Dual Monostable Multivibrators with Schmitt-Trigger Inputs

Each multivibrator of the LS221 features a negative-transitiontriggered input and a positive-transition-triggered input either of which can be used as an inhibit input.

Pulse triggering occurs at a voltage level and is not related to the transition time of the input pulse. Schmitt-trigger input circuitry for B input allows jitter-free triggering for inputs as slow as 1 volt/second, providing the circuit with excellent noise immunity. A high immunity to V_{CC} noise is also provided by internal latching circuitry.

Once triggered, the outputs are independent of further transitions of the inputs and are a function of the timing components. The output pulses can be terminated by the overriding clear. Input pulse width may be of any duration relative to the output pulse width. Output pulse width may be varied from 35 nanoseconds to a maximum of 70 s by choosing appropriate timing components. With $R_{ext} = 2.0 \text{ k}\Omega$ and $C_{ext} = 0$, a typical output pulse of 30 nanoseconds is achieved. Output rise and fall times are independent of pulse length.

Pulse width stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.

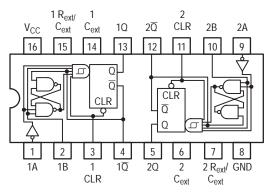
Jitter-free operation is maintained over the full temperature and V_{CC} ranges for greater than six decades of timing capacitance (10 pF to 10 μ F), and greater than one decade of timing resistance (2.0 to 100 k Ω for the SN74LS221). Pulse width is defined by the relationship: $t_w(out) = C_{ext}R_{ext} \ln 2.0 \approx 0.7 C_{ext}R_{ext}$; where t_W is in sif C_{ext} is in pF and R_{ext} is in k Ω . If pulse cutoff is not critical, capacitance up to 1000 μ F and resistance as low as 1.4 k Ω may be used. The range of jitter-free pulse widths is extended if V_{CC} is 5.0 V and 25°C temperature.

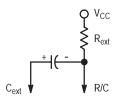
- SN74LS221 is a Dual Highly Stable One-Shot
- Overriding Clear Terminates Output Pulse
- Pin Out is Identical to SN74LS123

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Мах	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA

ON Semiconductor Formerly a Division of Motorola http://onsemi.com


LOW POWER SCHOTTKY


ORDERING INFORMATION

Device	Package	Shipping
SN74LS221N	16 Pin DIP	2000 Units/Box
SN74LS221D	16 Pin	2500/Tape & Reel

Positive logic: Low input to clear resets Q low and \overline{Q} high regardless of dc levels at A or B inputs.

FUNCTION TABLE (EACH MONOSTABLE)

INP	UTS	Ουτι	PUTS	
CLEAR	Α	В	Q	Q
L	Х	Х	L	Н
Х	Н	Х	L	Н
Х	X	L	L	Н
Н	L	î		
Н	↓	Н		
*↑	L	Н	Л	

*See operational notes — Pulse Trigger Modes

	TYPICAL	MAXIMUM		
TYPE	POWER	OUTPUT PULSE		
	DISSIPATION	LENGTH		
SN74LS221	23 mW	70 s		

OPERATIONAL NOTES

Once in the pulse trigger mode, the output pulse width is determined by $t_W = R_{ext}C_{ext}In2$, as long as R_{ext} and C_{ext} are within their minimum and maximum valves and the duty cycle is less than 50%. This pulse width is essentially independent of V_{CC} and temperature variations. Output pulse widths varies typically no more than $\pm 0.5\%$ from device to device.

If the duty cycle, defined as being $100 \cdot \frac{^{t}W}{T}$ where T is the period of the input pulse, rises above 50%, the output pulse width will become shorter. If the duty cycle varies between low and high valves, this causes the output pulse width to vary in length, or jitter. To reduce jitter to a minimum, R_{ext} should be as large as possible. (Jitter is independent of C_{ext}). With $R_{ext} = 100K$, jitter is not appreciable until the duty cycle approaches 90%.

Although the LS221 is pin-for-pin compatible with the LS123, it should be remembered that they are not functionally identical. The LS123 is retriggerable so that the output is dependent upon the input transitions once it is high. This is not the case for the LS221. Also note that it is recommended to externally ground the LS123 C_{ext} pin. However, this cannot be done on the LS221.

The SN74LS221 is a dual, monolithic, non-retriggerable, high-stability one shot. The output pulse width, t_W can be varied over 9 decades of timing by proper selection of the external timing components, R_{ext} and C_{ext} .

Pulse triggering occurs at a voltage level and is, therefore, independent of the input slew rate. Although all three inputs have this Schmitt-trigger effect, only the B input should be used for very long transition triggers ($\geq 1.0 \ \mu V/s$). High immunity to V_{CC} noise (typically 1.5 V) is achieved by internal latching circuitry. However, standard V_{CC} bypassing is strongly recommended.

The LS221 has four basic modes of operation.

Clear Mode:	If the clear input is held low, irregardless of the previous output state and other input states, the Q output is low.
Inhib- it Mode:	If either the A input is high or the B input is low, once the Q output goes low, it cannot be retriggered by other inputs.

Pulse Trigger

Mode:

A transition of the A or B inputs as indicated in the functional truth table will trigger the Q output to go high for a duration determined by the t_W equation described above; \overline{Q} will go low for a corresponding length of time.

> The Clear input may also be used to trigger an output pulse, but special logic preconditioning on the A or B inputs must be done as follows:

Following any output triggering action using the A or B inputs, the A input must be set high OR the B input must be set low to allow Clear to be used as a trigger. Inputs should then be set up per the truth table (without triggering the output) to allow Clear to be used a trigger for the output pulse.

