
Intel® Quartus® Prime Standard
Edition User Guide
Debug Tools

Updated for Intel® Quartus® Prime Design Suite: 18.1

Online Version

Send Feedback UG-20182

ID: 683552

Version: 2018.09.24

https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Contents

1. System Debugging Tools Overview................................................................................. 7
1.1. System Debugging Tools Portfolio............................................................................ 7

1.1.1. System Debugging Tools Comparison........................................................... 7
1.1.2. Suggested Tools for Common Debugging Requirements.................................. 8
1.1.3. Debugging Ecosystem................................................................................ 9

1.2. Tools for Monitoring RTL Nodes.............................................................................. 10
1.2.1. Resource Usage....................................................................................... 10
1.2.2. Pin Usage............................................................................................... 12
1.2.3. Usability Enhancements............................................................................ 12

1.3. Stimulus-Capable Tools.........................................................................................13
1.3.1. In-System Sources and Probes.................................................................. 14
1.3.2. In-System Memory Content Editor..............................................................14
1.3.3. System Console.......................................................................................15

1.4. Virtual JTAG Interface Intel FPGA IP....................................................................... 15
1.5. System-Level Debug Fabric................................................................................... 16
1.6. System Debugging Tools Overview Revision History..................................................16

2. Analyzing and Debugging Designs with System Console...............................................17
2.1. Introduction to System Console............................................................................. 17
2.2. System Console Debugging Flow............................................................................18
2.3. IP Cores that Interact with System Console............................................................. 19

2.3.1. Services Provided through Debug Agents.................................................... 19
2.4. Starting System Console.......................................................................................20

2.4.1. Starting System Console from Nios II Command Shell...................................20
2.4.2. Starting Stand-Alone System Console......................................................... 20
2.4.3. Starting System Console from Platform Designer (Standard)..........................20
2.4.4. Starting System Console from Intel Quartus Prime....................................... 21
2.4.5. Customizing Startup.................................................................................21

2.5. System Console GUI.............................................................................................21
2.5.1. System Explorer Pane...............................................................................22

2.6. System Console Commands.................................................................................. 23
2.7. Running System Console in Command-Line Mode.....................................................25
2.8. System Console Services...................................................................................... 26

2.8.1. Locating Available Services........................................................................26
2.8.2. Opening and Closing Services.................................................................... 27
2.8.3. SLD Service............................................................................................ 27
2.8.4. In-System Sources and Probes Service....................................................... 28
2.8.5. Monitor Service....................................................................................... 30
2.8.6. Device Service.........................................................................................32
2.8.7. Design Service........................................................................................ 33
2.8.8. Bytestream Service.................................................................................. 34
2.8.9. JTAG Debug Service................................................................................. 35

2.9. Working with Toolkits........................................................................................... 36
2.9.1. Convert your Dashboard Scripts to Toolkit API............................................. 36
2.9.2. Creating a Toolkit Description File...............................................................36
2.9.3. Registering a Toolkit.................................................................................37
2.9.4. Launching a Toolkit.................................................................................. 37

Contents

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.5. Matching Toolkits with IP Cores..................................................................38
2.9.6. Toolkit API.............................................................................................. 38

2.10. ADC Toolkit....................................................................................................... 75
2.10.1. ADC Toolkit Terms.................................................................................. 78
2.10.2. Setting the Frequency of the Reference Signal............................................78
2.10.3. Tuning the Signal Generator.................................................................... 79
2.10.4. Running a Signal Quality Test...................................................................81
2.10.5. Running a Linearity Test..........................................................................82
2.10.6. ADC Toolkit Data Views........................................................................... 82

2.11. System Console Examples and Tutorials................................................................ 85
2.11.1. Nios II Processor Example....................................................................... 85

2.12. On-Board Intel FPGA Download Cable II Support.................................................... 87
2.13. MATLAB and Simulink* in a System Verification Flow ..............................................87

2.13.1. Supported MATLAB API Commands...........................................................89
2.13.2. High Level Flow......................................................................................89

2.14. Deprecated Commands.......................................................................................89
2.15. Analyzing and Debugging Designs with the System Console Revision History..............90

3. Debugging Transceiver Links........................................................................................ 92
3.1. Channel Manager.................................................................................................92

3.1.1. Channel Display Modes............................................................................. 94
3.2. Transceiver Debugging Flow Walkthrough................................................................94
3.3. Modifying the Design to Enable Transceiver Debug................................................... 94

3.3.1. Adapting an Intel FPGA Design Example .....................................................94
3.3.2. Stratix V Debug System Configuration........................................................ 97
3.3.3. Instantiating and Parameterizing Intel Arria 10 Debug IP cores.....................103

3.4. Programming the Design into an Intel FPGA...........................................................105
3.5. Loading the Design in the Transceiver Toolkit......................................................... 106
3.6. Linking Hardware Resources................................................................................ 106

3.6.1. Linking One Design to One Device............................................................ 109
3.6.2. Linking Two Designs to Two Devices..........................................................109
3.6.3. Linking One Design on Two Devices.......................................................... 109
3.6.4. Linking Designs and Devices on Separate Boards........................................110
3.6.5. Verifying Hardware Connections............................................................... 110

3.7. Identifying Transceiver Channels.......................................................................... 111
3.7.1. Controlling Transceiver Channels.............................................................. 111

3.8. Creating Transceiver Links...................................................................................111
3.9. Running Link Tests............................................................................................. 111

3.9.1. Running BER Tests................................................................................. 112
3.9.2. Signal Eye Margin Testing (Stratix V only)................................................. 112
3.9.3. Running Custom Traffic Tests (Stratix V only) ............................................ 114
3.9.4. Link Optimization Tests........................................................................... 115

3.10. Controlling PMA Analog Settings.........................................................................116
3.10.1. Intel Arria 10 and Intel Cyclone 10 GX PMA Settings................................. 116

3.11. User Interface Settings Reference.......................................................................120
3.12. Troubleshooting Common Errors.........................................................................124
3.13. Scripting API Reference.....................................................................................124

3.13.1. Transceiver Toolkit Commands................................................................124
3.13.2. Data Pattern Generator Commands.........................................................131
3.13.3. Data Pattern Checker Commands............................................................133

3.14. Debugging Transceiver Links Revision History.......................................................135

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


4. Quick Design Debugging Using Signal Probe...............................................................137
4.1. Design Flow Using Signal Probe............................................................................137

4.1.1. Perform a Full Compilation.......................................................................137
4.1.2. Reserve Signal Probe Pins....................................................................... 138
4.1.3. Assign Signal Probe Sources.................................................................... 138
4.1.4. Add Registers Between Pipeline Paths and Signal Probe Pins........................ 138
4.1.5. Perform a Signal Probe Compilation.......................................................... 139
4.1.6. Analyze the Results of a Signal Probe Compilation...................................... 139
4.1.7. What a Signal Probe Compilation Does...................................................... 140
4.1.8. Understanding the Results of a Signal Probe Compilation............................. 140

4.2. Scripting Support...............................................................................................142
4.2.1. Making a Signal Probe Pin....................................................................... 142
4.2.2. Deleting a Signal Probe Pin......................................................................142
4.2.3. Enabling a Signal Probe Pin..................................................................... 143
4.2.4. Disabling a Signal Probe Pin.....................................................................143
4.2.5. Performing a Signal Probe Compilation......................................................143
4.2.6. Reserving Signal Probe Pins.....................................................................143
4.2.7. Adding Signal Probe Sources....................................................................144
4.2.8. Assigning I/O Standards..........................................................................144
4.2.9. Adding Registers for Pipelining................................................................. 144
4.2.10. Running Signal Probe Immediately After a Full Compilation........................ 145
4.2.11. Running Signal Probe Manually...............................................................145
4.2.12. Enabling or Disabling All Signal Probe Routing.......................................... 145
4.2.13. Allowing Signal Probe to Modify Fitting Results......................................... 145

4.3. Quick Design Debugging Using Signal Probe Revision History................................... 145

5. Design Debugging with the Signal Tap Logic Analyzer................................................ 147
5.1. The Signal Tap Logic Analyzer.............................................................................. 147

5.1.1. Hardware and Software Requirements.......................................................148
5.1.2. Signal Tap Logic Analyzer Features and Benefits ........................................ 148
5.1.3. Backward Compatibility with Previous Versions of Intel Quartus Prime

Software............................................................................................... 149
5.2. Signal Tap Logic Analyzer Task Flow Overview........................................................149

5.2.1. Add the Signal Tap Logic Analyzer to Your Design....................................... 150
5.2.2. Configure the Signal Tap Logic Analyzer.................................................... 150
5.2.3. Define Trigger Conditions........................................................................ 151
5.2.4. Compile the Design................................................................................ 151
5.2.5. Program the Target Device or Devices....................................................... 151
5.2.6. Run the Signal Tap Logic Analyzer............................................................ 151
5.2.7. View, Analyze, and Use Captured Data......................................................152

5.3. Configuring the Signal Tap Logic Analyzer..............................................................152
5.3.1. Assigning an Acquisition Clock................................................................. 152
5.3.2. Adding Signals to the Signal Tap File.........................................................153
5.3.3. Adding Signals with a Plug-In.................................................................. 156
5.3.4. Adding Finite State Machine State Encoding Registers................................. 157
5.3.5. Specifying Sample Depth........................................................................ 158
5.3.6. Capture Data to a Specific RAM Type.........................................................158
5.3.7. Select the Buffer Acquisition Mode............................................................159
5.3.8. Specifying Pipeline Settings..................................................................... 161
5.3.9. Filtering Relevant Samples...................................................................... 161
5.3.10. Manage Multiple Signal Tap Files and Configurations..................................169

Contents

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.4. Defining Triggers................................................................................................171
5.4.1. Basic Trigger Conditions.......................................................................... 171
5.4.2. Comparison Trigger Conditions.................................................................172
5.4.3. Advanced Trigger Conditions....................................................................174
5.4.4. Custom Trigger HDL Object......................................................................177
5.4.5. Trigger Condition Flow Control................................................................. 180
5.4.6. Specify Trigger Position........................................................................... 192
5.4.7. Power-Up Triggers.................................................................................. 193
5.4.8. External Triggers....................................................................................195

5.5. Compiling the Design..........................................................................................196
5.5.1. Faster Compilations with Intel Quartus Prime Incremental Compilation.......... 196
5.5.2. Prevent Changes Requiring Recompilation..................................................198
5.5.3. Verify Whether You Need to Recompile Your Project.................................... 198
5.5.4. Incremental Route with Rapid Recompile................................................... 198
5.5.5. Timing Preservation with the Signal Tap Logic Analyzer............................... 200
5.5.6. Performance and Resource Considerations................................................. 200

5.6. Program the Target Device or Devices...................................................................201
5.6.1. Ensure Setting Compatibility Between .stp and .sof Files..............................202

5.7. Running the Signal Tap Logic Analyzer.................................................................. 202
5.7.1. Runtime Reconfigurable Options...............................................................203
5.7.2. Signal Tap Status Messages..................................................................... 205

5.8. View, Analyze, and Use Captured Data..................................................................206
5.8.1. Capturing Data Using Segmented Buffers.................................................. 206
5.8.2. Differences in Pre-Fill Write Behavior Between Different Acquisition Modes.....208
5.8.3. Creating Mnemonics for Bit Patterns......................................................... 209
5.8.4. Automatic Mnemonics with a Plug-In.........................................................209
5.8.5. Locating a Node in the Design..................................................................210
5.8.6. Saving Captured Data.............................................................................210
5.8.7. Exporting Captured Data to Other File Formats...........................................211
5.8.8. Creating a Signal Tap List File.................................................................. 211

5.9. Other Features...................................................................................................211
5.9.1. Creating Signal Tap File from Design Instances...........................................211
5.9.2. Using the Signal Tap MATLAB MEX Function to Capture Data........................ 213
5.9.3. Using Signal Tap in a Lab Environment...................................................... 215
5.9.4. Remote Debugging Using the Signal Tap Logic Analyzer...............................215
5.9.5. Using the Signal Tap Logic Analyzer in Devices with Configuration

Bitstream Security..................................................................................216
5.9.6. Monitor FPGA Resources Used by the Signal Tap Logic Analyzer.................... 216

5.10. Design Example: Using Signal Tap Logic Analyzers................................................216
5.11. Custom Triggering Flow Application Examples.......................................................217

5.11.1. Design Example 1: Specifying a Custom Trigger Position............................217
5.11.2. Design Example 2: Trigger When triggercond1 Occurs Ten Times between

triggercond2 and triggercond3................................................................. 218
5.12. Signal Tap Scripting Support.............................................................................. 218

5.12.1. Signal Tap Command-Line Options..........................................................219
5.12.2. Data Capture from the Command Line.....................................................219

5.13. Design Debugging with the Signal Tap Logic Analyzer Revision History.....................220

7. In-System Debugging Using External Logic Analyzers................................................ 223
7.1. About the Intel Quartus Prime Logic Analyzer Interface........................................... 223
7.2. Choosing a Logic Analyzer...................................................................................223

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


7.2.1. Required Components.............................................................................224
7.3. Flow for Using the LAI.........................................................................................225

7.3.1. Defining Parameters for the Logic Analyzer Interface...................................226
7.3.2. Mapping the LAI File Pins to Available I/O Pins........................................... 226
7.3.3. Mapping Internal Signals to the LAI Banks.................................................227
7.3.4. Compiling Your Intel Quartus Prime Project................................................227
7.3.5. Programming Your Intel-Supported Device Using the LAI............................. 228

7.4. Controlling the Active Bank During Runtime...........................................................228
7.4.1. Acquiring Data on Your Logic Analyzer...................................................... 228

7.5. Using the LAI with Incremental Compilation...........................................................229
7.6. LAI Core Parameters...........................................................................................229
7.7. In-System Debugging Using External Logic Analyzers Revision History...................... 230

8. In-System Modification of Memory and Constants...................................................... 231
8.1. Setting Up In-System Modifiable Memories and Constants....................................... 231
8.2. Running the In-System Memory Content Editor...................................................... 232

8.2.1. Instance Manager...................................................................................232
8.2.2. Editing Data Displayed in the Hex Editor Pane............................................ 232
8.2.3. Importing and Exporting Memory Files...................................................... 233
8.2.4. Scripting Support................................................................................... 233
8.2.5. Programming the Device with the In-System Memory Content Editor............ 233
8.2.6. Example: Using the In-System Memory Content Editor with the Signal Tap

Logic Analyzer....................................................................................... 233
8.3. In-System Modification of Memory and Constants Revision History............................234

9. Design Debugging Using In-System Sources and Probes............................................ 235
9.1. Hardware and Software Requirements.................................................................. 237
9.2. Design Flow Using the In-System Sources and Probes Editor....................................237

9.2.1. Instantiating the In-System Sources and Probes IP Core............................. 238
9.2.2. In-System Sources and Probes IP Core Parameters.....................................239

9.3. Compiling the Design..........................................................................................239
9.4. Running the In-System Sources and Probes Editor..................................................240

9.4.1. In-System Sources and Probes Editor GUI................................................. 240
9.4.2. Programming Your Device With JTAG Chain Configuration............................ 240
9.4.3. Instance Manager...................................................................................241
9.4.4. In-System Sources and Probes Editor Pane................................................241

9.5. Tcl interface for the In-System Sources and Probes Editor........................................243
9.6. Design Example: Dynamic PLL Reconfiguration.......................................................245
9.7. Design Debugging Using In-System Sources and Probes Revision History.................. 247

A. Intel Quartus Prime Standard Edition User Guides......................................................249

Contents

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. System Debugging Tools Overview
This chapter provides a quick overview of the tools available in the Intel® Quartus®

Prime system debugging suite and discusses the criteria for selecting the best tool for
your debug requirements.

1.1. System Debugging Tools Portfolio

The Intel Quartus Prime software provides a portfolio of system debugging tools for
real-time verification of your design.

System debugging tools provide visibility by routing (or “tapping”) signals in your
design to debugging logic. The Compiler includes the debugging logic in your design
and generates programming files that you download into the FPGA or CPLD for
analysis.

Each tool in the system debugging portfolio uses a combination of available memory,
logic, and routing resources to assist in the debugging process. Because different
designs have different constraints and requirements, you can choose the tool that
matches the specific requirements for your design, such as the number of spare pins
available or the amount of logic or memory resources remaining in the physical
device.

1.1.1. System Debugging Tools Comparison

Table 1. System Debugging Tools Portfolio

Tool Description Typical Usage

System Console • Provides real-time in-system debugging
capabilities.

• Allows you to read from and write to Memory
Mapped components in a system without a
processor or additional software

• Communicates with hardware modules in a
design through a Tcl interpreter.

• Allows you to take advantage of all the features
of the Tcl scripting language.

• Supports JTAG and TCP/IP connectivity.

You need to perform system-level debugging.
For example, if you have an Avalon®-MM slave
or Avalon-ST interfaces, you can debug the
design at a transaction level.

Transceiver
Toolkit

• Allows you to test and tune transceiver link
signal quality through a combination of metrics.

• Auto Sweeping of physical medium attachment
(PMA) settings help you find optimal parameter
values.

You need to debug or optimize signal integrity
of a board layout even before finishing the
design.

Signal Tap Logic
Analyzer

• Uses FPGA resources.
• Samples test nodes, and outputs the information

to the Intel Quartus Prime software for display
and analysis.

You have spare on-chip memory and you want
functional verification of a design running in
hardware.

continued...   

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


Tool Description Typical Usage

Signal Probe Incrementally routes internal signals to I/O pins
while preserving results from the last place-and-
routed design.

You have spare I/O pins and you want to check
the operation of a small set of control pins
using either an external logic analyzer or an
oscilloscope.

Logic Analyzer
Interface (LAI)

• Multiplexes a larger set of signals to a smaller
number of spare I/O pins.

• Allows you to select which signals switch onto
the I/O pins over a JTAG connection.

You have limited on-chip memory and a large
set of internal data buses to verify using an
external logic analyzer. Logic analyzer vendors,
such as Tektronics* and Agilent*, provide
integration with the tool to improve usability.

In-System
Sources and
Probes

Provides an easy way to drive and sample logic
values to and from internal nodes using the JTAG
interface.

You want to prototype the FPGA design using a
front panel with virtual buttons.

In-System
Memory Content
Editor

Displays and allows you to edit on-chip memory. You want to view and edit the contents of on-
chip memory that is not connected to a Nios®

II processor.
You can also use the tool when you do not
want to have a Nios II debug core in your
system.

Virtual JTAG
Interface

Allows you to communicate with the JTAG interface
so that you can develop custom applications.

You want to communicate with custom signals
in your design.

1.1.2. Suggested Tools for Common Debugging Requirements

Table 2. Tools for Common Debugging Requirements(1)

Requirement Signal
Probe

Logic
Analyzer
Interface

(LAI)

Signal
Tap Logic
Analyzer

Description

More Data Storage N/A X — An external logic analyzer with the LAI tool allows you to
store more captured data than the Signal Tap
Logic Analyzer, because the external logic analyzer can
provide access to a bigger buffer.
The Signal Probe tool does not capture or store data.

Faster Debugging X X — You can use the LAI or the Signal Probe tool with external
equipment, such as oscilloscopes and mixed signal
oscilloscopes (MSOs). This ability provides access to timing
mode, which allows you to debug combined streams of
data.

Minimal Effect on
Logic Design

X X(2) X(2) The Signal Probe tool incrementally routes nodes to pins,
with no effect on the design logic.
The LAI adds minimal logic to a design, requiring fewer
device resources.
The Signal Tap Logic Analyzer has little effect on the design,
because the Compiler considers the debug logic as a
separate design partition.

Short Compile and
Recompile Time

X X(2) X(2) Signal Probe uses incremental routing to attach signals to
previously reserved pins. This feature allows you to quickly
recompile when you change the selection of source signals.
The Signal Tap Logic Analyzer and the LAI can refit their
own design partitions to decrease recompilation time.

Sophisticated
Triggering
Capability

N/A N/A X The triggering capabilities of the Signal Tap Logic Analyzer
are comparable to commercial logic analyzers.

continued...   

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Requirement Signal
Probe

Logic
Analyzer
Interface

(LAI)

Signal
Tap Logic
Analyzer

Description

Low I/O Usage — — X The Signal Tap Logic Analyzer does not require additional
output pins.
Both the LAI and Signal Probe require I/O pin assignments.

Fast Data
Acquisition

N/A — X The Signal Tap Logic Analyzer can acquire data at speeds of
over 200 MHz.
Signal integrity issues limit acquisition speed for external
logic analyzers that use the LAI.

No JTAG Connection
Required

X — X Signal Probe and Signal Tap do not require a host for
debugging purposes.
A FPGA design with the LAI requires an active JTAG
connection to a host running the Intel Quartus Prime
software.

No External
Equipment Required

— — X The Signal Tap Logic Analyzer only requires a JTAG
connection from a host running the Intel Quartus Prime
software or the stand-alone Signal Tap Logic Analyzer.
Signal Probe and the LAI require the use of external
debugging equipment, such as multimeters, oscilloscopes,
or logic analyzers.

Notes to Table:
1. • X indicates the recommended tools for the feature.

• — indicates that while the tool is available for that feature, that tool might not give the best results.
• N/A indicates that the feature is not applicable for the selected tool.

2. Valid when you use incremental compilation.

1.1.3. Debugging Ecosystem

The Intel Quartus Prime software allows you to use the debugging tools in tandem to
exercise and analyze the logic under test and maximize closure.

A very important distinction in the system debugging tools is how they interact with
the design. All debugging tools in the Intel Quartus Prime software allow you to read
the information from the design node, but only a subset allow you to input data at
runtime:

Table 3. Classification of System Debugging Tools

Debugging Tool Read Data
from Design

Input Values
into the
Design

Comments

Signal Tap Logic Analyzer, Yes No General purpose troubleshooting tools
optimized for probing signals in a register
transfer level (RTL) netlistLogic Analyzer Interface

Signal Probe

In-System Sources and Probes Yes Yes These tools allow to:
• Read data from breakpoints that you

define
• Input values into your design during

runtime

Virtual JTAG Interface

System Console

Transceiver Toolkit

In-System Memory Content Editor

1. System Debugging Tools Overview

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Taken together, the set of on-chip debugging tools form a debugging ecosystem. The
set of tools can generate a stimulus to and solicit a response from the logic under test,
providing a complete solution.

Figure 1. Debugging Ecosystem at Runtime

JTAG

FPGA

Quartus Prime Software Design Under Test

Virtual JTAG Interface
Transceiver Toolkit

System Console
In-System Sources and Probes

In-System Memory Content Editor

Signal Tap
Logic Analyzer Interface

Signal Probe

1.2. Tools for Monitoring RTL Nodes

The Signal Tap Logic Analyzer, Signal Probe, and LAI tools are useful for probing and
debugging RTL signals at system speed. These general-purpose analysis tools enable
you to tap and analyze any routable node from the FPGA or CPLD.

• In cases when the design has spare logic and memory resources, the Signal Tap
Logic Analyzer can providing fast functional verification of the design running on
actual hardware.

Note: CPLDs do not support the Signal Tap Logic Analyzer, because these devices
do not have available memory resources.

• Conversely, if logic and memory resources are tight and you require the large
sample depths associated with external logic analyzers, both the LAI and the
Signal Probe tools simplify monitoring internal design signals using external
equipment.

Related Information

• Design Debugging with the Signal Tap Logic Analyzer on page 147

• In-System Debugging Using External Logic Analyzers on page 223

1.2.1. Resource Usage

The most important selection criteria for these three tools are the remaining resources
on the device after implementing the design and the number of spare pins.

Evaluate debugging options early on in the design planning process to ensure that you
support the appropriate options in the board, Intel Quartus Prime project, and design.
Planning early can reduce debugging time, and eliminates last minute changes to
accommodate debug methodologies.

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 2. Resource Usage per Debugging Tool

Signal
Probe

Lo
gic

  A
na

lyz
er

  In
te

rfa
ce

Signal Tap

Lo
gic

Memory

1.2.1.1. Overhead Logic

Any debugging tool that requires a JTAG connection requires SLD infrastructure logic
for communication with the JTAG interface and arbitration between instantiated
debugging modules. This overhead logic uses around 200 logic elements (LEs), a small
fraction of the resources available in any of the supported devices. All available
debugging modules in your design share the overhead logic. Both the Signal Tap Logic
Analyzer and the LAI use a JTAG connection.

1.2.1.1.1. For Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer requires both logic and memory resources. The number
of logic resources used depends on the number of signals tapped and the complexity
of the trigger logic. However, the amount of logic resources that the Signal Tap Logic
Analyzer uses is typically a small percentage of most designs.

A baseline configuration consisting of the SLD arbitration logic and a single node with
basic triggering logic contains approximately 300 to 400 Logic Elements (LEs). Each
additional node you add to the baseline configuration adds about 11 LEs. Compared
with logic resources, memory resources are a more important factor to consider for
your design. Memory usage can be significant and depends on how you configure your
Signal Tap Logic Analyzer instance to capture data and the sample depth that your
design requires for debugging. For the Signal Tap Logic Analyzer, there is the added
benefit of requiring no external equipment, as all of the triggering logic and storage is
on the chip.

1.2.1.1.2. For Signal Probe

The resource usage of Signal Probe is minimal. Because Signal Probe does not require
a JTAG connection, logic and memory resources are not necessary. Signal Probe only
requires resources to route internal signals to a debugging test point.

1.2.1.1.3. For Logic Analyzer Interface

The LAI requires a small amount of logic to implement the multiplexing function
between the signals under test, in addition to the SLD infrastructure logic. Because no
data samples are stored on the chip, the LAI uses no memory resources.

1. System Debugging Tools Overview

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1.2.1.2. Resource Estimation

The resource estimation feature for the Signal Tap Logic Analyzer and the LAI allows
you to quickly judge if enough on-chip resources are available before compiling the
tool with your design.

Figure 3. Resource Estimator

1.2.2. Pin Usage

1.2.2.1. For Signal Tap Logic Analyzer

Other than the JTAG test pins, the Signal Tap Logic Analyzer uses no additional pins.
All data is buffered using on-chip memory and communicated to the Signal Tap Logic
Analyzer GUI via the JTAG test port.

1.2.2.2. For Signal Probe

The ratio of the number of pins used to the number of signals tapped for the Signal
Probe feature is one-to-one. Because this feature can consume free pins quickly, a
typical application for this feature is routing control signals to spare pins for
debugging.

1.2.2.3. For Logic Analyzer Interface

The LAI can map up to 256 signals to each debugging pin, depending on available
routing resources. The JTAG port controls the active signals mapped to the spare I/O
pins. With these characteristics, the LAI is ideal for routing data buses to a set of test
pins for analysis.

1.2.3. Usability Enhancements

The Signal Tap Logic Analyzer, Signal Probe, and LAI tools can be added to your
existing design with minimal effects. With the node finder, you can find signals to
route to a debugging module without making any changes to your HDL files. Signal
Probe inserts signals directly from your post-fit database. The Signal Tap Logic
Analyzer and LAI support inserting signals from both pre-synthesis and post-fit
netlists.

1.2.3.1. Incremental Compilation

All three tools allow you to find and configure your debugging setup quickly. In
addition, the Intel Quartus Prime incremental compilation feature and the Intel
Quartus Prime incremental routing feature allow for a fast turnaround time for your
programming file, increasing productivity and enabling fast debugging closure.

