{Vef} &= 270 \text{ V}, \, \text{R}_{_{1}} = 30 \, \Omega, \, \text{R}_{_{2}} = 90 \, \Omega, \, \text{R}_{_{3}} = 60 \, \Omega, \, \text{R}_{_{4}} = 20 \, \Omega, \, \text{R}_{_{5}} = 100 \, \Omega, \\ \text{R}_{_{345}} &= 180 \, \Omega, \, \text{R}_{_{2345}} = 60 \, \Omega, \, \text{R}_{_{12345}} = 90 \, \Omega \end{aligned}$

Corrente = Tensão / Resistência lef = Vef / R₁₂₃₄₅ = 270 / 90 = 3 A

Esta é a corrente eficaz fornecida pela fonte e que percorre a resistência R₁₂₃₄₅


iv) Potência total do circuito

 $\begin{aligned} \text{Vef} &= 270 \text{ V, R}_{_{1}} = 30 \text{ }\Omega, \text{ R}_{_{2}} = 90 \text{ }\Omega, \text{ R}_{_{3}} = 60 \text{ }\Omega, \text{ R}_{_{4}} = 20 \text{ }\Omega, \text{ R}_{_{5}} = 100 \text{ }\Omega, \\ \text{R}_{_{345}} &= 180 \text{ }\Omega, \text{ R}_{_{2345}} = 60 \text{ }\Omega, \text{ R}_{_{12345}} = 90 \text{ }\Omega, \text{ lef}_{\text{(Ionte)}} = 3 \text{ A} \end{aligned}$

Potência = Tensão eficaz . Corrente eficaz P_(fonte) = Vef_(fonte) . Ief_(fonte) = 270 . 3 = 810 W

v) Corrente eficaz e de pico nos resistores

v) Corrente eficaz e de pico nos resistores

 $\begin{aligned} \text{Vef} &= 270 \text{ V, R}_1 = 30 \text{ }\Omega, \text{ R}_2 = 90 \text{ }\Omega, \text{ R}_3 = 60 \text{ }\Omega, \text{ R}_4 = 20 \text{ }\Omega, \text{ R}_5 = 100 \text{ }\Omega, \\ \text{R}_{345} &= 180 \text{ }\Omega, \text{ R}_{2345} = 60 \text{ }\Omega, \text{ R}_{12345} = 90 \text{ }\Omega, \text{ lef}_{(totte)} = 3 \text{ A} \end{aligned}$

"Série mesma corrente, paralelo mesma tensão" R_{12345} é desmembrado em R_1 em série com R_{2345} \rightarrow R_1 e R_{2345} têm mesma corrente que R_{12345} $I_1 = I_{2345} = I_{12345} = 3$ A (calculada no passo anterior) Falta determinar a tensão em R_1 e em R_{2345} Lei de Ohm (V = R.I.) $V_1 = 100$ $V_2 = 100$ $V_3 = 100$ $V_4 = 100$ $V_5 = 100$ V_5

V₁ = R₁.I₁ = 30.3 = 90 V V₂₃₄₅ = R₂₃₄₅.I₂₃₄₅ = 60.3 = 180 V

v) Corrente eficaz e de pico nos resistores

Vef = 270 V, R₁ = 30 Ω, R₂ = 90 Ω, R₃ = 60 Ω, R₄ = 20 Ω, R₅ = 100 Ω, R₃₄₅ = 180 Ω, R₂₃₄₅ = 60 Ω, V₂₃₄₅ = 180 V, I₂₃₄₅ = 3 A

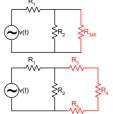
"Série mesma corrente, paralelo mesma tensão"

R₂₃₄₅ desmembrada em R₂ em paralelo com R₃₄₅

→ R₂ e R₃₄₅ têm mesma tensão que R₂₃₄

V₂ = V₃₄₅ = V₂₃₄₅ = 180 V (calculada no passo anterior)

Falta determinar a corrente em R₂ e em R₃₄₅


Lei de Ohm (I = V/R)

I₂ = V₂/R₂ = 180/90 = 2 A

I₃₄₅ = V₃₄₅/R₃₄₅ = 180/180 = 1 A

v) Corrente eficaz e de pico nos resistores

 $\begin{aligned} \text{Vef} &= 270 \text{ V}, \text{ R}_{_{1}} = 30 \text{ }\Omega, \text{ R}_{_{2}} = 90 \text{ }\Omega, \text{ R}_{_{3}} = 60 \text{ }\Omega, \text{ R}_{_{4}} = 20 \text{ }\Omega, \text{ R}_{_{5}} = 100 \text{ }\Omega, \\ \text{R}_{_{345}} &= 180 \text{ }\Omega, \text{V}_{_{345}} = 180 \text{ V}, \text{I}_{_{345}} = 1 \text{ A} \end{aligned}$

