

Câmpus São José

Avaliação 7 - Teoria de Informação

Código de Huffman

Curso: Engenharia de Telecomunicações

Disciplina: COM29008 - Sistemas de Comunicação II

Professor: Marcio Henrique Doniak e Roberto Wanderley da Nobrega

Aluno

João Pedro Menegali Salvan Bitencourt

Exercício

Os símbolos s_0 , s_1 , s_2 , s_3 e s_4 compõem o alfabeto do transmissor. Eles possuem, respectivamente, as seguintes probabilidades de serem gerados pela fonte:

$$\frac{1}{4}$$
, $\frac{3}{16}$, $\frac{1}{8}$, $\frac{5}{8}$, $\frac{5}{16}$

A fonte gera os sinais usando o código de Huffman. Você deve obter os seguintes resultados:

• A palavra-código de cada um dos símbolos do alfabeto.

Símbolo	Estágio 1	Estágio 2	Estágio 3	Estágio 4
S ₄	0,3125	0,3125	0,4375	0,5625 0
S_0	0,25	0,25	0,3125 0	0,4375 1
S ₁	0,1875	0,25	0,25 1	_
S_2	0,125	0,1875 1	_	
S_3	0,125 1			

Portanto, a palavra-código de cada um dos símbolos do alfabeto é:

Símbolo	Probabilidade	Código
s ₀	0,25	10
s ₁	0, 1875	11
s ₂	0,125	010
s ₃	0,125	011
S ₄	0,3125	00

• O comprimento médio deste codificador.

O comprimento médio do codificador é dado por:

$$\overline{L} = 0,25 \cdot 2 + 0,1875 \cdot 2 + 0,125 \cdot 3 + 0,125 \cdot 3 + 0,3125 \cdot 2$$

$$\overline{L} = 0,5 + 0,375 + 0,375 + 0,375 + 0,625$$

$$\overline{L} = 2,25 \text{ bits}$$

• A entropia da fonte.

A entropia da fonte é dada por:

$$H = 0,25 \cdot \log_2\left(\frac{1}{0,25}\right) + 0,1875 \cdot \log_2\left(\frac{1}{0,1875}\right) + 0,125 \cdot \log_2\left(\frac{1}{0,125}\right) + 0,125 \cdot \log_2\left(\frac{1}{0,125}\right) + 0,3125 \cdot \log_2\left(\frac{1}{0,3125}\right)$$

$$H = 0,5 + 0,4528 + 0,375 + 0,375 + 0,5244$$

$$H = 2,2272 \text{ bits}$$