Both the LAI and Signal Tap Logic Analyzer support incremental compilation. With
incremental compilation, you can add a Signal Tap Logic Analyzer instance or an LAI
instance incrementally into your placed-and-routed design. This has the benefit of
both preserving your timing and area optimizations from your existing design, and

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


decreasing the overall compilation time when any changes are necessary during the
debugging process. With incremental compilation, you can save up to 70% compile
time of a full compilation.

1.2.3.2. Incremental Routing

Signal Probe uses the incremental routing feature. The incremental routing feature
runs only the Fitter stage of the compilation. This leaves your compiled design
untouched, except for the newly routed node or nodes. With Signal Probe, you can
save as much as 90% compile time of a full compilation.

1.2.3.3. Automation Via Scripting

As another productivity enhancement, all tools in the on-chip debugging tool set
support scripting via the quartus_stp Tcl package. For the Signal Tap Logic Analyzer
and the LAI, scripting enables user-defined automation for data collection while
debugging in the lab. The System Console includes a full Tcl interpreter for scripting.

1.2.3.4. Remote Debugging

You can perform remote debugging of a system with the Intel Quartus Prime software
via the System Console. This feature allows you to debug equipment deployed in the
field through an existing TCP/IP connection.

• For information about setting up a Nios II system with the System Console to
perform remote debugging, refer to Application Note 624

• For information about setting up an Intel FPGA SoC to perform remote debugging
with the Intel Quartus Prime SLD tools, refer to Application Note 693.

Related Information

• Application Note 624: Debugging with System Console over TCP/IP

• Application Note 693: Remote Debugging over TCP/IP for Intel FPGA SoC

1.3. Stimulus-Capable Tools

The In-System Memory Content Editor, In-System Sources and Probes, and Virtual
JTAG interface enable you to use the JTAG interface as a general-purpose
communication port.

Though you can use all three tools to achieve the same results, there are some
considerations that make one tool easier to use in certain applications:

• The In-System Sources and Probes is ideal for toggling control signals.

• The In-System Memory Content Editor is useful for inputting large sets of test
data.

• Finally, the Virtual JTAG interface is well suited for advanced users who want to
develop custom JTAG solutions.

System Console provides system-level debugging at a transaction level, such as with
Avalon-MM slave or Avalon-ST interfaces. You can communicate to a chip through
JTAG and TCP/IP protocols. System Console uses a Tcl interpreter to communicate
with hardware modules that you instantiate into your design.

1. System Debugging Tools Overview

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

13

http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/an/an_693.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1.3.1. In-System Sources and Probes

In-System Sources and Probes allow you to read and write to a design by accessing
JTAG resources.

You instantiate an Intel FPGA IP into your HDL code. This Intel FPGA IP core contains
source ports and probe ports that you connect to signals in your design, and abstracts
the JTAG interface's transaction details.

In addition, In-System Sources and Probes provide a GUI that displays source and
probe ports by instance, and allows you to read from probe ports and drive to source
ports. These features make this tool ideal for toggling a set of control signals during
the debugging process.

Related Information

Design Debugging Using In-System Sources and Probes on page 235

1.3.1.1. Push Button Functionality

During the development phase of a project, you can debug your design using the In-
System Sources and Probes GUI instead of push buttons and LEDs. Furthermore, In-
System Sources and Probes supports a set of scripting commands for reading and
writing using the Signal Tap logic analyzer. You can also build your own Tk graphical
interfaces using the Toolkit API. This feature is ideal for building a virtual front panel
during the prototyping phase of the design.

Related Information

• Toolkit API on page 38

• Signal Tap Scripting Support on page 218

1.3.2. In-System Memory Content Editor

The In-System Memory Content Editor allows you to quickly view and modify memory
content either through a GUI interface or through Tcl scripting commands. The In-
System Memory Content Editor works by turning single-port RAM blocks into dual-port
RAM blocks. One port is connected to your clock domain and data signals, and the
other port is connected to the JTAG clock and data signals for editing or viewing.

Related Information

In-System Modification of Memory and Constants on page 231

1.3.2.1. Generate Test Vectors

Because you can modify a large set of data easily, a useful application for the
In-System Memory Content Editor is to generate test vectors for your design. For
example, you can instantiate a free memory block, connect the output ports to the
logic under test (using the same clock as your logic under test on the system side),
and create the glue logic for the address generation and control of the memory. At
runtime, you can modify the contents of the memory using either a script or the
In-System Memory Content Editor GUI and perform a burst transaction of the data
contents in the modified RAM block synchronous to the logic being tested.

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1.3.3. System Console

System Console is a framework that you can launch from the Intel Quartus Prime
software to start services for performing various debugging tasks. System Console
provides you with Tcl scripts and a GUI to access the Platform Designer (Standard)
system integration tool to perform low-level hardware debugging of your design, as
well as identify a module by its path, and open and close a connection to a Platform
Designer (Standard) module. You can access your design at a system level for
purposes of loading, unloading, and transferring designs to multiple devices. Also,
System Console supports the Tk toolkit for building graphical interfaces.

Related Information

Analyzing and Debugging Designs with System Console on page 17

1.3.3.1. Test Signal Integrity

System Console also allows you to access commands that allow you to control how
you generate test patterns, as well as verify the accuracy of data generated by test
patterns. You can use JTAG debug commands in System Console to verify the
functionality and signal integrity of your JTAG chain. You can test clock and reset
signals.

1.3.3.2. Board Bring-Up and Verification

You can use System Console to access programmable logic devices on your
development board, perform board bring-up, and perform verification. You can also
access software running on a Nios II or Intel FPGA SoC processor, as well as access
modules that produce or consume a stream of bytes.

1.3.3.3. Test Link Signal Integrity with Transceiver Toolkit

Transceiver Toolkit runs from the System Console framework, and allows you to run
automatic tests of your transceiver links for debugging and optimizing your transceiver
designs. You can use the Transceiver Toolkit GUI to set up channel links in your
transceiver devices and change parameters at runtime to measure signal integrity. For
selected devices, the Transceiver Toolkit can also run and display eye contour tests.

1.4. Virtual JTAG Interface Intel FPGA IP

The Virtual JTAG Interface Intel FPGA IP provides the finest level of granularity for
manipulating the JTAG resource. This Intel FPGA IP allows you to build your own JTAG
scan chain by exposing all of the JTAG control signals and configuring your JTAG
Instruction Registers (IRs) and JTAG Data Registers (DRs). During runtime, you
control the IR/DR chain through a Tcl API, or with System Console. This feature is
meant for users who have a thorough understanding of the JTAG interface and want
precise control over the number and type of resources used.

Related Information

• Virtual JTAG (altera_virtual_jtag) IP Core User Guide

• Virtual JTAG Interface (VJI) Intel FPGA IP
In Intel Quartus Prime Help

1. System Debugging Tools Overview

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

15

https://www.intel.com/content/www/us/en/programmable/documentation/bhc1411109490717.html#bhc1411109292871
http://quartushelp.altera.com/current/#hdl/mega/mega_file_sld_virtual_jtag.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1.5. System-Level Debug Fabric

During compilation, the Intel Quartus Prime generates the System-Level Debugging
Hub to allow multiple instances of debugging tools in a design.

Most Intel FPGA on-chip debugging tools use the JTAG port to control and read-back
data from debugging logic and signals under test. The System-Level Debugging Hub
manages the sharing of JTAG resources.

Note: For System Console, you explicitly insert debug IP cores into the design to enable
debugging.

The System-Level Debugging Hub appears in the project's design hierarchy as
sld_hub:sld_hub_inst.

1.6. System Debugging Tools Overview Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 • Moved here information about debug fabric on PR designs from the
Design Debugging with the Signal Tap Logic Analyzer chapter.

2017.05.08 17.0.0 • Combined Altera JTAG Interface and Required Arbitration Logic topics
into a new updated topic named System-Level Debugging
Infrastructure.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Added information that System Console supports the Tk toolkit.

November 2013 13.1.0 Dita conversion. Added link to Remote Debugging over TCP/IP for Altera
SoC Application Note.

June 2012 12.0.0 Maintenance release.

November 2011 10.0.2 Maintenance release. Changed to new document template.

December 2010 10.0.1 Maintenance release. Changed to new document template.

July 2010 10.0.0 Initial release

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

16

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2. Analyzing and Debugging Designs with System Console

2.1. Introduction to System Console

System Console provides visibility into your design and allows you to perform system-
level debug on a FPGA at run-time. System Console performs tests on debug-enabled
Platform Designer (Standard) instantiated IP cores. A variety of debug services
provide read and write access to elements in your design. You can perform the
following tasks with System Console and the tools built on top of System Console:

• Bring up boards with both finalized and partially complete designs.

• Perform remote debug with internet access.

• Automate run-time verification through scripting across multiple devices in your
system.

• Test serial links with point-and-click configuration tuning in the Transceiver Toolkit.

• Debug memory interfaces with the External Memory Interface Toolkit.

• Integrate your debug IP into the debug platform.

• Test the performance of your ADC and analog chain on a Intel MAX® 10 device
with the ADC Toolkit.

• Perform system verification with MATLAB*/Simulink.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


Figure 4. System Console Tools
(Tools) shows the applications that interact with System Console. The System Console API supports services
that access your design in operation. Some services have specific hardware requirements.

Tcl Console
Transceiver

Debug Toolkit
ADC Toolkit Bus Analyzer EMIF Toolkit Toolkit API

System Console Tcl
(Command-Line Interface)

System Console GUI Interface

System Console

Ethernet Processor Master Bytestream Others

TCP/IP Nios II JTAG Master JTAG UART ISSP

Nios II with
JTAG Debug

USB Debug
Master

Tools

API

Hardware
Requirements

Note: Use debug links to connect the host to the target you are debugging.

Related Information

• Introduction to Intel Memory Solution
In External Memory Interface Handbook Volume 1

• Debugging Transceiver Links on page 92

• Application Note 693: Remote Hardware Debugging over TCP/IP for Intel SoC

• Application Note 624: Debugging with System Console over TCP/IP

• White Paper 01208: Hardware in the Loop from the MATLAB/Simulink Environment

• System Console Online Training

2.2. System Console Debugging Flow

To debug a design with the System Console, you must perform a series of steps:

1. Add an IP Core to the Platform Designer (Standard) system.

2. Generate the Platform Designer (Standard) system.

3. Compile the design.

4. Connect a board and program the FPGA.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

18

https://www.intel.com/content/www/us/en/programmable/documentation/hco1416493272601.html#hco1416493256137
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410816339044.html#mwh1410816322090
http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/wp/wp-01208-hardware-in-the-loop.pdf
http://www.altera.com/education/training/courses/OEMB1117
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5. Start the System Console.

6. Locate and open a System Console service.

7. Perform debug operations with the service.

8. Close the service.

2.3. IP Cores that Interact with System Console

System Console runs on your host computer and communicates with your running
design through debug agents. Debug agents are soft-logic embedded in some IP cores
that enable debug communication with the host computer.

You instantiate debug IP cores using the Platform Designer (Standard) IP Catalog.
Some IP cores are enabled for debug by default, while you can enable debug for other
IP cores through options in the parameter editor. Some debug agents have multiple
purposes.

When you use IP cores with embedded debug in your design, you can make large
portions of the design accessible. Debug agents allow you to read and write to
memory and alter peripheral registers from the host computer.

Services associated with debug agents in the running design can open and close as
needed. System Console determines the communication protocol with the debug
agent. The communication protocol determines the best board connection to use for
command and data transmission.

The Programmable SRAM Object File (.sof) provides the System Console with
channel communication information. When System Console opens in the Intel Quartus
Prime software or Platform Designer (Standard) while your design is open, any
existing .sof is automatically found and linked to the detected running device. In a
complex system, you may need to link the design and device manually.

Related Information

WP-01170 System-Level Debugging and Monitoring of FPGA Designs

2.3.1. Services Provided through Debug Agents

By adding the appropriate debug agent to your design, System Console services can
use the associated capabilities of the debug agent.

Table 4. Common Services for System Console

Service Function Debug Agent Providing Service

master Access memory-mapped (Avalon-MM or AXI)
slaves connected to the master interface.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master

slave Allows the host to access a single slave without
needing to know the location of the slave in the
host's memory map. Any slave that is accessible
to a System Console master can provide this
service.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master

continued...   

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

19

http://www.altera.com/literature/wp/wp-01170-system-console.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Service Function Debug Agent Providing Service

If an SRAM Object File (.sof) is loaded, then
slaves controlled by a debug master provide the
slave service.

processor • Start, stop, or step the processor.
• Read and write processor registers.

Nios II with debug

JTAG UART The JTAG UART is an Avalon-MM slave device that
you can use in conjunction with System Console
to send and receive byte streams.

JTAG UART

Note: The following IP cores in the IP Catalog do not support VHDL simulation generation in
the current version of the Intel Quartus Prime software:

• JTAG Debug Link

• SLD Hub Controller System

• USB Debug Link

Related Information

• System Console Examples and Tutorials on page 85

• System Console Commands on page 23

2.4. Starting System Console

2.4.1. Starting System Console from Nios II Command Shell

1. On the Windows Start menu, click All Programs ➤ Intel ➤ Nios II EDS
<version> ➤ Nios II<version> ➤ Command Shell..

2. Type system-console.

3. Type -- help for System Console help.

4. Type system-console --project_dir=<project directory> to point to a
directory that contains .qsf or .sof files.

2.4.2. Starting Stand-Alone System Console

You can get the stand-alone version of System Console as part of the Intel Quartus
Prime software Programmer and Tools installer on the Altera website.

1. Navigate to the Download Center page and click the Additional Software tab.

2. On the Windows Start menu, click All Programs ➤ Intel FPGA <version> ➤
Programmer and Tools ➤ System Console.

Related Information

Intel Download Center

2.4.3. Starting System Console from Platform Designer (Standard)

Click Tools ➤ System Console.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

20

https://www.altera.com/downloads/download-center.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.4.4. Starting System Console from Intel Quartus Prime

Click Tools ➤ System Debugging Tools ➤ System Console.

2.4.5. Customizing Startup

You can customize your System Console environment, as follows:

• Add commands to the system_console_rc configuration file located at:

— <$HOME>/system_console/system_console_rc.tcl

The file in this location is the user configuration file, which only affects the owner
of the home directory.

• Specify your own design startup configuration file with the command-line
argument --rc_script=<path_to_script>, when you launch System Console
from the Nios II command shell.

• Use the system_console_rc.tcl file in combination with your custom
rc_script.tcl file. In this case, the system_console_rc.tcl file performs
System Console actions, and the rc_script.tcl file performs your debugging
actions.

On startup, System Console automatically runs the Tcl commands in these files. The
commands in the system_console_rc.tcl file run first, followed by the commands
in the rc_script.tcl file.

2.5. System Console GUI

The System Console GUI consists of a main window with multiple panes, and allows
you to interact with the design currently running on the host computer.

• System Explorer—Displays the hierarchy of the System Console virtual file
system in your design, including board connections, devices, designs, and scripts.

• Workspace—Displays available toolkits including the ADC Toolkit, Transceiver
Toolkit, Toolkits, GDB Server Control Panel, and Bus Analyzer. Click the Tools
menu to launch applications.

• Tcl Console—A window that allows you to interact with your design using Tcl
scripts, for example, sourcing scripts, writing procedures, and using System
Console API.

• Messages—Displays status, warning, and error messages related to connections
and debug actions.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 5. System Console GUI

2.5.1. System Explorer Pane

The System Explorer pane displays the virtual file system for all connected
debugging IP cores, and contains the following information:

• Devices folder—Displays information about all devices connected to the System
Console.

• Scripts folder—Stores scripts for easy execution.

• Connections folder—Displays information about the board connections visible to
the System Console, such as Intel FPGA Download Cable. Multiple connections are
possible.

• Designs folder—Displays information about Intel Quartus Prime designs
connected to the System Console. Each design represents a loaded .sof file.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The Devices folder contains a sub-folder for each device connected to the System
Console. Each device sub-folder contains a (link) folder, and may contain a (files)
folder. The (link) folder shows debug agents (and other hardware) that System
Console can access. The (files) folder contains information about the design files
loaded from the Intel Quartus Prime project for the device.

Figure 6. System Explorer Pane
The figure shows the EP4SGX230 folder under the Device folder, which contains a (link) folder. The (link)
folder contains a JTAG folder, which describes the active debug connections to this device, for example, JTAG,
USB, Ethernet, and agents connected to the EP4SGX230 device via a JTAG connection.

• Folders with a context menu display a context menu icon. Right-click these folders
to view the context menu. For example, the Connections folder above shows a
context menu icon.

• Folders that have messages display a message icon. Mouse-over these folders to
view the messages. For example, the Scripts folder in the example has a
message icon.

• Debug agents that sense the clock and reset state of the target show an
information or error message with a clock status icon. The icon indicates whether
the clock is running (information, green), stopped (error, red), or running but in
reset (error, red). For example, the trace_system_jtag_link.h2t folder in the
figure has a running clock.

2.6. System Console Commands

The console commands enable testing. Use console commands to identify a service by
its path, and to open and close the connection. The path that identifies a service is
the first argument to most System Console commands.

To initiate a service connection, do the following:

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. Identify a service by specifying its path with the get_service_paths command.

2. Open a connection to the service with the claim_service command.

3. Use Tcl and System Console commands to test the connected device.

4. Close a connection to the service with the close_service command

Note: For all Tcl commands, the <format> argument must come first.

Table 5. System Console Commands

Command Arguments Function

get_service_types N/A Returns a list of service types that System
Console manages. Examples of service types
include master, bytestream, processor, sld,
jtag_debug, device, and design.

get_service_paths • <service-type>
• <device>—Returns

services in the same
specified device. The
argument can be a device
or another service in the
device.

• <hpath>—Returns
services whose hpath
starts with the specified
prefix.

• <type>—Returns services
whose debug type
matches this value.
Particularly useful when
opening slave services.

• <type>—Returns services
on the same development
boards as the argument.
Specify a board service, or
any other service on the
same board.

Allows you to filter the services which are
returned.

claim_service • <service-type>
• <service-path>
• <claim-group>
• <claims>

Provides finer control of the portion of a service
you want to use.
claim_service returns a new path which
represents a use of that service. Each use is
independent. Calling claim_service multiple
times returns different values each time, but
each allows access to the service until closed.

close_service • <service-type>
• <service-path>

Closes the specified service type at the specified
path.

is_service_open • <service-type>
• <service-type>

Returns 1 if the service type provided by the
path is open, 0 if the service type is closed.

get_services_to_add N/A Returns a list of all services that are instantiable
with the add_service command.

add_service • <service-type>
• <instance-name>
• optional-parameters

Adds a service of the specified service type with
the given instance name. Run
get_services_to_add to retrieve a list of
instantiable services. This command returns the
path where the service was added.

continued...   

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

Run help add_service <service-type> to get
specific help about that service type, including
any parameters that might be required for that
service.

add_service gdbserver • <Processor Service>
• <port number>

Instantiates a gdbserver.

add_service tcp • <instance name>
• <ip_addr>
• <port_number>

Allows you to connect to a TCP/IP port that
provides a debug link over ethernet. See AN693
(Remote Hardware Debugging over TCP/IP for
Intel FPGA SoC) for more information.

add_service
transceiver_channel_rx

• <data_pattern_checker>
• <path>
• <transceiver path>
• <transceiver channel

address>
• <reconfig path>
• <reconfig channel

address>

Instantiates a Transceiver Toolkit receiver
channel.

add_service
transceiver_channel_tx

• <data_pattern_generator
>

• <path>
• <transceiver path>
• <transceiver channel

address>
• <reconfig path>
• <reconfig channel

address>

Instantiates a Transceiver Toolkit transmitter
channel.

add_service
transceiver_debug_link

• <transceiver_channel_tx
path>

• <transceiver_channel_rx
path>

Instantiates a Transceiver Toolkit debug link.

get_version N/A Returns the current System Console version and
build number.

get_claimed_services • <claim> For the given claim group, returns a list of
services claimed. The returned list consists of
pairs of paths and service types. Each pair is one
claimed service.

refresh_connections N/A Scans for available hardware and updates the
available service paths if there have been any
changes.

send_message • <level>
• <message>

Sends a message of the given level to the
message window. Available levels are info,
warning, error, and debug.

Related Information

Remote Hardware Debugging over TCP/IP for SoC Devices

2.7. Running System Console in Command-Line Mode

You can run System Console in command line mode and either work interactively or
run a Tcl script. System Console prints the output in the console window.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

25

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410816339044.html#mwh1410816322090
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• --cli—Runs System Console in command-line mode.

• --project_dir=<project dir>—Directs System Console to the location of
your hardware project. Also works in GUI mode.

• --script=<your script>.tcl—Directs System Console to run your Tcl script.

• --help— Lists all available commands. Typing --help <command name>
provides the syntax and arguments of the command.

System Console provides command completion if you type the beginning letters of a
command and then press the Tab key.

2.8. System Console Services

Intel's System Console services provide access to hardware modules instantiated in
your FPGA. Services vary in the type of debug access they provide.

2.8.1. Locating Available Services

System Console uses a virtual file system to organize the available services, which is
similar to the /dev location on Linux systems. Board connection, device type, and
IP names are all part of a service path. Instances of services are referred to by their
unique service path in the file system. To retrieve service paths for a particular
service, use the command get_service_paths <service-type>.

Example 1. Locating a Service Path

#We are interested in master services.
set service_type "master"

#Get all the paths as a list.
set master_service_paths [get_service_paths $service_type]

#We are interested in the first service in the list.
set master_index 0

#The path of the first master.
set master_path [lindex $master_service_paths $master_index]

#Or condense the above statements into one statement:
set master_path [lindex [get_service_paths master] 0]

System Console commands require service paths to identify the service instance you
want to access. The paths for different components can change between runs of
System Console and between versions. Use the get_service_paths command to
obtain service paths.

The string values of service paths change with different releases of the tool. Use the
marker_node_info command to get information from the path.

System Console automatically discovers most services at startup. System Console
automatically scans for all JTAG and USB-based service instances and retrieves their
service paths. System Console does not automatically discover some services, such as
TCP/IP. Use add_service to inform System Console about those services.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Example 2. Marker_node_info

Use the marker_node_info command to get information about the discovered
services.

set slave_path [get_service_paths -type altera_avalon_uart.slave slave]
array set uart_info [marker_node_info $slave_path]
echo $uart_info(full_hpath)

2.8.2. Opening and Closing Services

After you have a service path to a particular service instance, you can access the
service for use.

The claim_service command directs System Console to start using a particular
service instance, and with no additional arguments, claims a service instance for
exclusive use.

Example 3. Opening a Service

set service_type "master"
set claim_path [claim_service $service_type $master_path mylib];#Claims service.

You can pass additional arguments to the claim_service command to direct System
Console to start accessing a particular portion of a service instance. For example, if
you use the master service to access memory, then use claim_service to only
access the address space between 0x0 and 0x1000. System Console then allows
other users to access other memory ranges, and denies access to the claimed memory
range. The claim_service command returns a newly created service path that you
can use to access your claimed resources.

You can access a service after you open it. When you finish accessing a service
instance, use the close_service command to direct System Console to make this
resource available to other users.

Example 4. Closing a Service

close_service master $claim_path; #Closes the service.

2.8.3. SLD Service

The SLD Service shifts values into the instruction and data registers of SLD nodes and
captures the previous value. When interacting with a SLD node, start by acquiring
exclusive access to the node on an opened service.

Example 5. SLD Service

set timeout_in_ms 1000
set lock_failed [sld_lock $sld_service_path $timeout_in_ms]

This code attempts to lock the selected SLD node. If it is already locked, sld_lock
waits for the specified timeout. Confirm the procedure returns non-zero before
proceeding. Set the instruction register and capture the previous one:

if {$lock_failed} {
    return
}

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


set instr 7
set delay_us 1000
set capture [sld_access_ir $sld_service_path $instr $delay_us]

The 1000 microsecond delay guarantees that the following SLD command executes
least 1000 microseconds later. Data register access works the same way.

set data_bit_length 32
set delay_us 1000
set data_bytes [list 0xEF 0xBE 0xAD 0xDE]
set capture [sld_access_dr $sld_service_path $data_bit_length $delay_us \
$data_bytes]

Shift count is specified in bits, but the data content is specified as a list of bytes. The
capture return value is also a list of bytes. Always unlock the SLD node once finished
with the SLD service.

sld_unlock $sld_service_path

Related Information

Virtual JTAG IP Core User Guide

2.8.3.1. SLD Commands

Table 6. SLD Commands

Command Arguments Function

sld_access_ir <claim-path>
<ir-value>
<delay> (in µs)

Shifts the instruction value into the instruction register of the specified
node. Returns the previous value of the instruction.
If the <delay> parameter is non-zero, then the JTAG clock is paused for
this length of time after the access.

sld_access_dr <service-path>
<size_in_bits>
<delay-in-µs>,
<list_of_byte_values>

Shifts the byte values into the data register of the SLD node up to the size
in bits specified.
If the <delay> parameter is non-zero, then the JTAG clock is paused for at
least this length of time after the access.
Returns the previous contents of the data register.

sld_lock <service-path>
<timeout-in-milliseconds>

Locks the SLD chain to guarantee exclusive access.
Returns 0 if successful. If the SLD chain is already locked by another user,
tries for <timeout>ms before throwing a Tcl error. You can use the catch
command if you want to handle the error.

sld_unlock <service-path> Unlocks the SLD chain.

2.8.4. In-System Sources and Probes Service

The In-System Sources and Probes (ISSP) service provides scriptable access to the
altsource_probe IP core in a similar manner to using the In-System Sources and
Probes Editor in the Intel Quartus Prime software.

Example 6. ISSP Service

Before you use the ISSP service, ensure your design works in the In-System
Sources and Probes Editor. In System Console, open the service for an ISSP
instance.

set issp_index 0
set issp [lindex [get_service_paths issp] 0]
set claimed_issp [claim_service issp $issp mylib]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

28

https://www.intel.com/content/www/us/en/programmable/documentation/bhc1411109490717.html#bhc1411109292871
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


View information about this particular ISSP instance.

array set instance_info [issp_get_instance_info $claimed_issp]
set source_width $instance_info(source_width)
set probe_width $instance_info(probe_width)

The Intel Quartus Prime software reads probe data as a single bitstring of length equal
to the probe width.

set all_probe_data [issp_read_probe_data $claimed_issp]

As an example, you can define the following procedure to extract an individual probe
line's data.

proc get_probe_line_data {all_probe_data index} {
    set line_data [expr { ($all_probe_data >> $index) & 1 }]
    return $line_data
}
set initial_all_probe_data [issp_read_probe_data $claim_issp]
set initial_line_0 [get_probe_line_data $initial_all_probe_data 0]
set initial_line_5 [get_probe_line_data $initial_all_probe_data 5]
# ...
set final_all_probe_data [issp_read_probe_data $claimed_issp]
set final_line_0 [get_probe_line_data $final_all_probe_data 0]

Similarly, the Intel Quartus Prime software writes source data as a single bitstring of
length equal to the source width.

set source_data 0xDEADBEEF
issp_write_source_data $claimed_issp $source_data

The currently set source data can also be retrieved.

set current_source_data [issp_read_source_data $claimed_issp]

As an example, you can invert the data for a 32-bit wide source by doing the
following:

set current_source_data [issp_read_source_data $claimed_issp]
set inverted_source_data [expr { $current_source_data ^ 0xFFFFFFFF }]
issp_write_source_data $claimed_issp $inverted_source_data

2.8.4.1. In-System Sources and Probes Commands

Note: The valid values for ISSP claims include read_only, normal, and exclusive.