If the Clear pin is routinely being used to trigger the output pulse, the A or B inputs must be toggled as described above before and between each Clear trigger event.

Once triggered, as long as the output remains high, all input transitions (except overriding Clear) are ignored.

Overriding

Clear Mode:

If the Q output is high, it may be forced low by bringing the clear input low.

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions	
V _{T+}	Positive-Going Threshold Voltage at C Input		1.0	2.0	V	V _{CC} = MIN		
V _{T-}	Negative-Going Threshold Voltage at C Input	0.7	0.8		V	V _{CC} = MIN		
V _{T+}	Positive-Going Threshold Voltage at B Input		1.0	2.0	V	V _{CC} = MIN		
V _{T-}	Negative-Going Threshold Voltage at B Input	0.8	0.9		V	V _{CC} = MIN		
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for A Input		
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for A Input		
V _{IK}	Input Clamp Voltage			-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
V _{OH}	Output HIGH Voltage	2.7	3.4		V	V _{CC} = MIN, I _{OH} =	= MAX	
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	V _{CC} = MIN	
				20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
IIH	Input HIGH Current			0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V	
I _{IL}	Input LOW Current Input A Input B Clear			-0.4 -0.8 -0.8	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
I _{OS}	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX	V _{CC} = MAX	
Icc	Power Supply Current Quiescent		4.7	11	mA	V _{CC} = MAX		
	Triggered		19	27	1			

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C)

	From	То	Limits		Limits				
Symbol	(Input)	(Output)	Min	Тур	Max	Unit	Test Conditions		
	A	Q		45	70				
t _{PLH}	В	Q		35	55	ns			
	A	Q		50	80				
t _{PHL}	В	Q		40	65	ns		C_{ext} = 80 pF, R_{ext} = 2.0 Ω	
t _{PHL}	Clear	Q		35	55	ns	C _L = 15 pF,		
t _{PLH}	Clear	Q		44	65	ns	See Figure 1		
			70	120	150			C_{ext} = 80 pF, R_{ext} = 2.0 Ω	
4	A or B	Q or \overline{Q}	20	47	70	ns		$C_{ext} = 0, R_{ext} = 2.0 \text{ k}\Omega$	
t _{W(out)}	AUD	QUIQ	600	670	750			C_{ext} = 100 pF, R_{ext} = 10 k Ω	
			6.0	6.9	7.5	ms		C_{ext} = 1.0 μ F, R_{ext} = 10 k Ω	

AC SETUP REQUIREMENTS (V_{CC} = 5.0 V, T_A = 25°C)

			Limits			
Symbol	Parameter		Min	Тур	Max	Unit
	Rate of Rise or Fall of Input Pulse					
dv/dt		Schmitt, B	1.0			V/s
		Logic Input, A	1.0			V/µs
	Input Pulse Width					
t _W		A or B, t _{W(in)}	40			ns
		Clear, t_W (clear)	40			
t _s	Clear-Inactive-State Setup Time		15			ns
R _{ext}	External Timing Resistance		1.4		100	kΩ
C _{ext}	External Timing Capacitance		0		1000	μF
	Output Duty Cycle					
		RT = 2.0 kΩ			50	%
		$R_T = MAX R_{ext}$			90	

AC WAVEFORMS

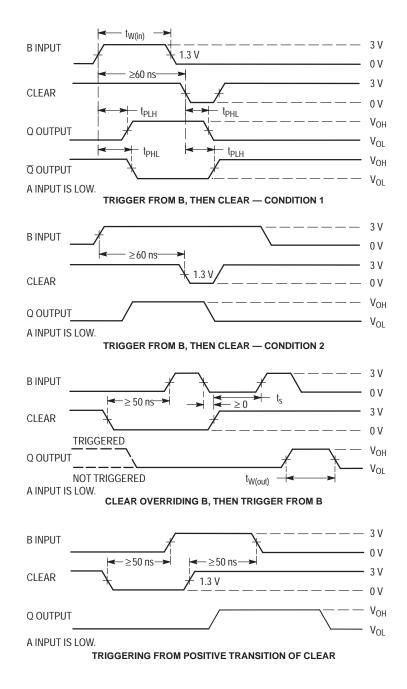
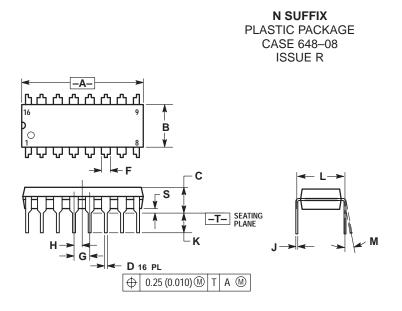
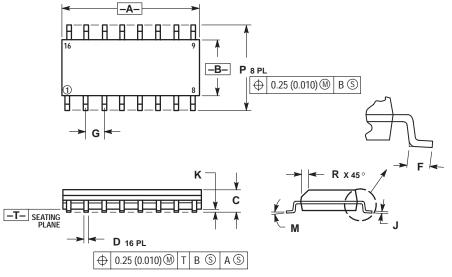



Figure 1.

PACKAGE DIMENSIONS


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

2.

- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54	BSC	
Н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
К	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
Μ	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

D SUFFIX PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI 1.
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 2. 3.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 5.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
К	0.10	0.25	0.004	0.009	
М	0 °	7°	0 °	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and idistributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.