"Série mesma corrente, paralelo mesma tensão" R_{345} desmembrada em R_3 em série com R_4 e R_5 \Rightarrow R_3 , R_4 e R_5 têm a mesma corrente que R_{345}

$$\begin{split} & \textbf{I}_3 = \textbf{I}_4 = \textbf{I}_5 = \textbf{I}_{345} = \textbf{1 A} \\ & \text{Tensões em R}_3, \, \textbf{R}_4 \in \textbf{R}_5 \\ & \text{Lei de Ohm (V=R.I)} \\ & \textbf{V}_3 = \textbf{R}_3. \textbf{I}_3 = \textbf{60.1} = \textbf{60 V} \end{split}$$

 $V_4 = R_4 I_4 = 20.1 = 20 V$ $V_5 = R_5 I_5 = 100.1 = 100 V$

v) Corrente eficaz e de pico nos resistores Corrente eficaz Corrente de pico R₁: I₁ = 3A R₁: I₁ = 4,24 A R₂: I₂ = 2 A R₂: I₂ = 2,83 A R₃: I₃ = 1 A R₃: I₃ = 1,41 A R₄: I₄ = 1 A R₄: I₄ = 1,41 A R₅: I₅ = 1 A R₅: I₅ = 1,41 A Corrente eficaz = 0,707. Corrente de pico Ip = Ief/0,707

(3)
$$T(t) = 311/3$$
. Sen (3+74) IVI
 $V_{ef} = \frac{311/3}{V_{2}I} = 220 V$
 $V_{ef} = \frac{311/3}{V_{2}I} = 220 V$
 $V_{ef} = \frac{220}{V_{2}I} = 220 R$
 $V_{ef} = \frac{220}{V_{2}I} = 48.4 \text{ kW}$
 $V_{ef} = \frac{2}{V_{ef}}I = 48.4 \text{ kVA}$
 $V_{ef} = \frac{2}{V_{ef}}I = 48.4 \text{ kVA}$
 $V_{ef} = \frac{2}{V_{ef}}I = \frac{2}{V_{ef}}I = 48.4 \text{ kVA}$
 $V_{ef} = \frac{2}{V_{ef}}I = \frac{2}{V_{ef}}$

$$\begin{cases} 8 \text{ } V = 2300 \text{ } V \\ f = 60 \text{ } Hz \\ P = 560 \text{ } W \end{cases} \qquad S = \frac{P}{\cos y} = \frac{560}{0.85} = 658,82 \text{ } VA \\ COS J = 0.85 \qquad D = \sqrt{5^2 - Pz^2} = 347,06 \text{ } VAr \\ COS J = 0.85 \qquad D = \sqrt{5^2 - Pz^2} = 347,06 \text{ } VAr \\ COS J = 0.85 \qquad D = \sqrt{5^2 - Pz^2} = 347,06 \text{ } VAr \\ COS J = 0.85 \qquad C = \frac{V^2}{P} = \frac{2200^2}{347,06} = 139,46 \text{ } A \end{cases}$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 139,46} = 19,02 \text{ } \mu f$$

$$C = \frac{1}{2 \cdot \pi \cdot f \cdot X_c} = \frac{1}{2 \cdot \pi \cdot 60 \cdot 25,40} = \frac{1}{2 \cdot 35,40} = \frac{1}{2 \cdot 35,4$$

P= 10 KW

(12)
$$\int_{R}^{R} \frac{1}{3^{L}} = \int_{I}^{IC} \int_{I}^{V=220V} \int_{I}^{V=300VA} \int_{I}$$

Cosy=1=>
$$Q_L = Q_C \Rightarrow X_L = X_C$$

Circuito RL: $P = 5.00s f = 300.0, 8 = 240 W$
 $Q = \sqrt{5^2 - P^2} = 180 VAr$
 $X_L = \frac{V^2}{Q_L} = \frac{220^2}{180} = 268,89 N$ $X_L = X_C$

(13)
$$\int e^{-3} \int e^{-1} \int e^{$$

Circuito RLC
$$S_{L} = \frac{P}{\cos y} = \frac{3}{0.8} = 3,75 \text{ kVA} | S_{t} = \frac{P}{\cos y} = \frac{3}{0.92} = 3,26 \text{ kVA}$$

$$Q_{L} = \sqrt{S^{2} - P^{2}} = 2,25 \text{ kVAr} | Q_{t} = \sqrt{S^{2} - 2} = 1,28 \text{ kVAr}$$

Circuito RLC

$$5t = \frac{P}{6sp} = \frac{3k}{0.92} = 3,26 \text{ kVA}$$

 0.92
 $0.92 = 1,28 \text{ kVA}$

St Tot
$$Q_t = Q_L - Q_c$$
.
 $Q_c = Q_L - Q_t$
 $Q_c = Q_c - 1.88 \times Q_c = 972 \text{ VAY}$

$$x = 13,60 \text{ N}$$

$$C = \frac{1}{2 \text{ T. f.} \times c} = \frac{1}{2 \text{ T. 60.} 13,60}$$

$$C = 194,96 \text{ MF}$$

 $X_{c} = \frac{V^2}{Q_c} = \frac{115^2}{972}$