Table 7. In-System Sources and Probes Commands

Command Arguments Function

issp_get_instance_info <service-path> Returns a list of the configurations of the In-System Sources and Probes
instance, including:
instance_index

instance_name

source_width

continued...   

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

probe_width

issp_read_probe_data <service-path> Retrieves the current value of the probe input. A hex string is returned
representing the probe port value.

issp_read_source_data <service-path> Retrieves the current value of the source output port. A hex string is
returned representing the source port value.

issp_write_source_data <service-path>
<source-value>

Sets values for the source output port. The value can be either a hex
string or a decimal value supported by the System Console Tcl
interpreter.

2.8.5. Monitor Service

The monitor service builds on top of the master service to allow reads of Avalon-MM
slaves at a regular interval. The service is fully software-based. The monitor service
requires no extra soft-logic. This service streamlines the logic to do interval reads, and
it offers better performance than exercising the master service manually for the reads.

Example 7. Monitor Service

1. Determine the master and the memory address range that you want to poll:

set master_index     0
set master [lindex [get_service_paths master] $master_index]
set address          0x2000
set bytes_to_read    100
set read_interval_ms 100

With the first master, read 100 bytes starting at address 0x2000 every 100
milliseconds.

2. Open the monitor service:

set monitor [lindex [get_service_paths monitor] 0]
set claimed_monitor [claim_service monitor $monitor mylib]

The monitor service opens the master service automatically.

3. With the monitor service, register the address range and time interval:

monitor_add_range $claimed_monitor $master $address $bytes_to_read
monitor_set_interval $claimed_monitor $read_interval_ms

4. Add more ranges, defining the result at each interval:

global monitor_data_buffer
set monitor_data_buffer [list]

5. Gather the data and append it with a global variable.

proc store_data {monitor master address bytes_to_read} {
  global monitor_data_buffer
# monitor_read_data returns the range of data polled from the running 
design as a list
#(in this example, a 100-element list).
  set data [monitor_read_data $claimed_monitor $master $address 
$bytes_to_read]
# Append the list as a single element in the monitor_data_buffer global 
list.
  lappend monitor_data_buffer $data
}

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Note: If this procedure takes longer than the interval period, the monitor service
may have to skip the next one or more calls to the procedure. In this case,
monitor_read_data returns the latest polled data.

6. Register this callback with the opened monitor service:

set callback [list store_data $claimed_monitor $master $address 
$bytes_to_read]
monitor_set_callback $claimed_monitor $callback

7. Use the callback variable to call when the monitor finishes an interval. Start
monitoring:

monitor_set_enabled $claimed_monitor 1

Immediately, the monitor reads the specified ranges from the device and invokes
the callback at the specified interval. Check the contents of
monitor_data_buffer to verify this. To turn off the monitor, use 0 instead of 1
in the above command.

2.8.5.1. Monitor Commands

You can use the Monitor commands to read many Avalon-MM slave memory locations
at a regular interval.

Under normal load, the monitor service reads the data after each interval and then
calls the callback. If the value you read is timing sensitive, you can use the
monitor_get_read_interval command to read the exact time between the
intervals at which the data was read.

Under heavy load, or with a callback that takes a long time to execute, the monitor
service skips some callbacks. If the registers you read do not have side effects (for
example, they read the total number of events since reset), skipping callbacks has no
effect on your code. The monitor_read_data command and
monitor_get_read_interval command are adequate for this scenario.

If the registers you read have side effects (for example, they return the number of
events since the last read), you must have access to the data that was read, but for
which the callback was skipped. The monitor_read_all_data and
monitor_get_all_read_intervals commands provide access to this data.

Table 8. Monitoring Commands

Command Arguments Function

monitor_add_range <service-path>
<target-path>
<address>
<size>

Adds a contiguous memory address into the
monitored memory list.
<service path> is the value returned when
you opened the service.
<target-path> argument is the name of a
master service to read. The address is within
the address space of this service. <target-
path> is returned from [lindex
[get_service_paths master] n] where
n is the number of the master service.

continued...   

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

<address> and <size> are relative to the
master service.

monitor_get_all_read_intervals <service-path>
<target-path>
<address>
<size>

Returns a list of intervals in milliseconds
between two reads within the data returned
by monitor_read_all_data.

monitor_get_interval <service-path> Returns the current interval set which
specifies the frequency of the polling action.

monitor_get_missing_event_count <service-path> Returns the number of callback events
missed during the evaluation of last Tcl
callback expression.

monitor_get_read_interval <service-path>
<target-path>
<address>
<size>

Returns the milliseconds elapsed between
last two data reads returned by
monitor_read_data.

monitor_read_all_data <service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values read from all
recent values read from device since last Tcl
callback. You must specify a memory range
within the range in monitor_add_range.

monitor_read_data <service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values read from the
most recent values read from device. You
must specify a memory range within the
range in monitor_add_range.

monitor_set_callback <service-path>
<Tcl-expression>

Specifies a Tcl expression that the System
Console must evaluate after reading all the
memories that this service monitors.
Typically, you specify this expression as a
single string Tcl procedure call with
necessary argument passed in.

monitor_set_enabled <service-path>
<enable(1)/disable(0)>

Enables and disables monitoring. Memory
read starts after this command, and Tcl
callback evaluates after data is read.

monitor_set_interval <service-path>
<interval>

Defines the target frequency of the polling
action by specifying the interval between two
memory reads. The actual polling frequency
varies depending on the system activity.

2.8.6. Device Service

The device service supports device-level actions.

Example 8. Programming

You can use the device service with Tcl scripting to perform device programming.

set device_index 0 ; #Device index for target
set device [lindex [get_service_paths device] $device_index]
set sof_path [file join project_path output_files project_name.sof]
device_download_sof $device $sof_path

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To program, all you need are the device service path and the file system path to
a .sof. Ensure that no other service (e.g. master service) is open on the target
device or else the command fails. Afterwards, you may do the following to check that
the design linked to the device is the same one programmed:

device_get_design $device

2.8.6.1. Device Commands

The device commands provide access to programmable logic devices on your board.
Before you use these commands, identify the path to the programmable logic device
on your board using the get_service_paths.

Table 9. Device Commands

Command Arguments Function

device_download_sof <service_path>
<sof-file-path>

Loads the specified .sof to the device specified by the path.

device_get_connections <service_path> Returns all connections which go to the device at the specified path.

device_get_design <device_path> Returns the design this device is currently linked to.

2.8.7. Design Service

You can use design service commands to work with Intel Quartus Prime design
information.

Example 9. Load

When you open System Console from the Intel Quartus Prime software or Platform
Designer (Standard), the current project's debug information is sourced automatically
if the .sof has been built. In other situations, you can load manually.

set sof_path [file join project_dir output_files project_name.sof]
set design [design_load $sof_path]

System Console is now aware that this particular .sof has been loaded.

Example 10. Linking

Once a .sof is loaded, System Console automatically links design information to the
connected device. The resultant link persists and you can choose to unlink or reuse
the link on an equivalent device with the same .sof.

You can perform manual linking.

set device_index 0; # Device index for our target
set device [lindex [get_service_paths device] $device_index]
design_link $design $device

Manually linking fails if the target device does not match the design service.

Linking fails even if the .sof programmed to the target is not the same as the
design .sof.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.8.7.1. Design Service Commands

Design service commands load and work with your design at a system level.

Table 10. Design Service Commands

Command Arguments Function

design_load <quartus-
project-path>,
<sof-file-path>,
or <qpf-file-
path>

Loads a model of a Intel Quartus Prime design into System
Console. Returns the design path.
For example, if your Intel Quartus Prime Project File (.qpf) is in
c:/projects/loopback, type the following command:
design_load {c:\projects\loopback\}

design_link <design-path>
<device-service-
path>

Links a Intel Quartus Prime logical design with a physical device.
For example, you can link a Intel Quartus Prime design called
2c35_quartus_design to a 2c35 device. After you create this
link, System Console creates the appropriate correspondences
between the logical and physical submodules of the Intel Quartus
Prime project.

design_extract_debug_files <design-path>
<zip-file-name>

Extracts debug files from a .sof to a zip file which can be
emailed to Intel FPGA Support for analysis.
You can specify a design path of {} to unlink a device and to
disable auto linking for that device.

design_get_warnings <design-path> Gets the list of warnings for this design. If the design loads
correctly, then an empty list returns.

2.8.8. Bytestream Service

The bytestream service provides access to modules that produce or consume a stream
of bytes. Use the bytestream service to communicate directly to the IP core that
provides bytestream interfaces, such as the Altera JTAG UART or the Avalon-ST JTAG
interface.

Example 11. Bytestream Service

The following code finds the bytestream service for your interface and opens it.

set bytestream_index 0
set bytestream [lindex [get_service_paths bytestream] $bytestream_index]
set claimed_bytestream [claim_service bytestream $bytestream mylib]

To specify the outgoing data as a list of bytes and send it through the opened service:

set payload [list 1 2 3 4 5 6 7 8]
bytestream_send $claimed_bytestream $payload

Incoming data also comes as a list of bytes.

set incoming_data [list]
while {[llength $incoming_data] ==0} {
    set incoming_data [bytestream_receive $claimed_bytestream 8]
}

Close the service when done.

close_service bytestream $claimed_bytestream

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.8.8.1. Bytestream Commands

Table 11. Bytestream Commands

Command Arguments Function

bytestream_send <service-path>
<values>

Sends the list of bytes to the specified bytestream service. Values argument is
the list of bytes to send.

bytestream_receive <service-path>
<length>

Returns a list of bytes currently available in the specified services receive
queue, up to the specified limit. Length argument is the maximum number of
bytes to receive.

2.8.9. JTAG Debug Service

The JTAG Debug service allows you to check the state of clocks and resets within your
design.

The following is a JTAG Debug design flow example.

1. To identify available JTAG Debug paths:

get_service_paths jtag_debug

2. To select a JTAG Debug path:

set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]

3. To claim a JTAG Debug service path:

 set claim_jtag_path [claim_service jtag_debug$jtag_debug_path mylib]

4. Running the JTAG Debug service:

jtag_debug_reset_system $claim_jtag_path
jtag_debug_loop $claim_jtag_path [list 1 2 3 4 5]

2.8.9.1. JTAG Debug Commands

JTAG Debug commands help debug the JTAG Chain connected to a device.

Table 12. JTAG Debug Commands

Command Argument Function

jtag_debug_loop <service-path>
<list_of_byte_val
ues>

Loops the specified list of bytes through a loopback of tdi
and tdo of a system-level debug (SLD) node. Returns the
list of byte values in the order that they were received. This
command blocks until all bytes are received. Byte values
have the 0x (hexadecimal) prefix and are delineated by
spaces.

jtag_debug_sample_clock <service-path> Returns the clock signal of the system clock that drives the
module's system interface. The clock value is sampled
asynchronously; consequently, you must sample the clock
several times to guarantee that it is switching.

continued...   

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Argument Function

jtag_debug_sample_reset <service-path> Returns the value of the reset_n signal of the Avalon-ST
JTAG Interface core. If reset_n is low (asserted), the value
is 0 and if reset_n is high (deasserted), the value is 1.

jtag_debug_sense_clock <service-path> Returns a sticky bit that monitors system clock activity. If
the clock switched at least once since the last execution of
this command, returns 1. Otherwise, returns 0.. The sticky
bit is reset to 0 on read.

jtag_debug_reset_system <service-path> Issues a reset request to the specified service. Connectivity
within your device determines which part of the system is
reset.

2.9. Working with Toolkits

The Toolkit API allows you to create custom tools to visualize and interact with your
design debug data. The Toolkit API provides graphical widgets in the form of buttons
and text fields, which can leverage user input to interact with debug logic. You can use
Toolkit API with the Intel Quartus Prime software versions 14.1 and later. The Toolkit
API is the successor to the Dashboard service.

Toolkits you create with the Toolkit API require the following files:

• XML file that describes the toolkit (.toolkit file).

• Tcl file that implements the toolkit GUI.

2.9.1. Convert your Dashboard Scripts to Toolkit API

Convert your Dashboard scripts to work with the Toolkit API by following these steps:

1. Create a .toolkit file.

2. Modify your dashboard script:

a. Remove the add_service dashboard <name of service> command.

b. Change dashboard_<command> to toolkit_<command>.

c. Change open_service to claim_service

For example:

open_service slave $path 
master_read_memory $path address count

becomes

set c [claim_service slave $path lib {}] 
master_read_memory $c address count

2.9.2. Creating a Toolkit Description File

A toolkit description file (.toolkit) is a XML file which provides the registration data
for a toolkit.

Include the following attributes in your toolkit description file:

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 13. Attributes in Toolkit Description File

Attribute name Purpose

name Internal toolkit file name.

displayName Toolkit display name to appear in the GUI.

addMenuItem Whether the System Console Tools ➤ Toolkits menu displays the toolkit.

Table 14. Toolkit child elements

Attribute name Purpose

description Description of the purpose of the toolkit.

file Path to .tcl file containing the toolkit implementation.

icon Path to icon to display as the toolkit launcher button in System Console
Note: The .png 64x64 format is preferred. If the icon does not take up the whole

space, ensure that the background is transparent.

requirement If the toolkit works with a particular type of hardware, this attribute specifies the
debug type name of the hardware. This attribute enables automatic discovery of the
toolkit.
The syntax of a toolkit's debug type name is:
• Name of the hw.tcl component.
• dot.
• Name of the interface within that component which the toolkit uses.
For example: <hw.tcl name>.<interface name>.

Example 12. .toolkit Description File

<?xml version="1.0" encoding="UTF-8"?>
        <toolkit name="toolkit_example" displayName="Toolkit Example" 
addMenuItem="true">
        <file> toolkit_example.tcl </file>
        </toolkit>

Related Information

Matching Toolkits with IP Cores on page 38

2.9.3. Registering a Toolkit

Use the toolkit_register command in the System Console to make your toolkit
available. Remember to specify the path to the .toolkit file. Registering a toolkit
does not create an instance of the toolkit GUI.

toolkit_register <toolkit_file>

2.9.4. Launching a Toolkit

With the System Console, you can launch pre-registered toolkits in a number of ways:

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Click Tools ➤ Toolkits.

• Use the Toolkits tab. Each toolkit has a description, a detected hardware list, and
a launch button.

• Use following command:

toolkit_open <.toolkit_file_name>

You can launch a toolkit in the context of a hardware resource associated with a toolkit
type. If you use the command:

toolkit_open <toolkit_name> <context>

the toolkit Tcl can retrieve the context by typing

set context [toolkit_get_context]

Related Information

toolkit_get_context on page 49

2.9.5. Matching Toolkits with IP Cores

You can match your toolkit with any IP core:

• When searching for IP, the toolkit looks for debug markers and matches IP cores
to the toolkit requirements. In the toolkit file, use the requirement attribute to
specify a debug type, as follows:

<requirement><type>debug.type-name</type></requirement

• Create debug assignments in the hw.tcl for an IP core. hw.tcl files are
available when you load the design in System Console.

• System Console discovers debug markers from identifiers in the hardware and
associates with IP, without direct knowledge of the design.

2.9.6. Toolkit API

The Toolkit API service enables you to construct GUIs for visualizing and interacting
with debug data. The Toolkit API is a graphical pane for the layout of your graphical
widgets, which include buttons and text fields. Widgets pull data from other System
Console services. Similarly, widgets use services to leverage user input to act on
debug logic in your design.

Properties

Widget properties can push and pull information to the user interface. Widgets have
properties specific to their type. For example, when you click a button, the button
property onClick performs an action. A label widget does not have the same
property, because the widget does not perform an action on click operation. However,
both the button and label widgets have the text property to display text strings.

Layout

The Toolkit API service creates a widget hierarchy where the toolkit is at the top-level.
The service implements group-type widgets that contain child widgets. Layout
properties dictate layout actions that a parent performs on its children. For example,

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


the expandableX property when set as True, expands the widget horizontally to
encompass all of the available space. The visible property when set as True allows
a widget to display in the GUI.

User Input

Some widgets allow user interaction. For example, the textField widget is a text
box that allows user entries. Access the contents of the box with the text property. A
Tcl script can either get or set the contents of the textField widget with the text
property.

Callbacks

Some widgets perform user-specified actions, referred to as callbacks. The
textField widget has the onChange property, which is called when text contents
change. The button widget has the onClick property, which is called when you click
a button. Callbacks update widgets or interact with services based on the contents of
a text field, or the state of any other widget.

2.9.6.1. Customizing Toolkit API Widgets

Use the toolkit_set_property command to interact with the widgets that you
instantiate. The toolkit_set_property command is most useful when you change
part of the execution of a callback.

2.9.6.2. Toolkit API Script Examples

Example 13. Making the Toolkit Visible in System Console

Use the toolkit_set_property command to modify the visible property of the
root toolkit. Use the word self if a property is applied to the entire toolkit. In other
cases, refer to the root toolkit using all.

toolkit_set_property self visible true

Example 14. Adding Widgets

Use the toolkit_add command to add widgets.

toolkit_add my_button button all

The following commands add a label widget my_label to the root toolkit. In the GUI,
the label appears as Widget Label.

set name "my_label"
set content "Widget Label"
toolkit_add $name label all
toolkit_set_property $name text $content

In the GUI, the displayed text changes to the new value. Add one more label:

toolkit_add my_label_2 label all
toolkit_set_property my_label_2 text "Another label"

The new label appears to the right of the first label.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To place the new label under the first, use the following command:

toolkit_set_property self itemsPerRow 1

Example 15. Gathering Input

To incorporate user input into your Toolkit API,

1. Create a text field using the following commands:

set name "my_text_field"
set widget_type "textField"
set parent "all"
toolkit_add $name $widget_type $parent

2. The widget size is very small. To make the widget fill the horizontal space, use the
following command:

toolkit_set_property my_text_field expandableX true

3. Now, the text field is fully visible. You can type text into the field, on clicking. To
retrieve the contents of the field, use the following command:

set content [toolkit_get_property my_text_field text]
puts $content

This command prints the contents into the console.

Example 16. Updating Widgets Upon User Events

When you use callbacks, the Toolkit API can also perform actions without interactive
typing:

1. Start by defining a procedure that updates the first label with the text field
contents:

proc update_my_label_with_my_text_field{
    set content [toolkit_get_property my_text_field text]
    toolkit_set_property my_label text $content
}

2. Run the update_my_label_with_my_text_field command in the Tcl Console.
The first label now matches the text field contents.

3. Use the update_my_label_with_my_text_field command whenever the text
field changes:

toolkit_set_property my_text_field onChange 
update_my_label_with_my_text_field

The Toolkit executes the onChange property each time the text field changes. The
execution of this property changes the first field to match what you type.

Example 17. Buttons

Use buttons to trigger actions.

1. To create a button that changes the second label:

proc append_to_my_label_2 {suffix} {
                        set old_text [toolkit_get_property my_label_2 text]
                        set new_text "${old_text}${suffix}"
                        toolkit_set_property my_label_2 text $new_text
                        }

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


                        set text_to_append ", and more"
                        toolkit_add my_button button all
                        toolkit_set_property my_button onClick 
[append_to_my_label_2 $text_to_append]

2. Click the button to append some text to the second label.

Example 18. Groups

The property itemsPerRow dictates the laying out of widgets in a group. For more
complicated layouts where the number of widgets per row is different, use nested
groups. To add a new group with more widgets per row:

toolkit_add my_inner_group group all
toolkit_set_property my_inner_group itemsPerRow 2
toolkit_add inner_button_1 button my_inner_group
toolkit_add inner_button_2 button my_inner_group

These commands create a row with a group of two buttons. To make the nested group
more seamless, remove the border with the group name using the following
commands:

toolkit_set_property my_inner_group title ""

You can set the title property to any other string to ensure the display of the border
and title text.

Example 19. Tabs

Use tabs to manage widget visibility:

toolkit_add my_tabs tabbedGroup all
toolkit_set_property my_tabs expandableX true
toolkit_add my_tab_1 group my_tabs
toolkit_add my_tab_2 group my_tabs
toolkit_add tabbed_label_1 label my_tab_1
toolkit_add tabbed_label_2 label my_tab_2
toolkit_set_property tabbed_label_1 text "in the first tab"
toolkit_set_property tabbed_label_2 text "in the second tab"

These commands add a set of two tabs, each with a group containing a label. Clicking
on the tabs changes the displayed group/label.

2.9.6.3. Toolkit API GUI Example

This example shows how to register and launch a toolkit containing an interactive GUI
window:

1. Write a toolkit description file. For a working example, refer to Creating a Toolkit
Description File.

2. Generate a .tcl file using the text on Toolkit API GUI Example .tcl File.

3. Open the System Console.

4. Register your toolkit in the Tcl Console pane. Include the relative path to your
file's location.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 7. Registering Your Toolkit

Register toolkit here

The Toolkit appears in the Toolkits tab

Figure 8. Toolkits Tab After Toolkit Example Registration

Link to launch instance

5. Click the Launch link.

A new tab appears, containing the widgets you specified in the TCL file.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 9. Toolkit Example GUI

Generated GUI

When you insert text in the Send Data field and click Launch, the text appears in
the Receive Data field.

Related Information

Creating a Toolkit Description File on page 36

2.9.6.3.1. Toolkit API GUI Example .tcl File

The following Toolkit API .tcl file creates a GUI window that provides debug interaction
with your design.

namespace eval Test {

    variable ledValue 0
    variable dashboardActive 0
    variable Switch_off 1

    proc toggle { position } {
        set ::Test::ledValue ${position}
        ::Test::updateDashboard
        }
   
    proc sendText {} {
        set sendText [toolkit_get_property sendTextText text]
        toolkit_set_property receiveTextText text $sendText
        }

    proc dashBoard {} {

        if { ${::Test::dashboardActive} == 1 } {
            return -code ok "dashboard already active"
        }

        set ::Test::dashboardActive 1
        #
        # top group widget
        #
        toolkit_add  topGroup group self
        toolkit_set_property  topGroup expandableX false
        toolkit_set_property  topGroup expandableY false
        toolkit_set_property  topGroup itemsPerRow 1
        toolkit_set_property  topGroup title ""

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


        #
        # leds group widget
        #
        toolkit_add  ledsGroup group topGroup
        toolkit_set_property  ledsGroup expandableX false
        toolkit_set_property  ledsGroup expandableY false
        toolkit_set_property  ledsGroup itemsPerRow 2
        toolkit_set_property  ledsGroup title "LED State"

        #
        # leds widgets
        #
        toolkit_add  led0Button button ledsGroup 
        toolkit_set_property  led0Button enabled true
        toolkit_set_property  led0Button expandableX false
        toolkit_set_property  led0Button expandableY false
        toolkit_set_property  led0Button text "Toggle"
        toolkit_set_property  led0Button onClick {::Test::toggle 1}

        toolkit_add  led0LED led ledsGroup
        toolkit_set_property  led0LED expandableX false
        toolkit_set_property  led0LED expandableY false
        toolkit_set_property  led0LED text "LED 0"
        toolkit_set_property  led0LED color "green_off"

        toolkit_add  led1Button button ledsGroup 
        toolkit_set_property  led1Button enabled true
        toolkit_set_property  led1Button expandableX false
        toolkit_set_property  led1Button expandableY false
        toolkit_set_property  led1Button text "Turn ON"
        toolkit_set_property  led1Button onClick {::Test::toggle 2}

        toolkit_add  led1LED led ledsGroup
        toolkit_set_property  led1LED expandableX false
        toolkit_set_property  led1LED expandableY false
        toolkit_set_property  led1LED text "LED 1"
        toolkit_set_property  led1LED color "green_off"

        #
        # sendText widgets
        #
        toolkit_add  sendTextGroup group topGroup 
        toolkit_set_property  sendTextGroup expandableX false
        toolkit_set_property  sendTextGroup expandableY false
        toolkit_set_property  sendTextGroup itemsPerRow 1
        toolkit_set_property  sendTextGroup title "Send Data"

        toolkit_add  sendTextText text sendTextGroup 
        toolkit_set_property  sendTextText expandableX false
        toolkit_set_property  sendTextText expandableY false
        toolkit_set_property  sendTextText preferredWidth 200
        toolkit_set_property  sendTextText preferredHeight 100
        toolkit_set_property  sendTextText editable true
        toolkit_set_property  sendTextText htmlCapable false
        toolkit_set_property  sendTextText text ""

        toolkit_add  sendTextButton button sendTextGroup 
        toolkit_set_property  sendTextButton enabled true
        toolkit_set_property  sendTextButton expandableX false
        toolkit_set_property  sendTextButton expandableY false
        toolkit_set_property  sendTextButton text "Send Now"
        toolkit_set_property  sendTextButton onClick {::Test::sendText}

        #
        # receiveText widgets
        #
        toolkit_add  receiveTextGroup group topGroup 
        toolkit_set_property  receiveTextGroup expandableX false
        toolkit_set_property  receiveTextGroup expandableY false
        toolkit_set_property  receiveTextGroup itemsPerRow 1

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


        toolkit_set_property  receiveTextGroup title "Receive Data"

        toolkit_add  receiveTextText text receiveTextGroup 
        toolkit_set_property  receiveTextText expandableX false
        toolkit_set_property  receiveTextText expandableY false
        toolkit_set_property  receiveTextText preferredWidth 200
        toolkit_set_property  receiveTextText preferredHeight 100
        toolkit_set_property  receiveTextText editable false
        toolkit_set_property  receiveTextText htmlCapable false
        toolkit_set_property  receiveTextText text ""

        return -code ok
    }
    
    proc updateDashboard {} {

        if { ${::Test::dashboardActive} > 0 } {

                toolkit_set_property  ledsGroup title "LED State"
                if { [ expr ${::Test::ledValue} & 0x01 &  \
                            ${::Test::Switch_off} ] } {
                    toolkit_set_property  led0LED color "green"
                    set ::Test::Switch_off  0
                } else {
                    toolkit_set_property  led0LED color "green_off"
                    set ::Test::Switch_off  1
                }
                if { [ expr ${::Test::ledValue} & 0x02 ] } {
                    toolkit_set_property  led1LED color "green"
                } else {
                    toolkit_set_property  led1LED color "green_off"
                }
        }
    }
}
::Test::dashBoard

2.9.6.4. Toolkit API Commands

Toolkit API commands run in the context of a unique toolkit instance.

toolkit_register on page 46

toolkit_open on page 47

get_quartus_ini on page 48

toolkit_get_context on page 49

toolkit_get_types on page 50

toolkit_get_properties on page 51

toolkit_add on page 52

toolkit_get_property on page 53

toolkit_set_property on page 54

toolkit_remove on page 55

toolkit_get_widget_dimensions on page 56

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.1. toolkit_register

Description
Point to the XML file that describes the plugin (.toolkit file) .

Usage
toolkit_register <toolkit_file>

Returns
No return value.

Arguments

<toolkit_file> Path to the toolkit definition file.

Example

toolkit_register /path/to/toolkit_example.toolkit

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.2. toolkit_open

Description
Opens an instance of a toolkit in System Console.

Usage
toolkit_open <toolkit_id> [<context>]

Returns
No return value.

Arguments

<toolkit_id> Name of the toolkit type to open.

<context> An optional context, such as a service path for a hardware resource that
is associated with the toolkit that opens.

Example

toolkit_open my_toolkit_id

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.3. get_quartus_ini

Description
Returns the value of an ini setting from the Intel Quartus Prime software .ini file.

Usage
get_quartus_ini <ini> <type>

Returns
Value of ini setting.

Arguments

<ini> Name of the Intel Quartus Prime software .ini setting.

<type> (Optional) Type of .ini setting. The known types are string and
enabled. If the type is enabled, the value of the .ini setting returns 1, or
0 if not enabled.

Example

set my_ini_enabled [get_quartus_ini my_ini enabled]

set my_ini_raw_value [get_quartus_ini my_ini]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.4. toolkit_get_context

Description
Returns the context that was specified when the toolkit was opened. If no context was
specified, returns an empty string.

Usage
toolkit_get_context

Returns
Context.

Arguments
No arguments.

Example

set context [toolkit_get_context]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.5. toolkit_get_types

Description
Returns a list of widget types.

Usage
toolkit_get_types

Returns
List of widget types.

Arguments
No arguments.

Example

set widget_names [toolkit_get_types]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.6. toolkit_get_properties

Description
Returns a list of toolkit properties for a type of widget.

Usage
toolkit_get_properties <widgetType>

Returns
List of toolkit properties.

Arguments

<widgetType> Type of widget.

Example

set widget_properties [toolkit_get_properties xyChart]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.7. toolkit_add

Description
Adds a widget to the current toolkit.

Usage
toolkit_add <id> <type><groupid>

Returns
No return value.

Arguments

<id> A unique ID for the widget being added.

<type> The type of widget that is being added.

<groupid> The ID for the parent group that contains the new widget. Use self for
the toolkit base group.

Example

toolkit_add my_button button parentGroup

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.8. toolkit_get_property

Description
Returns the property value for a specific widget.

Usage
toolkit_get_property <id> <propertyName>

Returns
The property value.

Arguments

<id> A unique ID for the widget being queried.

<propertyName> The name of the widget property.

Example

set enabled [toolkit_get_property my_button enabled]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.9. toolkit_set_property

Description
Sets the property value for a specific widget.

Usage
toolkit_set_property <id><propertyName> <value>

Returns
No return value.

Arguments

<id> A unique ID for the widget being modified.

<propertyName> The name of the widget property being set.

<value> The new value for the widget property.

Example

toolkit_set_property my_button enabled 0

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.10. toolkit_remove

Description
Removes a widget from the specified toolkit.

Usage
toolkit_remove <id>

Returns
No return value.

Arguments

<id> A unique ID for the widget being removed.

Example

toolkit_remove my_button

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.4.11. toolkit_get_widget_dimensions

Description
Returns the width and height of the specified widget.

Usage
toolkit_get_widget_dimensions <id>

Returns
Width and height of specified widget.

Arguments

<id> A unique ID for the widget being added.

Example

set dimensions [toolkit_get_widget_dimensions my_button]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5. Toolkit API Properties

The following are the Toolkit API widget properties:

Widget Types and Properties on page 58

barChart Properties on page 59

button Properties on page 60

checkBox Properties on page 61

comboBox Properties on page 62

dial Properties on page 63

fileChooserButton Properties on page 64

group Properties on page 65

label Properties on page 66

led Properties on page 67

lineChart Properties on page 68

list Properties on page 69

pieChart Properties on page 70

table Properties on page 71

text Properties on page 72

textField Properties on page 73

timeChart Properties on page 74

xyChart Properties on page 75

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.1. Widget Types and Properties

Table 15. Toolkit API Widget Types and Properties

Name Description

enabled Enables or disables the widget.

expandable Controls whether the widget is expandable.

expandableX Allows the widget to resize horizontally if there is space
available in the cell where it resides.

expandableY Allows the widget to resize vertically if there is space
available in the cell where it resides.

foregroundColor Sets the foreground color.

maxHeight If the widget's expandableY is set, this is the maximum
height in pixels that the widget can take.

minHeight If the widget's expandableY is set, this is the minimum
height in pixels that the widget can take.

maxWidth If the widget's expandableX is set, this is the maximum
width in pixels that the widget can take.

minWidth If the widget's expandableX is set, this is the minimum
width in pixels that the widget can take.

preferredHeight The height of the widget if expandableY is not set.

preferredWidth The width of the widget if expandableX is not set.

toolTip Implements a mouse-over tooltip.

visible Displays the widget.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.2. barChart Properties

Table 16. Toolkit API barChart Properties

Name Description

title Chart title.

labelX X-axis label text.

label X-axis label text.

range Y-axis value range. By default, it is auto range. Specifiy the
range using a Tcl list, for example:
[list lower_numerical_value
upper_numerical_value].

itemValue Specify the value using a Tcl list, for example:
[list bar_category_str numerical_value].

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.3. button Properties

Table 17. Toolkit API button Properties

Name Description

onClick Specifies the Tcl command to run every time you click the
button. Usually the command is a proc.

text The text on the button.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.4. checkBox Properties

Table 18. Toolkit API checkBox Properties

Name Description

checked Specifies the state of the checkbox.

onClick Specifies the Tcl command to run every time you click the
checkbox. The command is usually a proc.

text The text on the checkbox.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.5. comboBox Properties

Table 19. Toolkit API comboBox Properties

Name Description

onChange A Tcl callback to run when the value of the combo box
changes.

options A list of items to display in the combo box.

selectedItem The selected item in the combo box.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.6. dial Properties

Table 20. Toolkit API dial Properties

Name Description

max The maximum value that the dial can show.

min The minimum value that the dial can show.

ticksize The space between the different tick marks of the dial.

title The title of the dial.

value The value that the dial's needle marks. It must be between
min and max.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.7. fileChooserButton Properties

Table 21. Toolkit API fileChooserButton Properties

Name Description

text The text on the button.

onChoose A Tcl command that runs every time you click the button.
The command is usually a proc.

title The title of the dialog box.

chooserButtonText The text of the dialog box approval button. Default value is
Open.

filter The file filter, based on extension. The filter supports only
one extension. By default, the filter allows all file names.
Specify the filter using the syntax [list
filter_description file_extension], for example:
[list "Text Document (.txt)" "txt"].

mode Specifies what kind of files or directories you can select. The
default is files_only. Possible options are files_only
and directories_only.

multiSelectionEnabled Controls whether you can select multiple files. Default value
is false.

paths This property is read-only. Returns a list of file paths
selected in the file chooser dialog box. The property is most
useful when you use it within the onClick script, or inside
a procedure that updates the result after the dialog box
closes.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.8. group Properties

Table 22. Toolkit API group Properties

Name Description

itemsPerRow The number of widgets the group can position in one row,
from left to right, before moving to the next row.

title The title of the group. Groups with a title can have a border
around them, and setting an empty title removes the
border.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.9. label Properties

Table 23. Toolkit API label Properties

Name Description

text The text to show in the label.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.10. led Properties

Table 24. Toolkit API led Properties

Name Description

color The color of the LED. The options are: red_off, red,
yellow_off, yellow, green_off, green, blue_off,
blue, and black.

text The text to show next to the LED.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.11. lineChart Properties

Table 25. Toolkit API lineChart Properties

Name Description

title Chart title.

labelX X-axis label text.

labelY Y-axis label text.

range Y-axis value range. By default, it is auto range. Specify the
range using a Tcl list, for example:
[list lower_numerical_value
upper_numerical_value].

itemValue Item value. Specifiy the value using a Tcl list, for example:
[list bar_category_str numerical_value].

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.12. list Properties

Table 26. Toolkit API list Properties

Name Description

selected Index of the selected item in the combo box.

options List of options to display.

onChange A Tcl callback to run when the selected item in the list
changes.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.13. pieChart Properties

Table 27. Toolkit API pieChart Properties

Name Description

title Chart title.

itemValue Item value. Specified using a Tcl list, for example:
[list bar_category_str numerical_value].

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.14. table Properties

Table 28. Toolkit API table Properties

Name Description

columnCount The number of columns (Mandatory) (0, by default).

rowCount The number of rows (Mandatory) (0, by default).

headerReorderingAllowed Controls whether you can drag the columns (false, by
default).

headerResizingAllowed Controls whether you can resize all column widths. (false,
by default).
Note: You can resize each column individually with the

columnWidthResizable property.

rowSorterEnabled Controls whether you can sort the cell values in a column
(false, by default).

showGrid Controls whether to draw both horizontal and vertical lines
(true, by default).

showHorizontalLines Controls whether to draw horizontal line (true, by default).

rowIndex Current row index. Zero-based. This value affects some
properties below (0, by default).

columnIndex Current column index. Zero-based. This value affects all
column specific properties below (0, by default).

cellText Specifies the text inside the cell given by the current
rowIndex and columnIndex (Empty, by default).

selectedRows Control or retrieve row selection.

columnHeader The text in the column header.

columnHeaders A list of names to define the columns for the table.

columnHorizontalAlignment The cell text alignment in the specified column. Supported
types are leading (default), left, center, right,
trailing.

columnRowSorterType The type of sorting method. This is applicable only if
rowSorterEnabled is true. Each column has its own
sorting type. Possible types are string (default), int, and
float.

columnWidth The number of pixels in the column width.

columnWidthResizable Controls whether the column width is resizable by you
(false, by default).

contents The contents of the table as a list. For a table with columns
A, B, and C, the format of the list is {A1 B1 C1 A2 B2 C2
etc}.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.15. text Properties

Table 29. Toolkit API text Properties

Name Description

editable Controls whether the text box is editable.

htmlCapable Controls whether the text box can format HTML.

text The text to show in the text box.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.16. textField Properties

Table 30. Toolkit API textField Properties

Name Description

editable Controls whether the text box is editable.

onChange A Tcl callback to run when you change the content of the
text box.

text The text in the text box.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.17. timeChart Properties

Table 31. Toolkit API timeChart Properties

Name Description

labelX The label for the X-axis.

labelY The label for the Y-axis.

latest The latest value in the series.

maximumItemCount The number of sample points to display in the historic
record.

title The title of the chart.

range Sets the range for the chart. The range has the form {low,
high}. The low/high values are doubles.

showLegend Specifies whether a legend for the series is shown in the
graph.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.9.6.5.18. xyChart Properties

Table 32. Toolkit API xyChart Properties

Name Properties

title Chart title.

labelX X-Axis label text.

labelY Y-Axis label text.

range Sets the range for the chart. The range is of the form
{low, high}. The low/high values are doubles.

maximumItemCount Specifies the maximum number of data values to keep in a
data series. This setting only affects new data in the chart.
If you add more data values than the maximumItemCount,
only the last maximumItemCount number of entries are
kept.

series Adds a series of data to the chart. The first value in the
spec is the identifier for the series. If the same identifier is
set twice, the Toolkit API selects the most recent series. If
the identifier does not contain series data, that series is
removed from the chart. Specify the series in a Tcl list:
{identifier, x-1 y-1, x-2 y-2}.

showLegend Sets whether a legend for the series appears in the graph.

2.10. ADC Toolkit

The ADC Toolkit is designed to work with Intel MAX 10 devices and helps you
understand the performance of the analog signal chain as seen by the on-board ADC
hardware. The GUI displays the performance of the ADC using industry standard
metrics. You can export the collected data to a .csv file and process this raw data
yourself. The ADC Toolkit is built on the System Console framework and can only be
operated using the GUI. There is no Tcl support for the tool.

Prerequisites for Using the ADC Toolkit

• Altera Modular ADC IP core

— External Reference Voltage if you select External in the Altera Modular
ADC IP parameters

• Reference signal

The ADC Toolkit needs a sine wave signal to be fed to the analog inputs. You need the
capability to precisely set the level and frequency of the reference signal. A high-
precision sine wave is needed for accurate test results; however, there are useful
things that can be read in Scope mode with any input signal.

To achieve the best testing results, ensure that the reference signal has less distortion
than the device ADC is able to resolve. Otherwise, you are adding distortions from the
source into the resulting ADC distortion measurements. The limiting factor is based on
hardware precision.

Note: When applying a sine wave, the ADC should sample at 2x the fundamental sine wave
frequency. There should be a low-pass filter, 3dB point set to the fundamental
frequency.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Configuring the Altera Modular ADC IP Core

The Altera Modular ADC IP core needs to be included in the design. You can instantiate
this IP core from the IP Catalog. When you configure this IP core in the Parameter
Editor, you need to enable the Debug Path option located under Core
Configuration.

There are two limitations in the Intel Quartus Prime software v14.1 for the Altera
Modular ADC IP core. The ADC Toolkit does not support the ADC control core only
option under Core Configuration. You must select a core variant that uses the
standard sequencer in order for the Altera Modular ADC IP core to work with ADC
Toolkit. Also, if an Avalon Master is not connected to the sequencer, you must
manually start the sequencer before the ADC Toolkit.

Figure 10. Altera Modular ADC Core

Starting the ADC Toolkit

You can launch the ADC Toolkit from System Console. Before starting the ADC toolkit,
you need to verify that the board is programmed. You can then load the .sof by
clicking File ➤ Load Design. If System Console was started with an active project,
the design is auto-loaded when you start System Console.

There are two methods to start the ADC Toolkit. Both methods require you to have a
Intel MAX 10 device connected, programmed with a project, and linked to this project.
However, the Launch command only shows up if these requirements are met. You can
always start the ADC Toolkit from the Tools menu, but a successful connection still
depends on meeting the above requirements.

• Click Tools ➤ ADC Toolkit

• Alternatively, click Launch from the Toolkits tab. The path for the device is
displayed above the Launch button.

Note: Only one ADC Toolkit enabled device can be connected at a time.

Upon starting the ADC Toolkit, an identifier path on the ADC Toolkit tab shows you
which ADC on the device is being used for this instance of the ADC Toolkit.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 11. Launching ADC Toolkit

ADC Toolkit Flow

The ADC Toolkit GUI consists of four panels: Frequency Selection, Scope, Signal
Quality, and Linearity.

1. Use the Frequency Selection panel to calculate the required sine wave frequency
for proper signal quality testing. The ADC Toolkit provides the nearest ideal
frequency based on the desired reference signal frequency.

2. Use the Scope panel to tune the signal generator or inspect input signal
characteristics.

3. Use the Signal Quality panel to test the performance of the ADC using industry
standard metrics.

4. Use the Linearity panel to test the linearity performance of the ADC and display
differential and integral non-linearity results.

Figure 12. ADC Toolkit GUI

Related Information

• Using the ADC Toolkit in Intel MAX 10 Devices online training

• Intel MAX 10 FPGA Device Overview

• Intel MAX 10 FPGA Device Datasheet

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

77

http://wl.altera.com/education/training/courses/OMAXADC103
http://www.altera.com/literature/hb/max-10/m10_overview.pdf
http://www.altera.com/literature/hb/max-10/m10_datasheet.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Intel MAX 10 FPGA Design Guidelines

• Intel MAX 10 Analog to Digital Converter User Guide

• Additional information about sampling frequency
Nyquist sampling theorem and how it relates to the nominal sampling interval
required to avoid aliasing.

2.10.1. ADC Toolkit Terms

Table 33. ADC Toolkit Terms

Term Description

SNR The ratio of the output signal voltage level to the output
noise level.

THD The ratio of the sum of powers of the harmonic frequency
components to the power of the fundamental/original
frequency component.

SFDR Characterizes the ratio between the fundamental signal and
the highest spurious in the spectrum.

SINAD The ratio of the RMS value of the signal amplitude to the
RMS value of all other spectral components, including
harmonics, but excluding DC.

ENOB The number of bits with which the ADC behaves.

DNL The maximum and minimum difference in the step width
between actual transfer function and the perfect transfer
function

INL The maximum vertical difference between the actual and
the ideal curve. It indicates the amount of deviation of the
actual curve from the ideal transfer curve.

2.10.2. Setting the Frequency of the Reference Signal

The Frequency Selection panel allows you to compute the reference signal
frequency that ADC performance tests require. This frequency is critical and affects
the validity of your test results.The computed frequency varies depending on the type
of test you want to do with the ADC Toolkit.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

78

http://www.altera.com/literature/hb/max-10/m10_guidelines.pdf
http://www.altera.com/literature/hb/max-10/ug_m10_adc.pdf
http://redwood.berkeley.edu/bruno/npb261/aliasing.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 13. Frequency Selection Panel

To set the frequency of the reference signal:

1. On ADC Channel, select the ADC channel that you plan to test.
The tool populates the Sample Size and Sample Frequency fields.

2. In Desired Frequency, enter the target frequency for testing.

3. Click Calculate.

• The closest frequency for valid testing near your desired frequency appears
under both Signal Quality Test and Linearity Test.

• The nearest required sine wave frequencies are different for the signal quality
test and linearity test.

4. Set your signal generator to the precise frequency given by the tool based on the
type of test you want to run.

2.10.3. Tuning the Signal Generator

The Scope panel allows you to tune the signal generator in order to achieve the best
possible performance from the ADC.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 14. Scope Mode Panel

To tune the signal generator:

1. On ADC Channel, select the ADC channel that you plan to test.

2. Enter the reference Sample Frequency (unless the tool can extract this value
from the IP).

3. Enter the Ref Voltage (unless the tool can extract this value from the IP).

4. Click Run.
The tool repeatedly captures a buffer worth of data and displays the data as a
waveform, besides additional information under Signal Information.

5. Tune the signal generator to use the maximum dynamic range of the ADC without
clipping.

Note: Avoid hitting 0 or 4095 because of signal clipping.

6. Ensure that the sine wave under Oscilloscope shows evenly balanced top and
bottom peaks. This indicates optimum value.

• For Intel MAX 10 devices, you want to get as close to Min Code = 0 and Max
Code = 4095 without actually hitting those values.

• To observe coherent sampling in the test window, you must set the frequency
precisely to the value needed for testing, Before moving forward, follow the
suggested value for signal quality testing or linearity testing that appears next
to the detected frequency.

7. From the Raw Data tab, export the data as a .csv file.

Related Information

Additional information about coherent sampling vs window sampling

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

80

https://www.maximintegrated.com/en/design/techdocs/app-notes/index.mvp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.10.4. Running a Signal Quality Test

The available performance metrics in signal quality test mode are the following: signal
to noise ratio (SNR), total harmonic distortion (THD), spurious free dynamic range
(SFDR), signal to noise and distortion ratio (SINAD), effective number of bits (ENOB),
and a frequency response graph.The frequency response graph shows the signal,
noise floor, and any spurs or harmonics.

The signal quality parameters are measurements relative to the carrier signal and not
the full scale of the ADC.

Before running a signal quality test, ensure that you have set up the frequency of the
reference signal using Scope mode.

Figure 15. Signal Quality Panel

To run a signal quality test:

1. On ADC Channel, select the ADC channel that you plan to test.

2. Click Run.

From the Raw Data tab, you can export your data as a .csv file.

For signal quality tests, the signal must be coherently sampled. Based on the sampling
rate and number of samples to test, specific input frequencies are required for
coherent sampling.The sample frequency for each channel is calculated based on the
ADC sequencer configuration.

Related Information

Additional information about dynamic parameters such as SNR, THD, etc

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

81

http://www.cse.psu.edu/~chip/course/analog/lecture/SFDR1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.10.5. Running a Linearity Test

The linearity test determines the linearity of the step sizes of each ADC code. It uses a
histogram testing method which requires sinusoidal inputs which are easier to source
from signal generators and DACs than other test methods.

When using Linearity test mode, the reference signal must meet specific
requirements:

• The signal source covers the full code range of the ADC. Results improve if the
time spent at code end is equivalent, by tuning the reference signal in Scope
mode.

• If you use code ends, ensure that you are not clipping the signal. Look at the
signal in Scope mode to see that it does not look flat at the top or bottom. A good
practice is to back away from code ends and test a smaller range within the
desired operating range of the ADC input signal.

• Choosing a frequency that is not an integer multiple of the sample rate and buffer
size helps to ensure all code bins are filled relatively evenly to the probability
density function of a sine wave. If an integer multiple is selected, some bins may
be skipped entirely while others are over populated. This makes the tests results
invalid. Use the frequency calculator feature to determine a good signal frequency
near your desired frequency.

To run a linearity test:

1. On ADC Channel, select the ADC channel that you plan to test.

2. Enter the test sample size in Burst Size. Larger samples increase the confidence
in the test results.

3. Click Run.

• You can stop the test at anytime, as well as click Run again to continue
adding to the aggregate data. To start fresh, click Reset after you stop a test.
Anytime you change the input signal or channel, you should click Reset so
your results are correct for a particular input.

• There are three graphical views of the data: Histogram view, DNL view, and
INL view.

• From the Raw Data tab, you can export your data as a .csv file.

2.10.6. ADC Toolkit Data Views

Histogram View

The Histogram view shows how often each code appears. The graph updates every
few seconds as it collects data. You can use the Histogram view to quickly check if
your test signal is set up appropriately.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 16. Example of Pure Sine Wave Histogram
The figure below shows the shape of a pure sine wave signal. Your reference signal should look similar.

If your reference signal is not a relatively smooth line, but has jagged edges with
some bins having a value of 0, and adjacent bins with a much higher value, then the
test signal frequency is not adequate. Use Scope mode to help choose a good
frequency for linearity testing.

Figure 17. Examples of (Left) Poor Frequency Choice vs (Right) Good Frequency Choice

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Differential Non-linearity View

Figure 18. Example of Good Differential Non-linearity

The DNL view shows the currently collected data. Ideally, you want your data to look like a straight line
through the 0 on the x-axis. When there are not enough samples of data, the line appears rough. The line
improves as more data is collected and averaged.

Each point in the graph represents how many LSB values a particular code differs from the ideal step size of 1
LSB. The Results box shows the highest positive and negative DNL values.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Integral Non-linearity View

Figure 19. Example of Good Integral Non-linearity

The INL view shows currently collected data. Ideally, with a perfect ADC and enough samples, the graph
appears as a straight line through 0 on the x-axis.

Each point in the graph represents how many LSB values a particular code differs from its expected point in the
voltage slope. The Results box shows the highest positive and negative INL values.

2.11. System Console Examples and Tutorials

Intel provides examples for performing board bring-up, creating a simple dashboard,
and programming a Nios II processor. The System_Console.zip file contains design
files for the board bring-up example. The Nios II Ethernet Standard .zip files contain
the design files for the Nios II processor example.

Note: The instructions for these examples assume that you are familiar with the Intel
Quartus Prime software, Tcl commands, and Platform Designer (Standard).

Related Information

On-Chip Debugging Design Examples Website
Contains the design files for the example designs that you can download.

2.11.1. Nios II Processor Example

This example programs the Nios II processor on your board to run the count binary
software example included in the Nios II installation. This is a simple program that
uses an 8-bit variable to repeatedly count from 0x00 to 0xFF. The output of this

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

85

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


variable is displayed on the LEDs on your board. After programming the Nios II
processor, you use System Console processor commands to start and stop the
processor.

To run this example, perform the following steps:

1. Download the Nios II Ethernet Standard Design Example for your board from the
Altera website.

2. Create a folder to extract the design. For this example, use C:\Count_binary.

3. Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.

4. In a Nios II command shell, change to the directory of your new project.

5. Program your board. In a Nios II command shell, type the following:

nios2-configure-sof niosii_ethernet_standard_<board_version>.sof

6. Using Nios II Software Build Tools for Eclipse, create a new Nios II Application and
BSP from Template using the Count Binary template and targeting the Nios II
Ethernet Standard Design Example.

7. To build the executable and linkable format (ELF) file (.elf) for this application,
right-click the Count Binary project and select Build Project.

8. Download the .elf file to your board by right-clicking Count Binary project and
selecting Run As, Nios II Hardware.

• The LEDs on your board provide a new light show.

9. Type the following:

system-console; #Start System Console.

#Set the processor service path to the Nios II processor.
set niosii_proc [lindex [get_service_paths processor] 0]

set claimed_proc [claim_service processor $niosii_proc mylib]; #Open the 
service.

processor_stop $claimed_proc; #Stop the processor.
#The LEDs on your board freeze.

processor_run $claimed_proc; #Start the processor.
#The LEDs on your board resume their previous activity.

processor_stop $claimed_proc; #Stop the processor.

close_service processor $claimed_proc; #Close the service.

• The processor_step, processor_set_register, and
processor_get_register commands provide additional control over the
Nios II processor.

Related Information

• Nios II Ethernet Standard Design Example

• Nios II Gen2 Software Developer's Handbook

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

86

http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2gen2.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.11.1.1. Processor Commands

Table 34. Processor Commands

Command (1) Arguments Function

processor_download_elf <service-path>
<elf-file-path>

Downloads the given Executable and Linking Format File
(.elf) to memory using the master service associated with the
processor. Sets the processor's program counter to the .elf
entry point.

processor_in_debug_mode <service-path> Returns a non-zero value if the processor is in debug mode.

processor_reset <service-path> Resets the processor and places it in debug mode.

processor_run <service-path> Puts the processor into run mode.

processor_stop <service-path> Puts the processor into debug mode.

processor_step <service-path> Executes one assembly instruction.

processor_get_register_names <service-path> Returns a list with the names of all of the processor's accessible
registers.

processor_get_register <service-path>
<register_name>

Returns the value of the specified register.

processor_set_register <service-path>
<register_name>
<value>

Sets the value of the specified register.

Related Information

Nios II Processor Example on page 85

2.12. On-Board Intel FPGA Download Cable II Support

System Console supports an On-Board Intel FPGA Download Cable II circuit via the
USB Debug Master IP component. This IP core supports the master service.

Not all Stratix® V boards support the On-Board Intel FPGA Download Cable II. For
example, the transceiver signal integrity board does not support the On-Board Intel
FPGA Download Cable II.

2.13. MATLAB and Simulink* in a System Verification Flow

You can test system development in System Console using MATLAB and Simulink*,
and set up a system verification flow using the Intel FPGA Hardware in the Loop (HIL)
tools. In this approach, you deploy the design hardware to run in real time, and
simulate the system's surrounding components in a software environment. The HIL
approach allows you to use the flexibility of software tools with the real-world
accuracy and speed of hardware. You can gradually introduce more hardware
components to the system verification testbench. This technique gives you more

(1) If your system includes a Nios II/f core with a data cache, it may complicate the debugging
process. If you suspect the Nios II/f core writes to memory from the data cache at
nondeterministic intervals; thereby, overwriting data written by the System Console, you can
disable the cache of the Nios II/f core while debugging.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


control over the integration process as you tune and validate the system. When the
full system is integrated, the HIL approach allows you to provide stimuli via software
to test the system under a variety of scenarios.

Advantages of HIL Approach

• Avoid long computational delays for algorithms with high processing rates

• API helps to control, debug, visualize, and verify FPGA designs all within the
MATLAB environment

• FPGA results are read back by the MATLAB software for further analysis and
display

Required Tools and Components

• MATLAB software

• DSP Builder for Intel FPGAs software

• Intel Quartus Prime software

• Intel FPGA

Note: The DSP Builder for Intel FPGAs installation bundle includes the System Console
MATLAB API.

Figure 20. Hardware in the Loop Host-Target Setup

Related Information

Hardware in the Loop from the MATLAB Simulink Environment white paper

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

88

http://www.altera.com/literature/wp/wp-01208-hardware-in-the-loop.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


2.13.1. Supported MATLAB API Commands

You can perform the work from the MATLAB environment, and read and write to
masters and slaves through the System Console. The supported MATLAB API
commands spare you from launching the System Console software. The supported
commands are:

• SystemConsole.refreshMasters;

• M = SystemConsole.openMaster(1);

• M.write (type, byte address, data);

• M.read (type, byte address, number of words);

• M.close

Example 20. MATLAB API Script Example

SystemConsole.refreshMasters; %Investigate available targets
M = SystemConsole.openMaster(1); %Creates connection with FPGA target
%%%%%%%% User Application %%%%%%%%%%%%
....
M.write('uint32',write_address,data); %Send data to FPGA target
....
data = M.read('uint32',read_address,size); %Read data from FPGA target
....
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M.close; %Terminates connection to FPGA target

2.13.2. High Level Flow

1. Install the DSP Builder for Intel FPGAs software, so you have the necessary
libraries to enable this flow

2. Build the design using Simulink and the DSP Builder for Intel FPGAs libraries.

DSP Builder for Intel FPGAs helps to convert the Simulink design to HDL

3. Include Avalon-MM components in the design (DSP Builder for Intel FPGAs can
port non-Avalon-MM components)

4. Include Signals and Control blocks in the design

5. Separate synthesizable and non-synthesizable logic with boundary blocks.

6. Integrate the DSP system in Platform Designer (Standard)

7. Program the Intel FPGA

8. Interact with the Intel FPGA through the supported MATLAB API commands.

2.14. Deprecated Commands

The table lists commands that have been deprecated. These commands are currently
supported, but are targeted for removal from System Console.

Note: All dashboard_<name> commands are deprecated and replaced with
toolkit_<name> commands for Intel Quartus Prime software15.1, and later.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 35. Deprecated Commands

Command Arguments Function

open_service <service_type>
<service_path>

Opens the specified service type at the specified path.
Calls to open_service may be replaced with calls to claim_service providing that
the return value from claim_service is stored and used to access and close the
service.

2.15. Analyzing and Debugging Designs with the System Console
Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 Removed obsolete section: Board Bring-Up with System Console Tutorial.

2017.05.08 17.0.0 • Created topic Convert your Dashboard Scripts to Toolkit API.
• Removed Registering the Service Example from Toolkit API Script

Examples, and added corresponding code snippet to Registering a
Toolkit.

• Moved .toolkit Description File Example under Creating a Toolkit
Description File.

• Renamed Toolkit API GUI Example .toolkit File to .toolkit Description
File Example.

• Updated examples on Toolkit API to reflect current supported syntax.

2015.11.02 15.1.0 • Edits to Toolkit API content and command format.
• Added Toolkit API design example.
• Added graphic to Introduction to System Console.
• Deprecated Dashboard.
• Changed instances of Quartus II to Intel Quartus Prime.

October 2015 15.1.0 • Added content for Toolkit API
— Required .toolkit and Tcl files
— Registering and launching the toolkit
— Toolkit discovery and matching toolkits to IP
— Toolkit API commands table

May 2015 15.0.0 Added information about how to download and start System Console
stand-alone.

December 2014 14.1.0 • Added overview and procedures for using ADC Toolkit on MAX 10
devices.

• Added overview for using MATLAB/Simulink Environment with System
Console for system verification.

June 2014 14.0.0 Updated design examples for the following: board bring-up, dashboard
service, Nios II processor, design service, device service, monitor service,
bytestream service, SLD service, and ISSP service.

November 2013 13.1.0 Re-organization of sections. Added high-level information with block
diagram, workflow, SLD overview, use cases, and example Tcl scripts.

June 2013 13.0.0 Updated Tcl command tables. Added board bring-up design example.
Removed SOPC Builder content.

November 2012 12.1.0 Re-organization of content.

August 2012 12.0.1 Moved Transceiver Toolkit commands to Transceiver Toolkit chapter.

continued...   

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Version Intel Quartus
Prime Version

Changes

June 2012 12.0.0 Maintenance release. This chapter adds new System Console features.

November 2011 11.1.0 Maintenance release. This chapter adds new System Console features.

May 2011 11.0.0 Maintenance release. This chapter adds new System Console features.

December 2010 10.1.0 Maintenance release. This chapter adds new commands and references for
Qsys.

July 2010 10.0.0 Initial release. Previously released as the System Console User Guide,
which is being obsoleted. This new chapter adds new commands.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

91

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3. Debugging Transceiver Links
The Transceiver Toolkit helps you optimize high-speed serial links in your board design
by providing real-time control, monitoring, and debugging of the transceiver links
running on your board.

The Transceiver Toolkit allows you to:

• Control the transmitter or receiver channels to optimize transceiver settings and
hardware features.

• Test bit-error rate (BER) while running multiple links at the target data rate.

• Control internal pattern generators and checkers, as well as enabling loopback
modes.

• Run auto sweep tests to identify the best physical media attachment (PMA)
settings for each link.

• For Stratix V devices, view the receiver horizontal and vertical eye margin during
testing.

• Test multiple devices across multiple boards simultaneously.

Note: The Transceiver Toolkit runs from the System Console framework.

To launch the toolkit, click Tools ➤ System Debugging Tools ➤ Transceiver
Toolkit. Alternatively, you can run Tcl scripts from the command-line:

system-console --script=<name of script>

For an online demonstration using the Transceiver Toolkit to run a high-speed link test
with one of the design examples, refer to the Transceiver Toolkit Online Demo on the
Altera website.

Related Information

• On-Chip Debugging Design Examples

• Transceiver Toolkit Online Demo

• Transceiver Toolkit for Intel Arria® 10 Devices (OTCVRKITA10)
26 Minutes Online Course

• Transceiver Toolkit for 28-nm Devices (OTCVR1100)
39 Minutes Online Course

3.1. Channel Manager

The Channel Manager is the graphical component of the Transceiver Toolkit. The
Channel Manager allows you to configure and control transceiver channels and links,
and adjust programmable analog settings to improve the signal integrity of the link.
The Channel Manager is in the Workspace area of the System Console.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/customertraining/webex/Transceiver_Toolkit/player.html
https://www.altera.com/support/training/course/otcvrkita10.html
https://www.altera.com/support/training/course/otcvr1100.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


The Channel Manager consists of three tabs that display components in a spreadsheet
format:

• Transmitter Channels

• Receiver Channels

• Transceiver Links

The columns on each tab depend on the parameters of each device.

Figure 21. Example: Transceiver Links Tab of the Channel Manager

Channel Manager Functions

The Channel Manager simplifies actions such as:

• Copying and pasting settings—Copy, paste, import, and export PMA settings to
and from channels.

• Importing and exporting settings— To export PMA settings to a text file, select a
row in the Channel Manager. To apply the PMA settings from a text file, select one
or more rows in the Channel Manager. The PMA settings in the text file apply to a
single channel. When you import the PMA settings from a text file, you are
duplicating one set of PMA settings for all the channels you select.

• Starting and stopping tests—The Channel Manager allows you to start and stop
tests by right-clicking the channels. You can select two or more rows in the
Channel Manager to start or stop test for multiple channels.

Related Information

• System Explorer Pane on page 22

• System Console GUI on page 21

• User Interface Settings Reference on page 120

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3.1.1. Channel Display Modes

The three channel display modes are:

• Current (default)—shows the current values from the device. Blue text indicates
that the settings are live.

• Min/Max—shows the minimum and maximum values to be used in the auto
sweep.

• Best—shows the best tested values from the last completed auto sweep run.

Note: The Transmitter Channels tab only shows the Current display mode. The
Transceiver Toolkit requires a receiver channel to perform auto sweep tests.

3.2. Transceiver Debugging Flow Walkthrough

These steps describe the high-level process of debugging transceivers with the
Transceiver Toolkit.

1. Modify the design to enable transceiver debug.

2. Load the modified design to the FPGA.

3. Load the design to the Transceiver Toolkit.

4. Link hardware resources.

5. Verify hardware connections.

6. Identify transceiver channels.

7. Run link tests or control PMA analog settings.

3.3. Modifying the Design to Enable Transceiver Debug

The configuration of the debugging system varies by device family.

3.3.1. Adapting an Intel FPGA Design Example

Design examples allow you to quickly test the functionality of the receiver and
transmitter channels in your design. You can modify and customize the design
examples to match your intended transceiver design and signal integrity development
board.

1. Download a design example from the On-Chip Debugging Design Examples page
of the Intel FPGA website.

2. Open the Intel Quartus Prime and click Project ➤ Restore Archived Project to
restore the design example project archive.

3. Compare the development board and device specified in the readme.txt file with
your board and device:

Option Description

Same development board and same
device

Directly program the device with the programming file included in
the example.

Same board, different device Choose the appropriate device and recompile the design.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Option Description

Different board Edit the necessary pin assignments and recompile the design
example.

4. To recompile the design, you must make your modifications to the system
configuration in Platform Designer (Standard), regenerate in Platform Designer
(Standard), and recompile the design in the Intel Quartus Prime software to
generate a new programming file.

Once you recompile your design, you can:

• Change the transceiver settings in the design examples and observe the effects on
transceiver link performance

• Isolate and verify the high-speed serial links without debugging other logic in your
design.

Refer to the readme.txt of each design example for more information.

3.3.1.1. Modifying Stratix V Design Examples

You can adapt Intel FPGA design examples to experiment with configurations that
match your own design. For example, you can change data rate, number of lanes,
PCS-PMA width, FPGA-fabric interface width, or input reference clock frequency. To
modify the design examples, change the IP core parameters and regenerate the
system in Platform Designer (Standard). Next, update the top-level design file, and
re-assign device I/O pins as necessary.

To modify a Stratix V design example PHY block to match your design, follow these
steps:

1. Determine the number of channels your design requires.

2. Open the <project name>.qpf for the design example in the Intel Quartus Prime
software.

3. Click Tools ➤ Platform Designer (Standard).

4. On the System Contents tab, right-click the PHY block and click Edit. Specify
options for the PHY block to match your design requirement for number of lanes,
data rate, PCS-PMA width, FPGA-fabric interface width, and input reference clock
frequency.

5. Specify a multiple of the FPGA-fabric interface data width for Avalon Data
Symbol Size. The available values are 8 or 10. Click Finish.

6. Delete any timing adapter from the design. The timing adaptors are not required.

7. From the IP Catalog, add one Data Pattern Generator and Data Pattern
Checker for each transmitter and receiver lane.

8. Right-click Data Pattern Generator and click Edit. Specify a value for
ST_DATA_W that matches the FPGA-fabric interface width.

9. Right-click Data Pattern Checker and click Edit. Specify a value for
ST_DATA_W that matches the FPGA-fabric interface width.

10. From the IP Catalog, add a Transceiver Reconfiguration Controller.

11. Right-click Transceiver Reconfiguration Controller and click Edit. Specify 2*
number of lanes for the number of reconfigurations interfaces. Click finish.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


12. Create connections for the data pattern generator and data pattern checker
components. Right-click the net name in the System Contents tab and specify
the following connections.

From To

Block Name Net Name Block Name Net Name

clk_100 clk data_pattern_generator csr_clk

clk_100 clk_reset data_pattern_generator csr_clk_reset

master_0 master data_pattern_generator csr_slave

xcvr_*_phy_0 tx_clk_out0 data_pattern_generator pattern_out_clk

xcvr_*_phy_0 tx_parallel_data0 data_pattern_generator pattern_out

clk_100 clk data_pattern_checker csr_clk

clk_100 clk_reset data_pattern_checker csr_clk_reset

master_0 master data_pattern_checker csr_slave

xcvr_*_phy_0 rx_clk_out0 data_pattern_checker pattern_in_clk

xcvr_*_phy_0 rx_parallel_data0 data_pattern_checker pattern_in

13. Click System ➤ Assign Base Addresses.

14. Connect the reset port of timing adapters to clk_reset of clk_100.

15. To implement the changes to the system, click Generate ➤ Generate HDL.

16. If you modify the number of lanes in the PHY, you must update the top-level file
accordingly. The following example shows Verilog HDL code for a two-channel
design that declares input and output ports in the top-level design. The example
design includes the low latency PHY IP core. If you modify the PHY parameters,
you must modify the top-level design with the correct port names. Platform
Designer (Standard) displays an example of the PHY, click Generate ➤ HDL
Example.

module low_latency_10g_1ch DUT ( 
                        input  wire GXB_RXL11,
                        input  wire GXB_RXL12,
                        output wire GXB_TXL11,
                        output wire GXB_TX12
                        );
                        .....
                        low_latency_10g_1ch DUT (
                        .....
                        .xcvr_low_latency_phy_0_tx_serial_data_export    
({GXB_TXL11,     GXB_TXL12}),        
                        .xcvr_low_latency_phy_0_rx_serial_data_export    
({GXB_RXL11,         GXB_TXL12}),        
                        .....
                        );

17. From the Intel Quartus Prime software, click Assignments ➤ Pin Planner and
update pin assignments to match your board.

18. Edit the design’s Synopsys Design Constraints (.sdc) to reflect the reference
clock change. Ignore the reset warning messages.

19. Click Start ➤ Start Compilation to recompile the design.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3.3.1.1.1. Generating reconfig_clk from an Internal PLL

You can use an internal PLL to generate the reconfig_clk, by changing the Platform
Designer (Standard) connections to delay offset cancellation until the generated clock
is stable.

• If there is no free running clock within the required frequency range of the
reconfiguration clock, add a PLL to the top-level of the design example. The
frequency range varies depending on the device family. Refer to the device family
data sheet for your device.

• When using an internal PLL, hold off offset cancellation until the generated clock is
stable. You do this by connecting the pll_locked signal of the internal PLL to
the .clk_clk_in_reset_n port of the Platform Designer (Standard) system,
instead of the system_reset signal.

• Implement the filter logic, inverter, and synchronization to the reconfig_clk
outside of the Platform Designer (Standard) system with your own logic.

You can find the support solution in the Intel FPGA Knowledge Base. The solution
applies to only Arria® V, Cyclone® V, Stratix IV GX/GT, and Stratix V devices.

3.3.2. Stratix V Debug System Configuration

For Stratix V designs, the Transceiver Toolkit configuration requires instantiation of the
JTAG to Avalon Bridge and Reconfiguration Controller IP cores. Click Tools ➤ IP
Catalog to parameterize, generate, and instantiate the following debugging
components for Stratix V designs.

Table 36. Stratix V / 28nm Transceiver Toolkit IP Core Configuration

Component Debugging
Functions

Parameterization Notes Connect To

Transceiver Native
PHY

Supports all
debugging functions

• If Enable 10G PCS is enabled, 10G PCS
protocol mode must be set to basic on the
10G PCS tab.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

Custom PHY Test all possible
transceiver parallel
data widths

• Set lanes, group size, serialization factor, data
rate, and input clock frequency to match your
application.

• Turn on Avalon data interfaces.
• Disable 8B/10B.
• Set Word alignment mode to manual.
• Disable rate match FIFO.
• Disable byte ordering block.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

Low Latency PHY Test at more than
8.5 Gbps in GT
devices or use of
PMA direct mode
(such as when using
six channels in one
quad)

• Set Phase compensation FIFO mode to
EMBEDDED above certain data rates and set
to NONE for PMA direct mode.

• Turn on Avalon data interfaces.
• Set serial loopback mode to enable serial

loopback controls in the toolkit.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

97

http://www.altera.com/support/kdb/solutions/rd12172009_309.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Component Debugging
Functions

Parameterization Notes Connect To

Intel-Avalon Data
Pattern Generator

Generates standard
data test patterns at
Avalon-ST source
ports

• Select PRBS7, PRBS15, PRBS23, PRBS31,
high frequency, or low frequency patterns.

• Turn on Enable Bypass interface for
connection to design logic.

• PHY input port
• JTAG to Avalon

Master Bridge
• Your design logic

Intel-Avalon Data
Pattern Checker

Validates incoming
data stream against
test patterns
accepted on Avalon
streaming sink ports

Specify a value for ST_DATA_W that matches the
FPGA-fabric interface width.

• PHY output port
• JTAG to Avalon

Master Bridge

Reconfiguration
Controller

Supports PMA control
and other transceiver
settings

• Connect the reconfiguration controller to
• Connect reconfig_from_xcvr to

reconfig_to_xcvr.
• Enable Analog controls.
• Turn on Enable Eye Viewerblock to enable

signal eye analysis (Stratix V only)
• Turn on Enable Bit Error Rate Block for BER

testing
• Turn on Enable decision feedback equalizer

(DFE) block for link optimization
• Enable DFE block

• PHY input port
• JTAG to Avalon

Master Bridge

JTAG to Avalon Master
Bridge

Accepts encoded
streams of bytes
with transaction data
and initiates Avalon-
MM transactions

N/A • PHY input port
• Avalon-ST Data

Pattern Checker
• Avalon-ST Data

Pattern Generator
• Reconfiguration

Controller

3.3.2.1. Bit Error Rate Test Configuration (Stratix V)

Use the following configuration to perform bit rate error testing in Stratix V designs.

Figure 22. Bit Error Rate Test Configuration (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR Reconfig
Controller

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 37. System Connections: Bit Error Rate Tests

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Intel FPGA Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Intel FPGA Avalon Data Pattern Checker

JTAG to Avalon Master Bridge PHY input port

Data Pattern Checker PHY output port

Transceiver Reconfiguration Controller PHY input port

Related Information

Running BER Tests on page 112

3.3.2.2. PRBS Signal Eye Test Configuration (Stratix V)

Use the following configuration to perform PRBS signal eye testing in Stratix V
designs.

Figure 23. PRBS Signal Eye Test Configuration (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR 
 Reconfiguration 

 Controller

Table 38. System Connections: PRBS Signal Eye Tests (Stratix V)

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Intel Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Intel Avalon Data Pattern Checker

Data Pattern Checker PHY output port

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


From To

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information

Running PRBS Signal Eye Tests (Stratix V only) on page 113

3.3.2.2.1. Enabling Serial Bit Comparator Mode (Stratix V)

Serial bit comparator mode allows you to run Eye Viewer diagnostic features with
any PRBS patterns or user-design data, without disrupting the data path. For Stratix V
devices, you must enable Serial bit comparator mode.

To enable this mode for Stratix V devices, you must enable the following debugging
component options when configuring the debugging system:

Table 39. Component Settings for Serial Bit Comparator Mode

Debugging Component Setting for Serial Bit Mode(2)

Transceiver Reconfiguration Controller Turn on Enable Eye Viewer block and Enable Bit Error Rate Block

Data Pattern Generator(3) Turn on Enable Bypass interface

Serial bit comparator mode is less accurate than Data pattern checker mode for
single bit error checking. Do not use Serial bit comparator mode if you require an
exact error rate. Use the Serial bit comparator mode for checking a large window of
error. The toolkit does not read the bit error counter in real-time because it reads
through the memory-mapped interface. Serial bit comparator mode has the following
hardware limitations for Stratix V devices:

• Toolkit uses serial bit checker only on a single channel per reconfiguration
controller at a time.

• When the serial bit checker is running on channel n, you can change only the VOD,
pre-emphasis, DC gain, and Eye Viewer settings on that channel. Changing or
enabling DFE or CTLE can cause corruption of the serial bit checker results.

• When the serial bit checker is running on a channel, you cannot change settings
on any other channel on the same reconfiguration controller.

• When the serial bit checker is running on a channel, you cannot open any other
channel in the Transceiver Toolkit.

• When the serial bit checker is running on a channel, you cannot copy PMA settings
from any channel on the same reconfiguration controller.

3.3.2.3. Custom Traffic Signal Eye Test Configuration (Stratix V)

Use the following configuration to perform custom traffic signal eye testing in Stratix V
designs.

(2) Settings in Table 39 on page 100 are supported in Stratix V devices only.

(3) Limited support for Data Pattern Generator or data pattern in Serial Bit Mode.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 24. System Configuration: Custom Traffic Signal Eye Tests (Stratix V)

JTAG-to-Avalon
Master Bridge Custom PHY

IP Core
or

Low-Latency
PHY IP Core

Your Design Logic
(Custom Traffic)

XCVR 
 Reconfiguration 

 Controller

Table 40. System Connections: Custom Traffic Signal Eye Tests (Stratix V)

From To

Your design logic with custom traffic PHY input port

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information

Running Custom Traffic Tests (Stratix V only) on page 114

3.3.2.4. Link Optimization Test Configuration (Stratix V)

Use the following configuration for link optimization tests in Stratix V devices.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 25. System Configuration: Link Optimization Tests (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR 
 Reconfiguration 

 Controller

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Checker

Data Pattern Checker PHY output port

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information

Running the Auto Sweep Test on page 115

3.3.2.5. PMA Analog Setting Control Configuration (Stratix V)

Use the following configuration to control PMA Analog settings in Stratix V designs.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 26. System Configuration: PMA Analog Setting Control (Stratix V)

JTAG-to-Avalon
Master Bridge Custom PHY

IP Core
or

Low-Latency
PHY IP Core

XCVR 
 Reconfiguration 

 Controller

Table 41. System Connections: PMA Analog Setting Control (Stratix V)

From To

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information

Controlling PMA Analog Settings on page 116

3.3.3. Instantiating and Parameterizing Intel Arria 10 Debug IP cores

To debug Intel Arria 10 designs with the Transceiver Toolkit, you must enable
debugging settings in Transceiver Intel FPGA IP cores. You can either activate these
settings when you first instantiate these components, or modify your instance after
preliminary compilation.

The IP cores that you modify are:

• Transceiver Native PHY

• Transceiver ATX PLL

• CMU PLL

• fPLL

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The parameters that you enable in the debug IP cores are:

Table 42. IP Cores and Debug Settings
For more information about these parameters, refer to Debug Settings for Transceiver IP Cores.

IP Core Enable
dynamic
reconfiguratio
n

Enable Altera
Debug Master
Endpoint

Enable
capability
registers

Enable control
and status
registers

Enable PRBS
Soft
accumulators

Transceiver Native PHY Yes Yes Yes Yes Yes

Transceiver ATX PLL Yes Yes

CMU PLL Yes Yes

fPLL Yes Yes

For each transceiver IP core:

1. In the IP Components tab of the Project Navigator, right-click the IP instance,
and click Edit in Parameter Editor.

2. Turn on debug settings as they appear in the IP Cores and Debug Settings table
above.

Figure 27. Intel Arria 10 Transceiver Native PHY IP Core in the Parameter Editor

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 28. Intel Arria 10 Transceiver ATX PLL Core in the Parameter Editor

3. Click Generate HDL.

After enabling parameters for all IPs in the design, recompile your project.

3.3.3.1. Debug Settings for Transceiver IP Cores

The table describes the settings that you turn on when preparing your transceiver for
debug:

Table 43. Intel FPGA IP Settings for Transceiver Debug

Setting Description

Enable Dynamic Reconfiguration Allows you to change the behavior of the transceiver channels and PLLs without
powering down the device

Enable Altera Debug Master
Endpoint

Allows you to access the transceiver and PLL registers through System Console.
When you recompile your design, Intel Quartus Prime software inserts the ADME,
debug fabric, and embedded logic during synthesis.

Enable capability registers Capability registers provide high level information about the configuration of the
transceiver channel

Enable control and status
registers

Enables soft registers to read status signals and write control signals on the PHY
interface through the embedded debug.

Enable PRBS Soft Accumulators Enables soft logic for performing PRBS bit and error accumulation when you use
the hard PRBS generator and checker.

For more information about dynamic reconfiguration parameters on Intel Arria 10
devices, refer to the Intel Arria 10 Transceiver PHY User Guide.

Related Information

Dynamic Reconfiguration Parameters
In Intel Arria 10 Transceiver PHY User Guide

3.4. Programming the Design into an Intel FPGA

After you include debug components in the design, compile, and generate
programming files, you can program the design in the Intel FPGA.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

105

https://www.intel.com/content/www/us/en/programmable/documentation/nik1398707230472.html#nik1398706818885
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

Programming Intel FPGA Devices on page 0

3.5. Loading the Design in the Transceiver Toolkit

If the FPGA is already programmed with the project when loading, the Transceiver
Toolkit automatically links the design to the target hardware in the toolkit. The toolkit
automatically discovers links between transmitter and receiver of the same channel.

Before loading the device, ensure that you connect the hardware. The device and JTAG
connections appear in the Device and Connections folders of the System Explorer
pane.

To load the design into the Transceiver Toolkit:

1. In the System Console, click File ➤ Load Design.

2. Select the .sof programming file for the transceiver design.

After loading the project, the designs and design instances folders in the System
Explorer pane display information about the design, such as the design name and the
blocks in the design that can communicate to the System Console.

Related Information

System Explorer Pane on page 22

3.6. Linking Hardware Resources

Linking the hardware resources maps the project you load to the target FPGA. When
you load multiple design projects for multiple FPGAs, linking indicates which of the
projects is in each of the FPGAs. The toolkit automatically discovers hardware and
designs that you connect. You can also manually link a design to connected hardware
resources in the System Explorer.

If you are using more than one Intel FPGA board, you can set up a test with multiple
devices linked to the same design. This setup is useful if you want to perform a link
test between a transmitter and receiver on two separate devices. You can also load
multiple Intel Quartus Prime projects and link between different systems. You can
perform tests on separate and unrelated systems in a single Intel Quartus Prime
instance.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 29. One Channel Loopback Mode for Stratix V (28nm)

JTAG-to-Avalon
Master Bridge

Loopback
on board

Top-Level Design (FPGA)

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Transceiver Toolkit
host computer

XCVR
Reconfiguration

Controller

Figure 30. One Channel Loopback Mode for Intel Arria 10devices

Transceiver Toolkit
Host Computer

Top-Level Design (FPGA)

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 31. Four Channel Loopback Mode for Stratix V / 28nm

JTAG-to-Avalon
Master Bridge

Top-Level Design (FPGA)

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Transceiver Toolkit
host computer

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Loopback
on board

Loopback
on board

Loopback
on board

Loopback
on board

XCVR
Reconfiguration

Controller

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 32. Four Channel Loopback Mode for Intel Arria 10devices

Transceiver Toolkit
Host Computer

Top-Level Design (FPGA)

Loopback
On Board

Hard PRBS Generator

Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker Loopback

On BoardHard PRBS Generator
Hard PRBS Checker

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker

3.6.1. Linking One Design to One Device

To link one design to one device by one Intel FPGA Download Cable:

1. Load the design for your Intel Quartus Prime project.

2. If the design is not auto-linked, link each device to an appropriate design.

3. Create the link between channels on the device to test.

3.6.2. Linking Two Designs to Two Devices

To link two designs to two separate devices on the same board, connected by one
Intel FPGA Download Cable download cable:

1. Load the design for all the Intel Quartus Prime project files you need.

2. If the design does not auto-link, link each device to an appropriate design

3. Open the project for the second device.

4. Link the second device on the JTAG chain to the second design (unless the design
auto-links).

5. Create a link between the channels on the devices you want to test.

3.6.3. Linking One Design on Two Devices

To link the same design on two separate devices, follow these steps:

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. In the Transceiver Toolkit, open the .sof you are using on both devices.

2. Link the first device to this design instance.

3. Link the second device to the design.

4. Create a link between the channels on the devices you want to test.

3.6.4. Linking Designs and Devices on Separate Boards

To link two designs to two separate devices on separate boards that connect to
separate Intel FPGA Download Cables:

1. Load the design for all the Intel Quartus Prime project files you need.

2. If the design does not auto-link, link each device to an appropriate design.

3. Create the link between channels on the device to test.

4. Link the device connected to the second Intel FPGA Download Cable to the second
design.

5. Create a link between the channels on the devices you want to test.

3.6.5. Verifying Hardware Connections

After creating links, verify that the channels connect correctly and loop back properly
on the hardware.This precaution saves time in the workflow.

Use the toolkit to send data patterns and receive them correctly:

1. In the Receiver tab, verify that RX CDR locked to Data is set to Locked.

Figure 33. RX CDR Locked to Data

2. Start the generator on the Transmitter Channel.

3. Start the checker on the Receiver Channel.

4. Verify you have Lock to Data, and the Bit Error Rate between the two is very low
or zero.

After you verify communication between transmitter and receiver, you can create a
link between the two transceivers and perform Auto Sweep and Eye Viewer(4) tests
with the pair.

(4) Eye Viewer available only for Stratix V devices.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3.7. Identifying Transceiver Channels

Verify whether the Transceiver Toolkit detects the channels correctly. If a receiver and
transmitter share a transceiver channel, the toolkit identifies the channel.

The Transceiver Toolkit identifies and displays transmitter and receiver channels on the
Transmitter Channels and Receiver Channels tabs of the Channel Manager. You
can also manually identify the transmitter and receiver in a transceiver channel, and
then create a link between the two for testing.

3.7.1. Controlling Transceiver Channels

To adjust or monitor transmitter or receiver settings while the channels are running:

• In the Transmitter Channels tab, click Control Transmitter Channel

• In the Receiver Channels tab, click Control Receiver Channel.

• In the Transceiver Links tab, click Control Receiver Channel.

For example, you can transmit a data pattern across the transceiver link, and then
report the signal quality of the data you receive.

3.8. Creating Transceiver Links

Creating a link designates which Transmitter and Receiver channels connect physically.
The toolkit automatically creates links when a receiver and transmitter share a
transceiver channel. You can also manually create and delete links between
transmitter and receiver channels.

To create a transceiver link:

1. In the Channel Manager, click Setup.

2. Select the generator and checker you want to control.

3. Select the transmitter and receiver pair you want to control.

4. Click Create Transceiver Link.

5. Click Close.

The Transceiver Toolkit generates an automatic name for the link, but you can use a
shorter, more meaningful name by typing in the Link Alias cell.

3.9. Running Link Tests

Once you identify the transceiver channels for debugging, you can run link tests. Use
the Transceiver Links tab to control link tests.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


When you run link tests, channel color highlights indicate the test status:

Table 44. Channel Color Highlights

Color Transmitter Channel Receiver Channel

Red Channel is closed or generator clock is not
running.

Channel is closed or checker clock is not running.

Green Generator is sending a pattern. Checker is checking and data pattern is locked.

Neutral (same color
as background)

Channel is open, generator clock is running,
and generator is not sending a pattern.

Channel is open, checker clock is running, and
checker is not checking.

Yellow N/A Checker is checking and data pattern is not
locked.

3.9.1. Running BER Tests

BER tests help you assess signal integrity. Follow these steps to run BER tests across a
transceiver link:

1. In the Channel Manager, click Control Transceiver Link.

2. Specify a PRBS Test pattern

3. If your device supports setting a Checker mode, set to Data pattern checker.

4. Try different values of Reconfiguration, Generator, or Checker settings, if
available.

5. Click Start to run the pattern with your settings.

6. If your device supports error injection, you can click Inject Error to inject error
bits.

7. You can also Reset the counter, or Stop the test.

Note: Intel Arria 10 devices do not support Inject Error if you use the hard PRBS
Pattern Generator and Checker in the system configuration.

Related Information

• Bit Error Rate Test Configuration (Stratix V) on page 98

• User Interface Settings Reference on page 120

3.9.2. Signal Eye Margin Testing (Stratix V only)

Stratix V includes Eye Viewer circuitry, that allows visualization of the horizontal and
vertical eye margin at the receiver. For supported devices, use signal eye tests to tune
the PMA settings of your transceiver. This results in the best eye margin and BER at
high data rates. The toolkit disables signal eye testing for unsupported devices.

The Eye Viewer graph can display a bathtub curve, eye diagram representing eye
margin, or heat map display. The run list displays the statistics of each Eye Viewer
test. When PMA settings are suitable, the bathtub curve is wide, with sharp slopes
near the edges. The curve is up to 30 units wide. If the bathtub is narrow, then the
signal quality is poor. The wider the bathtub curve, the wider the eye. The smaller the
bathtub curve, the smaller the eye. The eye contour shows the estimated horizontal
and vertical eye opening at the receiver.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


You can right-click any of the test runs in the list, and then click Apply Settings to
Device to quickly apply that PMA setting to your device. You can also click Export,
Import, or Create Report.

Figure 34. Eye Viewer Settings and Status Showing Results of Two Test Runs

Figure 35. Heat Map Display and Bathtub Curve Through Eye

3.9.2.1. Running PRBS Signal Eye Tests (Stratix V only)

Run PRBS signal eye tests to visualize the estimated horizontal and vertical eye
opening at the receiver. After programming the FPGA with your debugging design,
loading the design in the toolkit, and linking hardware, follow these steps to run PRBS
signal eye tests:

1. Click Setup.

a. Select the generator and checker you want to control.

b. Select the transmitter and receiver pair you want to control.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


c. Click Create Transceiver Link and click Close.

2. Click Link Eye Viewer, and select Eye Viewer as the Test mode. The Eye
Viewer mode displays test results as a bathtub curve, heat map, or eye contour
representing bit error and phase offset data.

3. Specify the PRBS Test pattern and the Checker mode. Use Serial bit
comparator checker mode only for checking a large window of error with custom
traffic.

The checker mode option is only available after you turn on Enable Eye Viewer
block and Enable Bit Error Rate Block in the Reconfiguration Controller
component. (Stratix V designs only)

4. Specify Run length and Eye Viewer settings to control the test coverage and
type of Eye Viewer results displayed, respectively.

5. Click Start to run the pattern with your settings. Eye Viewer uses the current
channel settings to start a phase sweep of the channel. The phase sweep runs 32
iterations. As the run progresses, view the status under Eye Viewer status. Use
this diagram to compare PMA settings for the same channel and to choose the
best combination of PMA settings for a particular channel.

6. When the run completes, the chart displays the characteristics of each run. Click
Stop to halt the test, change the PMA settings, and re-start the test. Click Create
Report to export data to a table format for further viewing.

Related Information

• PRBS Signal Eye Test Configuration (Stratix V) on page 99

• AN 678: High-Speed Link Tuning Using Signal Conditioning Circuitry

3.9.3. Running Custom Traffic Tests (Stratix V only)

After programming the FPGA with your debugging design, loading the design in the
toolkit, and linking hardware, follow these steps to run custom traffic tests:

1. In the Channel Manager, click Setup.

2. Select the associated reconfiguration controller.

3. Click Create Transceiver Link and click Close.

4. Click the Receiver Eye Viewer tab.

5. Select Eye Viewer as the Test mode. The Eye Viewer mode displays test
results as a bathtub curve, heat map, or eye contour representing bit error and
phase offset data.

6. Specify the PRBS Test pattern.

7. For Checker mode, select Serial bit comparator.

The checker mode option is only available after you turn on Enable Eye Viewer
block and Enable Bit Error Rate Block for the Reconfiguration Controller
component.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

114

http://www.altera.com/literature/an/an678.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


8. Specify Run length and Eye Viewer settings to control the test coverage and
type of Eye Viewer results displayed, respectively.

9. Click Start to run the pattern with your settings. Eye Viewer uses the current
channel settings to start a phase sweep of the channel. The phase sweep runs 32
iterations. As the run progresses, view the status under Eye Viewer status.

10. When the run completes, the chart displays the characteristics of each run. Click
Stop to halt the test, change the PMA settings, and re-start the test. Click Create
Report to export data to a table format for further viewing.

Related Information

Custom Traffic Signal Eye Test Configuration (Stratix V) on page 100

3.9.4. Link Optimization Tests

The Transceiver Toolkit auto sweep test automatically sweeps PMA ranges to
determine the transceiver settings that provide the best signal integrity. The toolkit
allows you to store a history of the test runs, and keep a record of the best PMA
settings.

3.9.4.1. Running the Auto Sweep Test

to run link optimization tests:

1. In the Transceiver Links tab, select the channel you want to control.

2. Click Link Auto Sweep.
The Advanced tab appears with Auto sweep as Test mode.

3. Specify the PRBS Test pattern.

4. Specify Run length experiment with the Transmitter settings, and Receiver
settings to control the test coverage and PMA settings, respectively.

5. Click Start to run all combinations of tests meeting the PMA parameter limits.
When the run completes the chart is displayed and the characteristics of each run
are listed in the run list.

6. You can click Stop to halt the test, change the PMA settings, and re-start the test.
Click Create Report to export data to a table format for further viewing.

7. If you want to determine the best tap settings using decision feedback
equalization (DFE):

a. Set the DFE mode to Off.

b. Use Auto Sweep to find optimal PMA settings.

c. If BER = 0, use the best PMA settings achieved.

d. If BER > 0, use this PMA setting, and set the minimum and maximum values
obtained from Auto Sweep to match this setting. Set the maximum DFE range
to limits for each of the three DFE settings.

e. Run Create Report to view the results and determine which DFE setting has
the best BER. Use these settings in conjunction with the PMA settings for the
best results.

Related Information

• Link Optimization Test Configuration (Stratix V) on page 101

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Instantiating and Parameterizing Intel Arria 10 Debug IP cores on page 103

3.9.4.2. Determining the Best Tap Settings

To determine the best tap settings using decision feedback equalization (DFE):

1. Use Auto Sweep to find optimal PMA settings, while leaving the DFE mode set to
Off.

Option Description

If BER = 0 Use the best PMA settings achieved.

If BER > 0 Use this PMA setting, and set the minimum and maximum values auto sweep reports to
match this setting. Set the maximum DFE range to limits for each of the three DFE settings.

2. Click Create Report to view the results and determine which DFE setting has the
best BER. Use these settings in conjunction with the PMA settings for the best
results.

3.10. Controlling PMA Analog Settings

The Transceiver Toolkit allows you to directly control PMA analog settings while the link
is running. For a detailed description of each parameter, refer to the PHY user guide of
the corresponding device.

To control PMA analog settings, follow these steps:

1. In the Channel Manager, click Setup.

2. In the Transmitter Channels tab, define a transmitter without a generator, and
click Create Transmitter Channel.

3. In the Receiver Channels tab, define a receiver without a generator, and click
Create Receiver Channel.

4. In the Transceiver Links tab, select the transmitter and receivers you want to
control, and click Create Transceiver Link.

5. Click Close.

6. Click Control Receiver Channel, Control Transmitter Channel, or Control
Transceiver Link to directly control the PMA settings while running.

3.10.1. Intel Arria 10 and Intel Cyclone 10 GX PMA Settings

The following figures show the PMA analog settings.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 36. Transmitter Channel PMA Settings

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 37. Receiver Channel PMA Settings

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 38. Transceiver Link PMA Settings

Related Information

• Instantiating and Parameterizing Intel Arria 10 Debug IP cores on page 103

• PMA Analog Setting Control Configuration (Stratix V) on page 102

• PMA Parameters
In Intel Arria 10 Transceiver PHY User Guide

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

119

https://www.intel.com/content/www/us/en/programmable/documentation/nik1398707230472.html#nik1398706813800
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3.11. User Interface Settings Reference

The Transceiver Toolkit user interface contains the following settings:

Table 45. Transceiver Toolkit Control Pane Settings
Settings in alphabetical order. All the settings appear in the Transceiver Link control pane.

Setting Description Device Families Control Pane

Alias Name you choose for the channel. All supported device
families

Transmitter
pane
Receiver pane

Auto Sweep status Reports the current and best tested bits, errors,
bit error rate, and case count for the current Auto
Sweep test.

All supported device
families

Receiver pane

Bit error rate (BER) Reports the number of errors divided by bits
tested since the last reset of the checker.

All supported device
families

Receiver pane

Channel address Logical address number of the transceiver channel. All supported device
families

Transmitter
pane
Receiver pane

Data rate Data rate of the channel that appears in the
project file, or data rate the frequency detector
measures.
To use the frequency detector, turn on Enable
Frequency Counter in the Data Pattern Checker
IP core or Data Pattern Generator IP core,
regenerate the IP cores, and recompile the design.
The measured data rate depends on the Avalon
management clock frequency that appears in the
project file.
If you make changes to your settings and want to
sample the data rate again, click the Refresh
button next to the Data rate

All supported device
families

Transmitter
pane
Receiver pane

DC gain Provides an equal boost to the incoming signal
across the frequency spectrum.

All supported device
families

Receiver pane

DFE mode Decision feedback equalization (DFE) for improving
signal quality.

Device Value

Stratix V 1-5

Intel Arria 10 1-11

In Stratix V devices DFE modes are Off, Manual,
One-time adaptive mode and Adaptation
Enabled. Adaptation Enabled mode DFE
automatically tries to find the best tap values.
In Intel Arria 10 devices, DFE modes are Off,
Manual and Adaptation Enabled. DFE in
Adaptation Enabled mode automatically tries to
find the best tap values.

Stratix V
Intel Arria 10

Receiver pane

Enable word aligner Forces the transceiver channel to align to the word
you specify.

Stratix V Receiver pane

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Setting Description Device Families Control Pane

Equalization control Boosts the high-frequency gain of the incoming
signal to compensate for the low-pass filter effects
of the physical medium. When you use this option
with DFE, use DFE in Manual or Adaptation
Enabled mode.
In Stratix V devices, auto sweep supports AEQ
one-time adaptation.

All supported device
families

Receiver pane

Equalization mode For Intel Arria 10 devices, you can set
Equalization Mode to Manual or Triggered.
In Stratix V devices, Adaptive equalization (AEQ)
automatically evaluates and selects the best
combination of equalizer settings, and turns off
Equalization Control. The one-time selection
determines the best setting and stops searching.
You can use AEQ for multiple, independently
controlled receiver channels.

All supported device
families

Receiver pane

Error rate limit Turns on or off error rate limits. Start checking
after specifies the number of bits the toolkit waits
before looking at the bit error rate (BER) for the
next two checks.
Bit error rate achieves below sets upper bit
error rate limits. If the error rate is better than the
set error rate, the test ends.
Bit error rate exceeds sets lower bit error rate
limits. If the error rate is worse than the set error
rate, the test ends.

All supported device
families

Receiver pane

Generator/Checker
mode

Specifies Data pattern checker or Serial bit
comparator for BER tests.
If you enable Serial bit comparator the Data
Pattern Generator sends the PRBS pattern, but the
serial bit comparator checks the pattern.
In Bypass mode, clicking Start begins counting
on the Serial bit comparator.
For BER testing:
• Intel Arria 10 devices support the Data Pattern

Checker and the Hard PRBS.
• Stratix V devices support the Data Pattern

Checker and the Serial Bit Checker.

All supported device
families

Transmitter
pane
Receiver pane

Horizontal phase step
interval

Specifies the number of horizontal steps to
increment when performing a sweep. Increasing
the value increases the speed of the test but at a
lower resolution. This option only applies to eye
contour.

Stratix V Transmitter
pane
Receiver pane

Increase test range For the selected set of controls, increases the span
of tests by one unit down for the minimum, and
one unit up for the maximum.
You can span either PMA Analog controls (non-DFE
controls), or the DFE controls. You can quickly set
up a test to check if any PMA setting combinations
near your current best yields better results.
To use, right-click the Advanced panel

All supported device
families

Receiver pane

Inject Error Flips one bit to the output of the data pattern
generator to introduce an artificial error.

Stratix V Transmitter
pane

Maximum tested bits Sets the maximum number of bits tested for each
test iteration.

All supported device
families

Receiver pane

Number of bits tested Specifies the number of bits tested since the last
reset of the checker.

All supported device
families

Receiver pane

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Setting Description Device Families Control Pane

Number of error bits Specifies the number of error bits encountered
since the last reset of the checker.

All supported device
families

Receiver pane

Number of preamble
beats

Number of clock cycles to which the preamble
word is sent before the test pattern begins.

Stratix V Transmitter
pane

PLL refclk freq Channel reference clock frequency that appears in
the project file, or reference clock frequency
calculated from the measured data rate.

All supported device
families

Transmitter
pane
Receiver pane

Populate with Right-click the Advanced panel to load current
values on the device as a starting point, or initially
load the best settings auto sweep determines. The
Intel Quartus Prime software automatically applies
the values you specify in the drop-down lists for
the Transmitter settings and Receiver settings.

All supported device
families

Receiver pane

Preamble word Word to send out if you use the preamble mode
(only if you use soft PRBS Data Pattern Generator
and Checker).

All supported device
families

Transmitter
pane

Pre-emphasis This programmable module boosts high
frequencies in the transmit data for each transmit
buffer signal. This action counteracts possible
attenuation in the transmission media.
(Stratix V only) Using pre-emphasis can maximize
the data eye opening at the far-end receiver.

All supported device
families

Transmitter
pane

Receiver channel Specifies the name of the selected receiver
channel.

All supported device
families

Receiver pane

Refresh Button After loading the .pof file, loads fresh settings
from the registers after running dynamic
reconfiguration.

All supported device
families

Transmitter
pane
Receiver pane

Reset Resets the current test. All supported device
families

Receiver pane

Rules Based
Configuration (RBC)
validity checking

Displays in red any invalid combination of settings
for each list under Transmitter settings and
Receiver settings, based on previous settings.
When you enable this option, the settings appear
in red to indicate the current combination is
invalid. This action avoids manually testing invalid
settings that you cannot compile for your design,
and prevents setting the device into an invalid
mode for extended periods of time and potentially
damaging the circuits.

All supported device
families

Receiver pane

Run length Sets coverage parameters for test runs. All supported device
families

Transmitter
pane
Receiver pane

RX CDR PLL status(5) Shows the receiver in lock-to-reference (LTR)
mode. When in auto-mode, if data cannot be
locked, this signal alternates in LTD mode if the
CDR is locked to data.

All supported device
families

Receiver pane

continued...   

(5) For Stratix V devices, the Phase Frequency Detector (PFD) is inactive in LTD mode. The
rx_is_lockedtoref status signal turns on and off randomly, and is not significant in LTD
mode.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Setting Description Device Families Control Pane

RX CDR data status Shows the receiver in lock-to-data (LTD) mode.
When in auto-mode, if data cannot be locked, the
signal stays high when locked to data and never
switches.

All supported device
families

Receiver pane

Serial loopback
enabled

Inserts a serial loopback before the buffers,
allowing you to form a link on a transmitter and
receiver pair on the same physical channel of the
device.

All supported device
families

Transmitter
pane
Receiver pane

Start Starts the pattern generator or checker on the
channel to verify incoming data.

All supported device
families

Transmitter
pane
Receiver pane

Stop Stops generating patterns and testing the channel. All supported device
families

Transmitter
pane
Receiver pane

Target bit error rate Finds the contour edge of the bit error rate that
you select. This option only applies to eye contour
mode.

Stratix V Transmitter
pane
Receiver pane

Test pattern Test pattern sent by the transmitter channel.
The Data Pattern Checker self-aligns both high and
low frequency patterns. Use Bypass mode to
send user-design data.

Device Family Test Patterns Available

Stratix V PRBS7, PRBS15, PRBS23,
PRBS31, LowFrequency,
HighFrequency, and Bypass
mode.

Intel Arria 10 PRBS9, PRBS15, PRBS23,
and PRBS31.

All supported device
families

Transmitter
pane
Receiver pane

Time limit Specifies the time limit unit and value to have a
maximum bounds time limit for each test iteration.

All supported device
families

Receiver

Transmitter channel Specifies the name of the selected transmitter
channel.

All supported device
families

Transmitter
pane

TX/CMU PLL status Specifies whether the transmitter channel PLL is
locked to the reference clock.

All supported device
families

Transmitter
pane

Use preamble upon
start

If turned on, sends the preamble word before the
test pattern. If turned off, starts sending the test
pattern immediately.

All supported device
families

Transmitter
pane

Vertical phase step
interval

Specify the number of vertical steps to increment
when performing a sweep. Increasing the value
increases the speed of the test but at a lower
resolution. This option only applies to the eye
contour.

Stratix V Transmitter
pane
Receiver pane

VOD control Programmable transmitter differential output
voltage.

All supported device
families

Transmitter
pane

Related Information

Channel Manager on page 92

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3.12. Troubleshooting Common Errors

Missing high-speed link pin connections

Check the pin connections to identify high-speed links (tx_p/n and rx_p/n) are
missing. When porting an older design to the latest version of the Intel Quartus Prime
software, make sure that these connections exist after porting.

Reset Issues:

Ensure that the reset input to the Transceiver Native PHY, Transceiver Reset Controller,
and ATX PLL Intel FPGA IPs is not held active (1'b1). The Transceiver Toolkit
highlights in red all the Transceiver Native PHY channels that you are setting up.

Unconnected reconfig_clk

You must connect and drive the reconfig_clk input to the Transceiver Native PHY
and ATX PLL Intel FPGA IPs. Otherwise, the toolkit does not display the transceiver
link channel.

3.13. Scripting API Reference

The Intel Quartus Prime software provides an API to access Transceiver Toolkit
functions using Tcl commands, and script tasks such as linking device resources and
identifying high-speed serial links.

To save the project setup in a Tcl script for use in subsequent testing sessions:

1. Set up and define links that describe the entire physical system.

2. Click Save Tcl Script to save the setup for future use.

You can also build a custom test routine script.

To run the scripts, double-click the script name in the System Explorer scripts folder.

To view a list of the available Tcl command descriptions from the Tcl Console window,
including example usage:

1. In the Tcl console, type help help. The Console displays all Transceiver Toolkit
Tcl commands.

2. Type help <command name>. The Console displays the command description.

3.13.1. Transceiver Toolkit Commands

The following tables list the available Transceiver Toolkit scripting commands.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 46. Transceiver Toolkit channel_rx Commands

Command Arguments Function

transceiver_channel_rx_get_data <service-path> Returns a list of the current
checker data. The results are in
the order of number of bits,
number of errors, and bit error
rate.

transceiver_channel_rx_get_dcgain <service-path> Gets the DC gain value on the
receiver channel.

transceiver_channel_rx_get_dfe_tap_value <service-path> <tap
position>

Gets the current tap value of the
channel you specify at the tap
position you specify.

transceiver_channel_rx_get_eqctrl <service-path> Gets the equalization control
value on the receiver channel.

transceiver_channel_rx_get_pattern <service-path> Returns the current data checker
pattern by name.

transceiver_channel_rx_has_dfe <service-path> Reports whether the channel you
specify has the DFE feature
available.

transceiver_channel_rx_has_eye_viewer <service-path> (Stratix V only) Reports whether
the Eye Viewer feature is
available for the channel you
specify.

transceiver_channel_rx_is_checking <service-path> Returns non-zero if the checker is
running.

transceiver_channel_rx_is_dfe_enabled <service-path> Reports whether the DFE feature
is enabled on the channel you
specify.

transceiver_channel_rx_is_locked <service-path> Returns non-zero if the checker is
locked onto the incoming data.

transceiver_channel_rx_reset_counters <service-path> Resets the bit and error counters
inside the checker.

transceiver_channel_rx_reset <service-path> Resets the channel you specify.

transceiver_channel_rx_set_dcgain <service-path> <value> Sets the DC gain value on the
receiver channel.

transceiver_channel_rx_set_dfe_enabled <service-path> <disable(0)/
enable(1)>

Enables or disables the DFE
feature on the channel you
specify.

transceiver_channel_rx_set_dfe_tap_value <service-path> <tap
position> <tap value>

Sets the current tap value of the
channel you specify at the tap
position you specify to the value
you specify.

transceiver_channel_rx_set_dfe_adaptive <service-path> <adaptive-
mode>

Sets DFE adaptation mode of the
channel you specify.

Value Description

0 off

1 adaptive

2 one-time adaptive

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

transceiver_channel_rx_set_eqctrl <service-path> <value> Sets the equalization control
value on the receiver channel.

transceiver_channel_rx_start_checking <service-path> Starts the checker.

transceiver_channel_rx_stop_checking <service-path> Stops the checker.

transceiver_channel_rx_get_eye_viewer_ph
ase_step

<service-path> (Stratix V only) Gets the current
phase step of the channel you
specify.

transceiver_channel_rx_set_pattern <service-path> <pattern-
name>

Sets the expected pattern to the
one specified by the pattern
name.

transceiver_channel_rx_is_eye_viewer_ena
bled

<service-path> (Stratix V only) Reports whether
the Eye Viewer feature is enabled
on the channel you specify.

transceiver_channel_rx_set_eye_viewer_en
abled

<service-path> <disable(0)/
enable(1)>

(Stratix V only) Enables or
disables the Eye Viewer feature
on the channel you specify.

transceiver_channel_rx_set_eye_viewer_ph
ase_step

<service-path> <phase step> (Stratix V only) Sets the phase
step of the channel you specify.

transceiver_channel_rx_set_word_aligner_
enabled

<service-path> <disable(0)/
enable(1)>

Enables or disables the word
aligner of the channel you
specify.

transceiver_channel_rx_is_word_aligner_e
nabled

<service-path> <disable(0)/
enable(1)>

Reports whether the word aligner
feature is enabled on the channel
you specify.

transceiver_channel_rx_is_locked <service-path> Returns non-zero if the checker is
locked onto the incoming signal.

transceiver_channel_rx_is_rx_locked_to_d
ata

<service-path> Returns 1 if transceiver is in lock
to data (LTD) mode. Otherwise 0.

transceiver_channel_rx_is_rx_locked_to_r
ef

<service-path> Returns 1 if transceiver is in lock
to reference (LTR) mode.
Otherwise 0.

transceiver_channel_rx_has_eye_viewer_1d <service-path> (Stratix V only) Detects whether
the eye viewer in <service-path>
supports 1D-Eye Viewer mode.

transceiver_channel_rx_set_1deye_mode <service-path> <disable(0)/
enable(1)>

(Stratix V only) Enables or
disables 1D-Eye Viewer mode.

transceiver_channel_rx_get_1deye_mode <service-path> (Stratix V only) Returns whether
1D-Eye Viewer mode is on or off.

Table 47. Transceiver Toolkit channel_tx Commands

Command Arguments Function

transceiver_channel_tx_disable_preamble <service-path> Disables the preamble mode at
the beginning of generation.

transceiver_channel_tx_enable_preamble <service-path> Enables the preamble mode at
the beginning of generation.

transceiver_channel_tx_get_number_of_pre
amble_beats

<service-path> Returns the number of beats to
send out the preamble word.

transceiver_channel_tx_get_pattern <service-path> Returns the pattern.

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

transceiver_channel_tx_get_preamble_word <service-path> Returns the preamble word.

transceiver_channel_tx_get_preemph0t <service-path> Gets the pre-emphasis first pre-
tap value on the transmitter
channel.

transceiver_channel_tx_get_preemph1t <service-path> Gets the pre-emphasis first post-
tap value on the transmitter
channel.

transceiver_channel_tx_get_preemph2t <service-path> Gets the pre-emphasis second
post-tap value on the transmitter
channel.

transceiver_channel_tx_get_preemph3t <service-path> Gets the pre-emphasis second
pre-tap value on the transmitter
channel.

transceiver_channel_tx_get_vodctrl <service-path> Gets the VOD control value on the
transmitter channel.

transceiver_channel_tx_inject_error <service-path> Injects a 1-bit error into the
generator's output.

transceiver_channel_tx_is_generating <service-path> Returns non-zero if the generator
is running.

transceiver_channel_tx_is_preamble_enabl
ed

<service-path> Returns non-zero if preamble
mode is enabled.

transceiver_channel_tx_set_number_of_pre
amble_beats

<service-path> <number-of-
preamble-beats>

Sets the number of beats to send
out the preamble word.

transceiver_channel_tx_set_pattern <service-path> <pattern-
name>

Sets the output pattern to the
one specified by the pattern
name.

transceiver_channel_tx_set_preamble_word <service-path> <preamble-
word>

Sets the preamble word to be
sent out.

transceiver_channel_tx_set_preemph0t <service-path> <value> Sets the pre-emphasis first pre-
tap value on the transmitter
channel.

transceiver_channel_tx_set_preemph1t <service-path> <value> Sets the pre-emphasis first post-
tap value on the transmitter
channel.

transceiver_channel_tx_set_preemph2t <service-path> <value> Sets the pre-emphasis second
post-tap value on the transmitter
channel.

transceiver_channel_tx_set_preemph3t <service-path> <value> Sets the pre-emphasis second
pre-tap value on the transmitter
channel.

transceiver_channel_tx_set_vodctrl <service-path> <vodctrl
value>

Sets the VOD control value on the
transmitter channel.

transceiver_channel_tx_start_generation <service-path> Starts the generator.

transceiver_channel_tx_stop_generation <service-path> Stops the generator.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 48. Transceiver Toolkit Transceiver Toolkit debug_link Commands

Command Arguments Function

transceiver_debug_link_get_pattern <service-path> Gets the pattern the link uses to
run the test.

transceiver_debug_link_is_running <service-path> Returns non-zero if the test is
running on the link.

transceiver_debug_link_set_pattern <service-path> <data
pattern>

Sets the pattern the link uses to
run the test.

transceiver_debug_link_start_running <service-path> Starts running a test with the
currently selected test pattern.

transceiver_debug_link_stop_running <service-path> Stops running the test.

Table 49. Transceiver Toolkit reconfig_analog Commands

Command Arguments Function

transceiver_reconfig_analog_get_logic
al_channel_address

<service-path> Gets the transceiver logic channel
address currently set.

transceiver_reconfig_analog_get_rx_dc
gain

<service-path> Gets the DC gain value on the
receiver channel specified by the
current logic channel address.

transceiver_reconfig_analog_get_rx_eq
ctrl

<service-path> Gets the equalization control value
on the receiver channel specified by
the current logic channel address.

transceiver_reconfig_analog_get_tx_pr
eemph0t

<service-path> Gets the pre-emphasis first pre-tap
value on the transmitter channel
specified by the current logic
channel address.

transceiver_reconfig_analog_get_tx_pr
eemph1t

<service-path> Gets the pre-emphasis first post-
tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_get_tx_pr
eemph2t

<service-path> Gets the pre-emphasis second
post-tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_get_tx_vo
dctrl

<service-path> Gets the VOD control value on the
transmitter channel specified by the
current logic channel address.

transceiver_reconfig_analog_set_logic
al_channel_address

<service-path> <logic channel
address>

Sets the transceiver logic channel
address.

transceiver_reconfig_analog_set_rx_dc
gain

<service-path> <dc_gain
value>

Sets the DC gain value on the
receiver channel specified by the
current logic channel address

transceiver_reconfig_analog_set_rx_eq
ctrl

<service-path> <eqctrl value> Sets the equalization control value
on the receiver channel specified by
the current logic channel address.

transceiver_reconfig_analog_set_tx_pr
eemph0t

<service-path> <value> Sets the pre-emphasis first pre-tap
value on the transmitter channel
specified by the current logic
channel address.

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

transceiver_reconfig_analog_set_tx_pr
eemph1t

<service-path> < value> Sets the pre-emphasis first post-
tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_set_tx_pr
eemph2t

<service-path> <value> Sets the pre-emphasis second post-
tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_set_tx_vo
dctrl

<service-path> <vodctrl value> Sets the VOD control value on the
transmitter channel specified by the
current logic channel address.

Table 50. Transceiver Toolkit Decision Feedback Equalization (DFE) Commands

Command Arguments Function

alt_xcvr_reconfig_dfe_get_logical_channe
l_address

<service-path> Gets the logic channel address
that other
alt_xcvr_reconfig_dfe
commands use to apply.

alt_xcvr_reconfig_dfe_is_enabled <service-path> Reports whether the DFE feature
is enabled on the previously
channel you specify.

alt_xcvr_reconfig_dfe_set_enabled <service-path> <disable(0)/
enable(1)>

Enables or disables the DFE
feature on the previously channel
you specify.

alt_xcvr_reconfig_dfe_set_logical_channe
l_address

<service-path> <logic
channel address>

(Stratix V only) Sets the logic
channel address that other
alt_xcvr_reconfig_eye_vie
wer commands use.

alt_xcvr_reconfig_dfe_set_tap_value <service-path> <tap
position> <tap value>

Sets the tap value at the
previously channel you specify at
specified tap position and value.

Table 51. Transceiver Toolkit Eye Monitor Commands (Stratix V only)

Command Arguments Function

alt_xcvr_custom_is_word_aligner_enabled <service-path> <disable(0)/
enable(1)>

Reports whether the word aligner
feature is enabled on the
previously channel you specify.

alt_xcvr_custom_set_word_aligner_enabled <service-path> <disable(0)/
enable(1)>

Enables or disables the word
aligner of the previously channel
you specify.

alt_xcvr_custom_is_rx_locked_to_data <service-path> Returns whether the receiver CDR
is locked to data.

alt_xcvr_custom_is_rx_locked_to_ref <service-path> Returns whether the receiver CDR
PLL is locked to the reference
clock.

alt_xcvr_custom_is_serial_loopback_enabl
ed

<service-path> Returns whether the serial
loopback mode of the previously
channel you specify is enabled.

alt_xcvr_custom_set_serial_loopback_enab
led

<service-path> <disable(0)/
enable(1)>

Enables or disables the serial
loopback mode of the previously
channel you specify.

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

alt_xcvr_custom_is_tx_pll_locked <service-path> Returns whether the transmitter
PLL is locked to the reference
clock.

alt_xcvr_reconfig_eye_viewer_get_logical
_channel_address

<service-path> Gets the logic channel address on
which other
alt_reconfig_eye_viewer
commands use.

alt_xcvr_reconfig_eye_viewer_get_phase_s
tep

<service-path> Gets the current phase step of
the previously channel you
specify.

alt_xcvr_reconfig_eye_viewer_is_enabled <service-path> Reports whether the Eye Viewer
feature is enabled on the
previously channel you specify.

alt_xcvr_reconfig_eye_viewer_set_enabled <service-path> <disable(0)/
enable(1)>

Enables or disables the Eye
Viewer feature on the previously
channel you specify.
Setting a value of 2 enables both
Eye Viewer and the Serial Bit
Comparator.

alt_xcvr_reconfig_eye_viewer_set_logical
_channel_address

<service-path> <logic
channel address>

Sets the logic channel address
that other
alt_reconfig_eye_viewer
commands use.

alt_xcvr_reconfig_eye_viewer_set_phase_s
tep

<service-path> <phase step> Sets the phase step of the
previously channel you specify.

alt_xcvr_reconfig_eye_viewer_has_ber_che
cker

<service-path> Detects whether the eye viewer
pointed to by <service-path>
supports the Serial Bit
Comparator.

alt_xcvr_reconfig_eye_viewer_ber_checker
_is_enabled

<service-path> Detects whether the Serial Bit
Comparator is enabled.

alt_xcvr_reconfig_eye_viewer_ber_checker
_start

<service-path> Starts the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_stop

<service-path> Stops the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_reset_counters

<service-path> Resets the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_is_running

<service-path> Reports whether the Serial Bit
Comparator counters are
currently running or not.

alt_xcvr_reconfig_eye_viewer_ber_checker
_get_data

<service-path> Gets the current total bit, error
bit, and exception counts for the
Serial Bit Comparator.

alt_xcvr_reconfig_eye_viewer_has_1deye <service-path> Detects whether the eye viewer
pointed to by <service-path>
supports 1D-Eye Viewer mode.

alt_xcvr_reconfig_eye_viewer_set_1deye_m
ode

<service-path> <disable(0)/
enable(1)

Enables or disables 1D-Eye
Viewer mode.

alt_xcvr_reconfig_eye_viewer_get_1deye_m
ode

<service-path> Gets the enable or disabled state
of 1D-Eye Viewer mode.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 52. Channel Type Commands

Command Arguments Function

get_channel_type <service-path> <logical-
channel-num>

Reports the detected type (GX/GT) of channel <logical-channel-num
> for the reconfiguration block located at <service-path>.

set_channel_type <service-path> <logical-
channel-num> <channel-
type>

Overrides the detected channel type of channel <logical-channel-
num> for the reconfiguration block located at <service-path> to the
type specified (0:GX, 1:GT).

Table 53. Loopback Commands

Command Arguments Function

loopback_get <service-path> Returns the value of a setting or result on the loopback channel. Available results
include:
• Status—running or stopped.
• Bytes—number of bytes sent through the loopback channel.
• Errors—number of errors reported by the loopback channel.
• Seconds—number of seconds since the loopback channel was started.

loopback_set <service-path> Sets the value of a setting controlling the loopback channel. Some settings are only
supported by particular channel types. Available settings include:
• Timer—number of seconds for the test run.
• Size—size of the test data.
• Mode—mode of the test.

loopback_start <service-path> Starts sending data through the loopback channel.

loopback_stop <service-path> Stops sending data through the loopback channel.

3.13.2. Data Pattern Generator Commands

You can use Data Pattern Generator commands to control data patterns for debugging
transceiver channels. You must instantiate the Data Pattern Generator component to
support these commands.

Table 54. Soft Data Pattern Generator Commands

Command Arguments Function

data_pattern_generator_start <service-path> Starts the data pattern generator.

data_pattern_generator_stop <service-path> Stops the data pattern generator.

data_pattern_generator_is_generating <service-path> Returns non-zero if the generator is
running.

data_pattern_generator_inject_error <service-path> Injects a 1-bit error into the generator
output.

data_pattern_generator_set_pattern <service-path>
<pattern-name>

Sets the output pattern that <pattern-
name> specifies.

Value Description

• PRBS7
• PRBS15
• PRBS23
• PRBS31

Pseudo-random binary
sequences. PRBS files
are clear text, and you
can modify the PRBS
files.

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

Value Description

HF Outputs high frequency,
constant pattern of
alternating 0s and 1s

LF Outputs low frequency,
constant pattern of
10b’1111100000 for 10-
bit symbols and
8b’11110000 for 8-bit
symbols

data_pattern_generator_get_pattern <service-path> Returns currently selected output
pattern.

data_pattern_generator_get_available_patterns <service-path> Returns a list of available data patterns
by name.

data_pattern_generator_enable_preamble <service-path> Enables the preamble mode at the
beginning of generation.

data_pattern_generator_disable_preamble <service-path> Disables the preamble mode at the
beginning of generation.

data_pattern_generator_is_preamble_enabled <service-path> Returns a non-zero value if preamble
mode is enabled.

data_pattern_generator_set_preamble_word <preamble-
word>

Sets the preamble word (could be 32-bit
or 40-bit).

data_pattern_generator_get_preamble_word <service-path> Gets the preamble word.

data_pattern_generator_set_preamble_beats <service-
path><number-
of-preamble-
beats>

Sets the number of beats to send out in
the preamble word.

data_pattern_generator_get_preamble_beats <service-path> Returns the currently set number of
beats to send out in the preamble word.

data_pattern_generator_fcnter_start <service-
path><max-
cycles>

Sets the max cycle count and starts the
frequency counter.

data_pattern_generator_check_status <service-path> Queries the data pattern generator for
current status. Returns a bitmap
indicating the status, with bits defined
as follows:

Value Description

0 Enabled

1 Bypass enabled

2 Avalon

3 Sink ready

4 Source valid

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

Value Description

5 Frequency counter enabled

data_pattern_generator_fcnter_report <service-
path><force-
stop>

Reports the current measured clock
ratio, stopping the counting first
depending on <force-stop>.

Table 55. Hard Data Pattern Generator Commands

Command Arguments Function

hard_prbs_generator_start <service-path> Starts the generator that you specify.

hard_prbs_generator_stop <service-path> Stops the generator that you specify.

hard_prbs_generator_is_generating <service-path> Checks the generation status. Returns:

Value Description

0 Generating

1 Otherwise

hard_prbs_generator_set_pattern <service-path>
<pattern>

Sets the pattern of the hard PRBS generator
you specify to pattern.

hard_prbs_generator_get_pattern <service-path> Returns the current pattern for a given hard
PRBS generator.

hard_prbs_generator_get_available_patterns <service-path> Returns the available patterns for a given
hard PRBS generator.

3.13.3. Data Pattern Checker Commands

You can use Data Pattern Checker commands to verify your generated data patterns.
You must instantiate the Data Pattern Checker component to support these
commands.

Table 56. Soft Data Pattern Checker Commands

Command Arguments Function

data_pattern_checker_start <service-path> Starts the data pattern checker.

data_pattern_checker_stop <service-path> Stops the data pattern checker.

data_pattern_checker_is_checking <service-path> Returns a non-zero value if the checker is
running.

data_pattern_checker_is_locked <service-path> Returns non-zero if the checker is locked
onto the incoming data.

data_pattern_checker_set_pattern <service-path>
<pattern-name>

Sets the expected pattern to <pattern-
name>.

data_pattern_checker_get_pattern <service-path> Returns the currently selected expected
pattern by name.

data_pattern_checker_get_available_patterns <service-path> Returns a list of available data patterns by
name.

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Arguments Function

data_pattern_checker_get_data <service-path> Returns a list of the current checker data.
The results are in the following order:
number of bits, number of errors, and bit
error rate.

data_pattern_checker_reset_counters <service-path> Resets the bit and error counters inside
the checker.

data_pattern_checker_fcnter_start <service-
path><max-
cycles>

Sets the max cycle count and starts the
frequency counter.

data_pattern_checker_check_status <service-path>
<service-path>

Queries the data pattern checker for
current status. Returns a bitmap
indicating status:

Value Status

0 Enabled

1 Locked

2 Bypass enabled

3 Avalon

4 Sink ready

5 Source valid

6 Frequency counter enabled

data_pattern_checker_fcnter_report <service-
path><force-stop>

Reports the current measured clock ratio,
stopping the counting first depending on
<force-stop>.

Table 57. Hard Data Pattern Checker Commands

Command Arguments Function

hard_prbs_checker_start <service-path> Starts the specified hard PRBS checker.

hard_prbs_checker_stop <service-path> Stops the specified hard PRBS checker.

hard_prbs_checker_is_checking <service-path> Checks the running status of the specified
hard PRBS checker. Returns a non-zero value
if the checker is running.

hard_prbs_checker_set_pattern <service-path>
<pattern>

Sets the pattern of the specified hard PRBS
checker to parameter <pattern>.

hard_prbs_checker_get_pattern <service-path> Returns the current pattern for a given hard
PRBS checker.

hard_prbs_checker_get_available_patterns <service-path> Returns the available patterns for a given
hard PRBS checker.

hard_prbs_checker_get_data <service-path> Returns the current bit and error count data
from the specified hard PRBS checker.

hard_prbs_checker_reset_counters <service-path> Resets the bit and error counts of the
specified hard PRBS checker.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3.14. Debugging Transceiver Links Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.07.03 18.0.0 • Added Device Family column to table: Transceiver Toolkit Control Pane
Settings

2017.11.06 17.1.0 • Renamed EyeQ to Eye Viewer.
• Updated topic "Transceiver Debugging Flow" and renamed to

"Transceiver Debugging Flow Walkthrough".
• Updated instructions for instantiating and parameterizing Debug IP

cores.
— Removed figure: "Altera Debug Master Endpoint Block Diagram".

• Added step on programming designs as a part of the debugging flow.
• Updated information about debugging transceiver links for Intel Arria

10 devices.

2016.10.31 16.1.0 • Removed EyeQ support for Intel Arria 10.
• Renamed "Continuous Adaptation" to "Adaptation Enabled".

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
• Added description of new Refresh button.
• Added description of VGA dialog box.
• Added two tables in Transceiver Toolkit Commands section.

— Hard Data Pattern Generator Commands
— Hard Data Pattern Checker Commands

• Separated Arria 10 and Stratix V system configuration steps.

May 2015 15.0.0 • Added section about Implementation Differences Between Stratix V and
Arria 10.

• Added section about Recommended Flow for Arria 10 Transceiver
Toolkit Design with the Quartus II Software.

• Added section about Transceiver Toolkit Troubleshooting
• Updated the following sections with information about using the

Transceiver Toolkit with Arria 10 devices:
— Serial Bit Comparator Mode
— Arria 10 Support and Limitations
— Configuring BER Tests
— Configuring PRBS Signal Eye Tests
— Adapting Altera Design Examples
— Modifying Design Examples
— Configuring Custom Traffic Signal Eye Tests
— Configuring Link Optimization Tests
— Configuring PMA Analog Setting Control
— Running BER Tests
— Toolkit GUI Setting Reference

• Reworked Table: Transceiver Toolkit IP Core Configuration
• Replaced Figure: EyeQ Settings and Status Showing Results of Two Test

Runs with Figure: EyeQ Settings and Status Showing Results of Three
Test Runs.

• Added Figure: Arria 10 Altera Debug Master Endpoint Block Diagram.
• Added Figure: BER Test Configuration (Arria10/ Gen 10/ 20nm) Block

Diagram.
• Added Figure: PRBS Signal Test Configuration (Arria 10/ 20nm) Block

Diagram.
• Added Figure: Custom Traffic Signal Eye Test Configuration (Arria 10/

Gen 10/ 20nm) Block Diagram.

continued...   

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Version Intel Quartus
Prime Version

Changes

• Added Figure: PMA Analog Setting Control Configuration (Arria 10/ Gen
10/ 20nm) Block Diagram.

• Added Figure: One Channel Loopback Mode (Arria 10/ 20nm) Block
Diagram.

• Added Figure: Four Channel Loopback Mode (Arria 10/ Gen 10/ 20nm)
Block Diagram.

Software Version 15.0 Limitations
• Transceiver Toolkit supports EyeQ for Arria 10 designs.
• Supports optional hard acceleration for EyeQ. This allows for much

faster EyeQ data collection. Enable this in the Arria 10 Transceiver
Native PHY IP core under the Dynamic Configuration tab. Turn on
Enable ODI acceleration logic.

December, 2014 14.1.0 • Added section about Arria 10 support and limitations.

June, 2014 14.0.0 • Updated GUI changes for Channel Manager with popup menus, IP
Catalog, Quartus II, and Qsys.

• Added ADME and JTAG debug link info for Arria 10.
• Added instructions to run Tcl script from command line.
• Added heat map display option.
• Added procedure to use internal PLL to generate reconfig_clk.
• Added note stating RX CDR PLL status can toggle in LTD mode.

November, 2013 13.1.0 • Reorganization and conversion to DITA.

May, 2013 13.0.0 • Added Conduit Mode Support, Serial Bit Comparator, Required Files and
Tcl command tables.

November, 2012 12.1.0 • Minor editorial updates. Added Tcl help information and removed Tcl
command tables. Added 28-Gbps Transceiver support section.

August, 2012 12.0.1 • General reorganization and revised steps in modifying Altera example
designs.

June, 2012 12.0.0 • Maintenance release for update of Transceiver Toolkit features.

November, 2011 11.1.0 • Maintenance release for update of Transceiver Toolkit features.

May, 2011 11.0.0 • Added new Tcl scenario.

December, 2010 10.1.0 • Changed to new document template. Added new 10.1 release features.

August, 2010 10.0.1 • Corrected links.

July 2010 10.0.0 • Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

136

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


4. Quick Design Debugging Using Signal Probe
The Signal Probe incremental routing feature helps reduce the hardware verification
process and time-to-market for system-on-a-programmable-chip (SOPC) designs.
Easy access to internal device signals is important in the design or debugging process.
The Signal Probe feature makes design verification more efficient by routing internal
signals to I/O pins quickly without affecting the design. When you start with a fully
routed design, you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

The Signal Probe feature supports the Arria series, Cyclone series, MAX II, and Stratix
series device families.

Related Information

System Debugging Tools Overview on page 7

4.1. Design Flow Using Signal Probe

The Signal Probe feature allows you to reserve available pins and route internal signals
to those reserved pins, while preserving the behavior of your design. Signal Probe is
an effective debugging tool that provides visibility into your FPGA.

You can reserve pins for Signal Probe and assign I/O standards after a full compilation.
Each Signal Probe-source to Signal Probe-pin connection is implemented as an
engineering change order (ECO) that is applied to your netlist after a full compilation.

To route the internal signals to the device’s reserved pins for Signal Probe, perform
the following tasks:

1. Perform a full compilation.

2. Reserve Signal Probe Pins.

3. Assign Signal Probe sources.

4. Add registers between pipeline paths and Signal Probe pins.

5. Perform a Signal Probe compilation.

6. Analyze the results of a Signal Probe compilation.

4.1.1. Perform a Full Compilation

You must complete a full compilation to generate an internal netlist containing a list of
internal nodes to probe.

To perform a full compilation, on the Processing menu, click Start Compilation.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


4.1.2. Reserve Signal Probe Pins

Signal Probe pins can only be reserved after a full compilation. You can also probe any
unused I/Os of the device. Assigning sources is a simple process after reserving Signal
Probe pins. The sources for Signal Probe pins are the internal nodes and registers in
the post-compilation netlist that you want to probe.

Note: Although you can reserve Signal Probe pins using many features within the Intel
Quartus Prime software, including the Pin Planner and the Tcl interface, you should
use the Signal Probe Pins dialog box to create and edit your Signal Probe pins.

4.1.3. Assign Signal Probe Sources

A Signal Probe source can be any combinational node, register, or pin in your post-
compilation netlist. To find a Signal Probe source, in the Node Finder, use the Signal
Probe filter to remove all sources that cannot be probed. You might not be able to find
a particular internal node because the node can be optimized away during synthesis,
or the node cannot be routed to the Signal Probe pin. For example, you cannot probe
nodes and registers within Gigabit transceivers in Stratix IV devices because there are
no physical routes available to the pins.

Note: To probe virtual I/O pins generated in low-level partitions in an incremental
compilation flow, select the source of the logic that feeds the virtual pin as your Signal
Probe source pin.

Because Signal Probe pins are implemented and routed as ECOs, turning the Signal
Probe enable option on or off is the same as selecting Apply Selected Change or
Restore Selected Change in the Change Manager window. If the Change Manager
window is not visible at the bottom of your screen, on the View menu, point to Utility
Windows and click Change Manager.

4.1.4. Add Registers Between Pipeline Paths and Signal Probe Pins

You can specify the number of registers placed between a Signal Probe source and a
Signal Probe pin. The registers synchronize data to a clock and control the latency of
the Signal Probe outputs. The Signal Probe feature automatically inserts the number
of registers specified into the Signal Probe path.

The figure shows a single register between the Signal Probe source Reg_b_1 and
Signal Probe Signal Probe_Output_2 output pin added to synchronize the data
between the two Signal Probe output pins.

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Note: When you add a register to a Signal Probe pin, the Signal Probe compilation attempts
to place the register to best meet timing requirements. You can place Signal Probe
registers either near the Signal Probe source to meet fMAX requirements, or near the
I/O to meet tCO requirements.

Figure 39. Synchronizing Signal Probe Outputs with a Signal Probe Register

Reg_b_1

SignalProbe
Pipeline
Register

SignalProbe_Output_1

SignalProbe_Output_2

D Q

DFF

Reg_b_2

D Q

DFF

D Q

D Q

DFF

Reg_a_1

D Q

DFF
Reg_a_2

Logic

Logic

Logic

Logic

In addition to clock input for pipeline registers, you can also specify a reset signal pin
for pipeline registers. To specify a reset pin for pipeline registers, use the Tcl command
make_sp.

4.1.5. Perform a Signal Probe Compilation

Perform a Signal Probe compilation to route your Signal Probe pins. A Signal Probe
compilation saves and checks all netlist changes without recompiling the other parts of
the design. A Signal Probe compilation takes a fraction of the time of a full compilation
to finish. The design’s current placement and routing are preserved.

To perform a Signal Probe compilation, on the Processing menu, point to Start and
click Start Signal Probe Compilation.

4.1.6. Analyze the Results of a Signal Probe Compilation

After a Signal Probe compilation, the results are available in the compilation report
file. Each Signal Probe pin is displayed in the Signal Probe Fitting Result page in
the Fitter section of the Compilation Report. To view the status of each Signal Probe
pin in the Signal Probe Pins dialog box, on the Tools menu, click Signal Probe Pins.

The status of each Signal Probe pin appears in the Change Manager window. If the
Change Manager window is not visible at the bottom of your GUI, from the View
menu, point to Utility Windows and click Change Manager.

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 40. Change Manager Window with Signal Probe Pins

To view the timing results of each successfully routed Signal Probe pin, on the
Processing menu, point to Start and click Start Timing Analysis.

Related Information

Engineering Change Management with the Chip Planner
In Intel Quartus Prime Standard Edition User Guide: Design Optimization

4.1.7. What a Signal Probe Compilation Does

After a full compilation, you can start a Signal Probe compilation either manually or
automatically. A Signal Probe compilation performs the following functions:

• Validates Signal Probe pins

• Validates your specified Signal Probe sources

• Adds registers into Signal Probe paths, if applicable

• Attempts to route from Signal Probe sources through registers to Signal Probe
pins

To run the Signal Probe compilation immediately after a full compilation, on the Tools
menu, click Signal Probe Pins. In the Signal Probe Pins dialog box, click Start
Check & Save All Netlist Changes.

To run a Signal Probe compilation manually after a full compilation, on the Processing
menu, point to Start and click Start Signal Probe Compilation.

Note: You must run the Fitter before a Signal Probe compilation. The Fitter generates a list
of all internal nodes that can serve as Signal Probe sources.

Turn the Signal Probe enable option on or off in the Signal Probe Pins dialog box
to enable or disable each Signal Probe pin.

4.1.8. Understanding the Results of a Signal Probe Compilation

After a Signal Probe compilation, the results appear in two sections of the compilation
report file. The fitting results and status of each Signal Probe pin appears in the
Signal Probe Fitting Result screen in the Fitter section of the Compilation Report.

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

140

https://www.intel.com/content/www/us/en/programmable/documentation/zov1529446404644.html#mwh1410471341583
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 58. Status Values  

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

Failed to Route Failed routing during last Signal Probe compilation

Need to Compile Assignment changed since last Signal Probe compilation

Figure 41. Signal Probe Fitting Results Page in the Compilation Report Window

The Signal Probe source to output delays screen in the Timing Analysis section of
the Compilation Report displays the timing results of each successfully routed Signal
Probe pin.

Figure 42. Signal Probe Source to Output Delays Page in the Compilation Report Window

Note: After a Signal Probe compilation, the processing screen of the Messages window also
provides the results for each Signal Probe pin and displays slack information for each
successfully routed Signal Probe pin.

4.1.8.1. Analyzing Signal Probe Routing Failures

A Signal Probe compilation can fail for any of the following reasons:

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Route unavailable—the Signal Probe compilation failed to find a route from the
Signal Probe source to the Signal Probe pin because of routing congestion.

• Invalid or nonexistent Signal Probe source—you entered a Signal Probe
source that does not exist or is invalid.

• Unusable output pin—the output pin selected is found to be unusable.

Routing failures can occur if the Signal Probe pin’s I/O standard conflicts with other
I/O standards in the same I/O bank.

If routing congestion prevents a successful Signal Probe compilation, you can allow
the compiler to modify routing to the specified Signal Probe source. On the Tools
menu, click Signal Probe Pins and turn on Modify latest fitting results during
Signal Probe compilation. This setting allows the Fitter to modify existing routing
channels used by your design.

Note: Turning on Modify latest fitting results during Signal Probe compilation can
change the performance of your design.

4.2. Scripting Support

You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Intel Quartus Prime command-line and
Tcl API Help browser. To run the Help browser, type the following command at the
command prompt:

quartus_sh --qhelp

Note: The Tcl commands in this section are part of the ::quartus::chip_planner Intel
Quartus Prime Tcl API. Source or include the ::quartus::chip_planner Tcl
package in your scripts to make these commands available.

Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

4.2.1. Making a Signal Probe Pin

To make a Signal Probe pin, type the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src_name <source name>

4.2.2. Deleting a Signal Probe Pin

To delete a Signal Probe pin, type the following Tcl command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name>

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

142

https://www.intel.com/content/www/us/en/programmable/documentation/jeb1529967983176.html#mwh1410471013439
https://www.intel.com/content/www/us/en/programmable/documentation/jeb1529967983176.html#mwh1410470998554
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


4.2.3. Enabling a Signal Probe Pin

To enable a Signal Probe pin, type the following Tcl command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name>

4.2.4. Disabling a Signal Probe Pin

To disable a Signal Probe pin, type the following Tcl command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name>

4.2.5. Performing a Signal Probe Compilation

To perform a Signal Probe compilation, type the following command:

quartus_sh --flow signalprobe <project name>

4.2.5.1. Script Example

The example shows a script that creates a Signal Probe pin called sp1 and connects
the sp1 pin to source node reg1 in a project that was already compiled.

 Creating a Signal Probe Pin Called sp1

package require ::quartus::chip_planner
project_open project
read_netlist
make_sp -pin_name sp1 -src_name reg1
check_netlist_and_save
project_close

4.2.6. Reserving Signal Probe Pins

To reserve a Signal Probe pin, add the commands shown in the example to the Intel
Quartus Prime Settings File (.qsf) for your project.

 Reserving a Signal Probe Pin

set_location_assignment <location> -to <Signal Probe pin name>
set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <Signal Probe pin name>

Valid locations are pin location names, such as Pin_A3.

4.2.6.1. Common Problems When Reserving a Signal Probe Pin

If you cannot reserve a Signal Probe pin in the Intel Quartus Prime software, it is likely
that one of the following is true:

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• You have selected multiple pins.

• A compilation is running in the background. Wait until the compilation is complete
before reserving the pin.

• You have the Intel Quartus Prime Lite Edition software, in which the Signal Probe
feature is not enabled by default.

• You have not set the pin reserve type to As Signal Probe Output. To reserve a
pin, on the Assignments menu, in the Assign Pins dialog box, select As Signal
Probe Output.

• The pin is reserved from a previous compilation. During a compilation, the Intel
Quartus Prime software reserves each pin on the targeted device. If you end the
Intel Quartus Prime process during a compilation, for example, with the Windows
Task Manager End Process command or the UNIX kill command, perform a
full recompilation before reserving pins as Signal Probe outputs.

• The pin does not support the Signal Probe feature. Select another pin.

• The current device family does not support the Signal Probe feature.

4.2.7. Adding Signal Probe Sources

• To assign the node name to a Signal Probe pin, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_SOURCE <node name> \
                        -to <signalprobe pin name>

• To turn off individual Signal Probe pins, specify OFF instead of ON with the
following command:

set_instance_assignment -name SIGNALPROBE_ENABLE ON \
                -to <Signal Probe pin name>

4.2.8. Assigning I/O Standards

• To assign an I/O standard to a pin, type the following Tcl command:

set_instance_assignment -name IO_STANDARD <I/O standard> -to <Signal Probe 
pin name>

Related Information

I/O Standards Definition
In Intel Quartus Prime Help

4.2.9. Adding Registers for Pipelining

To add registers for pipelining, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_CLOCK <clock name> \
-to <Signal Probe pin name>

set_instance_assignment -name SIGNALPROBE_NUM_REGISTERS <number of registers> \
-to <Signal Probe pin name>

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

144

http://quartushelp.altera.com/current/#reference/glossary/def_iostandard.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


4.2.10. Running Signal Probe Immediately After a Full Compilation

To run Signal Probe immediately after a full compilation, type the following Tcl
command:

set_global_assignment -name SIGNALPROBE_DURING_NORMAL_COMPILATION ON

4.2.11. Running Signal Probe Manually

To run Signal Probe as part of a scripted flow using Tcl, use the following in your
script:

execute_flow -signalprobe

To perform a Signal Probe compilation interactively at a command prompt, type the
following command:

quartus_sh_fit --flow signalprobe <project name>

4.2.12. Enabling or Disabling All Signal Probe Routing

Use the Tcl command in the example to turn on or turn off Signal Probe routing. When
using this command, to turn Signal Probe routing on, specify ON. To turn Signal Probe
routing off, specify OFF.

 Turning Signal Probe On or Off with Tcl Commands

set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {
   set signalprobe_pin_name [lindex $asgn 2]
   set_instance_assignment -name SIGNALPROBE_ENABLE \
-to $signalprobe_pin_name <ON|OFF> }

4.2.13. Allowing Signal Probe to Modify Fitting Results

To turn on Modify latest fitting results, type the following Tcl command:

set_global_assignment -name SIGNALPROBE_ALLOW_OVERUSE ON

4.3. Quick Design Debugging Using Signal Probe Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Dita conversion.

May 2013 13.0.0 Changed sequence of flow to clarify that you need to perform a full
compilation before reserving Signal Probe pins. Affected sections are
“Debugging Using the Signal Probe Feature” on page 12–1 and “Reserving
Signal Probe Pins” on page 12–2. Moved “Performing a Full Compilation”
on page 12–2 before “Reserving Signal Probe Pins” on page 12–2.

continued...   

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Version Intel Quartus
Prime Version

Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Revised for new UI.
• Removed section Signal Probe ECO flows
• Removed support for Signal Probe pin preservation when recompiling

with incremental compilation turned on.
• Removed outdated FAQ section.
• Added links to Quartus II Help for procedural content.

November 2009 9.1.0 • Removed all references and procedures for APEX devices.
• Style changes.

March 2009 9.0.0 • Removed the “Generate the Programming File” section
• Removed unnecessary screenshots
• Minor editorial updates

November 2008 8.1.0 • Modified description for preserving Signal Probe connections when
using Incremental Compilation

• Added plausible scenarios where Signal Probe connections are not
reserved in the design

May 2008 8.0.0 • Added “Arria GX” to the list of supported devices
• Removed the “On-Chip Debugging Tool Comparison” and replaced with

a reference to the Section V Overview on page 13–1
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

146

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5. Design Debugging with the Signal Tap Logic Analyzer

5.1. The Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer captures and displays real-time signal behavior in an
FPGA design, allowing to examine the behavior of internal signals during normal
device operation without the need for extra I/O pins or external lab equipment.

To facilitate the debugging process, you can save the captured data in device memory
for later analysis. You can also filter data that is not relevant for debug by defining
custom trigger-condition logic. The Signal Tap Logic Analyzer supports the highest
number of channels, largest sample depth, and fastest clock speeds of any logic
analyzer in the programmable logic market.

Figure 43. Signal Tap Logic Analyzer Block Diagram

Design Logic

1 2 30

1 2 30

Signal Tap
Instances

Intel FPGA
Programming

Hardware

Quartus Prime
Software

Buffers (Device Memory)

FPGA Device

JTAG
Hub

Note to figure:

1. This diagram assumes that you compiled the Signal Tap Logic Analyzer with the
design as a separate design partition using the Intel Quartus Prime incremental
compilation feature. If you do not use incremental compilation, the Compiler
integrates the Signal Tap logic with the design.

The Signal Tap Logic Analyzer is available as a stand-alone package or with a software
subscription.

To take advantage of faster compile times when making changes to the Signal Tap
Logic Analyzer, knowledge of the Intel Quartus Prime incremental compilation feature
is helpful.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


5.1.1. Hardware and Software Requirements

You need the following hardware and software to perform logic analysis with the
Signal Tap Logic Analyzer:

• Signal Tap Logic Analyzer

The following software includes the Signal Tap Logic Analyzer:

— Intel Quartus Prime Design Software

— Intel Quartus Prime Lite Edition

Alternatively, use the Signal Tap Logic Analyzer standalone software and
standalone Programmer software.

• Download/upload cable

• Intel development kit or your design board with JTAG connection to device under
test

Note: The Intel Quartus Prime Lite Edition software does not support incremental
compilation integration with the Signal Tap Logic Analyzer.

During data acquisition, the memory blocks in the device store the captured data, and
then transfer the data to the logic analyzer over a JTAG communication cable, such as 
or Intel FPGA Download Cable.

5.1.1.1. Opening the Standalone Signal Tap Logic Analyzer GUI

1. To open a new Signal Tap through the command-line, type:

quartus_stpw <stp_file.stp>

5.1.2. Signal Tap Logic Analyzer Features and Benefits

Feature Benefit

Quick access toolbar Provides single-click operation of commonly-used menu items. You
can hover over the icons to see tool tips.

Multiple logic analyzers in a single device Allows you to capture data from multiple clock domains in a design at
the same time.

Multiple logic analyzers in multiple devices in a
single JTAG chain

Allows you to capture data simultaneously from multiple devices in a
JTAG chain.

Nios II plug-in support Allows you to specify nodes, triggers, and signal mnemonics for IP,
such as the Nios II processor.

Up to 10 basic, comparison, or advanced trigger
conditions for each analyzer instance

Allows you to send complex data capture commands to the logic
analyzer, providing greater accuracy and problem isolation.

Power-up trigger Captures signal data for triggers that occur after device programming,
but before manually starting the logic analyzer.

Custom trigger HDL object You can code your own trigger in Verilog HDL or VHDL and tap specific
instances of modules located anywhere in the hierarchy of your
design, without needing to manually route all the necessary
connections. This simplifies the process of tapping nodes spread out
across your design.

State-based triggering flow Enables you to organize your triggering conditions to precisely define
what your logic analyzer captures.

continued...   

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Feature Benefit

Incremental compilation Allows you to modify the signals and triggers that the Signal Tap Logic
Analyzer monitors without performing a full compilation, saving time.

Incremental route with rapid recompile Allows you to manually allocate trigger input, data input, storage
qualifier input, and node count, and perform a full compilation to
include the Signal Tap Logic Analyzer in your design. Then, you can
selectively connect, disconnect, and swap to different nodes in your
design. Use Rapid Recompile to perform incremental routing and gain
a 2-4x speedup over the initial full compilation.

Flexible buffer acquisition modes The buffer acquisition control allows you to precisely control the data
that is written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard
data samples that are not relevant to the debugging of your design.

MATLAB integration with included MEX function Collects the data the Signal Tap Logic Analyzer captures into a
MATLAB integer matrix.

Up to 2,048 channels per logic analyzer instance Samples many signals and wide bus structures.

Up to 128K samples per instance Captures a large sample set for each channel.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving
the logic under test.

Resource usage estimator Provides an estimate of logic and memory device resources that the
Signal Tap Logic Analyzer configurations use.

No additional cost Intel Quartus Prime subscription and the Intel Quartus Prime Lite
Edition include the Signal Tap Logic Analyzer.

Compatibility with other on-chip debugging
utilities

You can use the Signal Tap Logic Analyzer in tandem with any JTAG-
based on-chip debugging tool, such as an In-System Memory Content
editor, allowing you to change signal values in real-time while you are
running an analysis with the Signal Tap Logic Analyzer.

Floating-Point Display Format To enable, click Edit ➤ Bus Display Format ➤ Floating-point
Supports:
• Single-precision floating-point format IEEE754 Single (32-bit).
• Double-precision floating-point format IEEE754 Double (64-bit).

Related Information

System Debugging Tools Overview on page 7

5.1.3. Backward Compatibility with Previous Versions of Intel Quartus
Prime Software

When you open an .stp file created in a previous version of Intel Quartus Prime
software in a newer version of the software, the .stp file cannot be opened in a
previous version of the Intel Quartus Prime software.

If you have a Intel Quartus Prime project file from a previous version of the software,
you may have to update the .stp configuration file to recompile the project. You can
update the configuration file by opening the Signal Tap Logic Analyzer. If you need to
update your configuration, a prompt appears asking if you want to update the .stp to
match the current version of the Intel Quartus Prime software.

5.2. Signal Tap Logic Analyzer Task Flow Overview

To use the Signal Tap Logic Analyzer to debug your design, you perform a number of
tasks to add, configure, and run the logic analyzer.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 44. Signal Tap Logic Analyzer Task Flow

End

Yes

NoFunctionality
Satisfied or Bug

Fixed?

Add Signal Tap Logic  
Analyzer to Design Instance

Configure
Signal Tap Logic Analyzer

Program Target
Device or Devices

View, Analyze, and
Use Captured Data

Define Triggers

Run Signal Tap  
Logic Analyzer

Adjust Options, 
Triggers, or Both

Continue Debugging

Recompilation
Necessary?

Yes

Create New Project or
Open Existing Project

NoCompile Design

No

5.2.1. Add the Signal Tap Logic Analyzer to Your Design

Create an .stp or create a parameterized HDL instance representation of the logic
analyzer using the IP Catalog and parameter editor. If you want to monitor multiple
clock domains simultaneously, add additional instances of the logic analyzer to your
design, limited only by the available resources in your device.

5.2.2. Configure the Signal Tap Logic Analyzer

After you add the Signal Tap Logic Analyzer to your design, configure the logic
analyzer to monitor the signals you want.

You can add signals manually or use a plug-in, such as the Nios II processor plug-in,
to add entire sets of associated signals for a particular IP.

Specify settings for the data capture buffer, such as its size, the method in which the
Signal Tap Logic Analyzer captures and stores the data. If your device supports
memory type selection, you can specify the memory type to use for the buffer.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

Configuring the Signal Tap Logic Analyzer on page 152

5.2.3. Define Trigger Conditions

By default, the Signal Tap Logic Analyzer captures data continuously while the logic
analyzer is running. To capture and store specific signal data you can set up triggers
that specify conditions to start or stop capturing data.

The Signal Tap Logic Analyzer allows you to define trigger conditions that range from
very simple, such as the rising edge of a single signal, to very complex, involving
groups of signals, extra logic, and multiple conditions. Power-Up Triggers allow you to
capture data from trigger events occurring immediately after the device enters user-
mode after configuration.

Related Information

Defining Triggers on page 171

5.2.4. Compile the Design

Once you configure the .stp file and define trigger conditions, compile your project
including the logic analyzer in your design.

Note: Because you may need to change monitored signal nodes or adjust trigger settings
frequently during debugging, Intel FPGA recommends that you use the incremental
compilation feature built into the Signal Tap Logic Analyzer, along with Intel Quartus
Prime incremental compilation, to reduce recompile times. You can also use
Incremental Route with Rapid Recompile to reduce recompile times.

Related Information

Compiling the Design on page 196

5.2.5. Program the Target Device or Devices

When you debug a design with the Signal Tap Logic Analyzer, you can program a
target device directly from the .stp without using the Intel Quartus Prime
Programmer. You can also program multiple devices with different designs and
simultaneously debug them.

Related Information

• Program the Target Device or Devices on page 201

• Manage Multiple Signal Tap Files and Configurations on page 169

5.2.6. Run the Signal Tap Logic Analyzer

In normal device operation, you control the logic analyzer through the JTAG
connection, specifying when to start looking for trigger conditions to begin capturing
data. With Runtime or Power-Up Triggers, read and transfer the captured data from
the on-chip buffer to the .stp for analysis.

Related Information

Running the Signal Tap Logic Analyzer on page 202

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.2.7. View, Analyze, and Use Captured Data

The data you capture and read into the .stp file is available for analysis and
debugging. You can save the data for later analysis, or convert the data to other
formats for sharing and further study.

• To simplify reading and interpreting the signal data you capture, set up mnemonic
tables, either manually or with a plug-in.

• To speed up debugging, use the Locate feature in the Signal Tap node list to
find the locations of problem nodes in other tools in the Intel Quartus Prime
software.

Related Information

View, Analyze, and Use Captured Data on page 206

5.3. Configuring the Signal Tap Logic Analyzer

You configure instances of the Signal Tap Logic Analyzer in the Signal Configuration
pane of the Signal Tap Logic Analyzer window.

Figure 45. Signal Tap Logic Analyzer Signal Configuration Pane

Signal Configuration Pane

5.3.1. Assigning an Acquisition Clock

To control how the Signal Tap Logic Analyzer acquires data you must assign a clock
signal. The logic analyzer samples data on every positive (rising) edge of the
acquisition clock. The logic analyzer does not support sampling on the negative
(falling) edge of the acquisition clock.

You can use any signal in your design as the acquisition clock. However, for best
results in data acquisition, use a global, non-gated clock that is synchronous to the
signals under test. Using a gated clock as your acquisition clock can result in
unexpected data that does not accurately reflect the behavior of your design. The Intel
Quartus Prime static timing analysis tools show the maximum acquisition clock
frequency at which you can run your design. To find the maximum frequency of the
logic analyzer clock, refer to the Timing Analysis section of the Compilation Report.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Caution: Be careful when using a recovered clock from a transceiver as an acquisition clock for
the Signal Tap Logic Analyzer. A recovered clock can cause incorrect or unexpected
behavior, particularly when the transceiver recovered clock is the acquisition clock with
the power-up trigger feature.

If you do not assign an acquisition clock in the Signal Tap Logic Analyzer Editor, Intel
Quartus Prime software automatically creates a clock pin called
auto_stp_external_clk. You must make a pin assignment to this pin, and make
sure that a clock signal in your design drives the acquisition clock.

Related Information

• Adding Signals with a Plug-In on page 156

• Managing Device I/O Pins
In Intel Quartus Prime Standard Edition Handbook Volume 2

5.3.2. Adding Signals to the Signal Tap File

Add the signals that you want to monitor to the .stp node list. You can also select
signals to define triggers. You can assign the following two signal types:

• Pre-synthesis—These signals exist after design elaboration, but before any
synthesis optimizations are done. This set of signals must reflect your Register
Transfer Level (RTL) signals.

• Post-fitting—These signals exist after physical synthesis optimizations and place-
and-route.

Note: If you are not using incremental compilation, add only pre-synthesis signals to
the .stp. Using pre-synthesis helps when you want to add a new node after you
change a design. After you perform Analysis and Elaboration, the source file changes
appear in the Node Finder.

Intel Quartus Prime software does not limit the number of signals available for
monitoring in the Signal Tap window waveform display. However, the number of
channels available is directly proportional to the number of logic elements (LEs) or
adaptive logic modules (ALMs) in the device. Therefore, there is a physical restriction
on the number of channels that are available for monitoring. Signals shown in blue
text are post-fit node names. Signals shown in black text are pre-synthesis node
names.

After successful Analysis and Elaboration, invalid signals appear in red. Unless you are
certain that these signals are valid, remove them from the .stp file for correct
operation. The Signal Tap Status Indicator also indicates if an invalid node name exists
in the .stp file.

You can tap signals if a routing resource (row or column interconnects) exists to route
the connection to the Signal Tap instance. For example, you cannot tap signals that
exist in the I/O element (IOE), because there are no direct routing resources from the
signal in an IOE to a core logic element. For input pins, you can tap the signal that is
driving a logic array block (LAB) from an IOE, or, for output pins, you can tap the
signal from the LAB that is driving an IOE.

Related Information

• Faster Compilations with Intel Quartus Prime Incremental Compilation on page
196

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

153

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410471036713
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Setup Tab (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

5.3.2.1. Pre-Synthesis Signals

When you add pre-synthesis signals, make all connections to the Signal Tap Logic
Analyzer before synthesis. The Compiler allocates logic and routing resources to make
the connection as if you changed your design files. For signals driving to and from
IOEs, pre-synthesis signal names coincide with the pin's signal names.

5.3.2.2. Post-Fit Signals

When you tap post-fit signals, you are connecting to actual atoms in the post-fit
netlist. You can only tap signals that exist in the post-fit netlist, and existing routing
resources must be available.

In the case of post-fit output signals, tap the COMBOUT or REGOUT signal that drives
the IOE block. For post-fit input signals, signals driving into the core logic coincide
with the pin's signal name.

Note: Because NOT-gate push back applies to any register that you tap, the signal from the
atom may be inverted. You can check this by locating the signal in either the Resource
Property Editor or the Technology Map Viewer. You can also use the Technology Map
viewer and the Resource Property Editor to find post-fit node names.

Related Information

Design Flow with the Netlist Viewers
In Intel Quartus Prime Standard Edition Handbook Volume 1

5.3.2.2.1. Assigning Data Signals with the Technology Map Viewer

The Technology Map Viewer allows you to to add post-fit signal.

1. After compilation, launch the Technology Map Viewer from the Intel Quartus
Prime software, by clicking Tools ➤ Netlist Viewers ➤ Technology Map
Viewer (Post-Fitting).

2. Find the node that you want to tap.

3. Copy the node to either the active .stp for the design or a new .stp.

5.3.2.3. Signal Preservation

The Intel Quartus Prime software provides synthesis attributes that prevent the
Compiler from performing optimizations on specific signals, allowing them to persist
into the post-fit netlist.

The Intel Quartus Prime software optimizes the RTL signals during synthesis and
place-and-route. RTL signal names may not appear in the post-fit netlist after
optimizations.

The optimization attributes are:

• keep—Prevents removal of combinational signals during optimization.

• preserve—Prevents removal of registers during optimization.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

154

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_setup.htm
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409960091007
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


However, preserving attributes can increase device resource utilization or decrease
timing performance.

Note: These processing results can cause problems with the incremental compilation flow in
Signal Tap Logic Analyzer. Because you can only add post-fitting signals to the Signal
Tap Logic Analyzer in partitions of type post-fit, RTL signals that you want to monitor
may not be available, preventing their use. To avoid this issue, add synthesis
attributes that preserve signals during synthesis and place-and-route.

Preserving nodes is often necessary when you add groups of signals for an IP with a
plug-in. If you are debugging an encrypted IP core, such as the Nios II CPU, you
might need to preserve nodes from the core to keep available for debugging with the
Signal Tap Logic Analyzer.

In incremental compilation flows, pre-synthesis nodes may not be connected to the
Signal Tap Logic Analyzer for post-fit partitions. Signal Tap issues a critical warning for
all pre-synthesis node names that do not exist in the post-fit netlist.

5.3.2.4. Node List Signal Use Options

When you add a signal to the node list, you can select options that specify how the
logic analyzer uses the signal.

To prevent a signal from triggering the analysis, disable the signal's Trigger Enable
option in the .stp file. This option is useful when you only want to see the signal's
captured data.

You can turn off the ability to view data for a signal by disabling the Data Enable
column in the .stp file. This option is useful when you want to trigger on a signal, but
have no interest in viewing that signal's data.

Related Information

Defining Triggers on page 171

5.3.2.4.1. Disabling and Enabling a Signal Tap Instance

Disable and enable Signal Tap instances in the Instance Manager pane. Physically
adding or removing instances requires recompilation after disabling and enabling a
Signal Tap instance.

5.3.2.5. Signals Unavailable for Signal Tap Debugging

Not all the post-fitting signals in your design are available in the Signal Tap: post-
fitting filter in the Node Finder dialog box.

You cannot tap any of the following signal types:

• Post-fit output pins—You cannot tap a post-fit output pin directly. To make an
output signal visible, tap the register or buffer that drives the output pin. This
includes pins defined as bidirectional.

• Signals that are part of a carry chain—You cannot tap the carry out (cout0 or
cout1) signal of a logic element. Due to architectural restrictions, the carry out
signal can only feed the carry in of another LE.

• JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS)
signals.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• ALTGXB IP core—You cannot directly tap any ports of an ALTGXB instantiation.

• LVDS—You cannot tap the data output from a serializer/deserializer (SERDES)
block.

• DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a DDR/DDRII
design.

5.3.3. Adding Signals with a Plug-In

Instead of adding individual or grouped signals through the Node Finder, you can use
a plug-in to add groups of relevant signals of a particular type of IP. Besides easy
signal addition, plug-ins provide features such as pre-designed mnemonic tables,
useful for trigger creation and data viewing, as well as the ability to disassemble code
in captured data. The Signal Tap Logic Analyzer comes with one plug-in for the Nios II
processor.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and
two tables in the Data tab:

• Nios II Instruction (Setup tab)—Capture all the required signals for triggering
on a selected instruction address.

• Nios II Instance Address (Data tab)—Display address of executed instructions
in hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

• Nios II Disassembly (Data tab)—Display disassembled code from the
corresponding address.

To add signals to the .stp file using a plug-in, perform the following steps after
running Analysis and Elaboration on your design:

1. To ensure that all the required signals are available, in the Intel Quartus Prime
software, click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Synthesis). Turn on Create debugging nodes for IP cores.
All the signals included in the plug-in are added to the node list.

2. Right-click the node list. On the Add Nodes with Plug-In submenu, select the
plug-in you want to use, such as the included plug-in named Nios II.
The Select Hierarchy Level dialog box appears showing the IP hierarchy of your
design. If the IP for the selected plug-in does not exist in your design, a message
informs you that you cannot use the selected plug-in.

3. Select the IP that contains the signals you want to monitor with the plug-in, and
click OK.

— If all the signals in the plug-in are available, a dialog box might appear,
depending on the plug-in, where you can specify options for the plug-in.

4. With the Nios II plug-in, you can optionally select an .elf containing program
symbols from your Nios II Integrated Development Environment (IDE) software
design. Specify options for the selected plug-in, and click OK.

Related Information

• Defining Triggers on page 171

• View, Analyze, and Use Captured Data on page 152

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.3.4. Adding Finite State Machine State Encoding Registers

Finding the signals to debug finite state machines (FSM) can be challenging. Finding
nodes from the post-fit netlist may be impossible, since the Compiler may change or
optimize away FSM encoding signals. To find and map FSM signal values to the state
names that you specified in your HDL, you must perform an additional step.

The Signal Tap Logic Analyzer can detect FSMs in your compiled design. The
configuration automatically tracks the FSM state signals as well as state encoding
through the compilation process.

To add all the FSM state signals to your logic analyzer with a single command Shortcut
menu commands allow you .

For each FSM added to your Signal Tap configuration, the FSM debugging feature adds
a mnemonic table to map the signal values to the state enumeration that you provided
in your source code. The mnemonic tables enable you to visualize state machine
transitions in the waveform viewer. The FSM debugging feature supports adding FSM
signals from both the pre-synthesis and post-fit netlists.

Figure 46. Decoded FSM Mnemonics
The waveform viewer with decoded signal values from a state machine added with the FSM debugging feature.

Related Information

State Machine HDL Guidelines
In Intel Quartus Prime Standard Edition Handbook Volume 1

5.3.4.1. Modify and Restore Mnemonic Tables for State Machines

Edit any mnemonic table using the Mnemonic Table Setup dialog box. When you
add FSM state signals via the FSM debugging feature, the Signal Tap Logic Analyzer
GUI creates a mnemonic table using the format <StateSignalName>_table, where
StateSignalName is the name of the state signals that you have declared in your
RTL.

If you want to restore a mnemonic table that was modified, right-click anywhere in the
node list window and select Recreate State Machine Mnemonics. By default,
restoring a mnemonic table overwrites the existing mnemonic table that you modified.
To restore a FSM mnemonic table to a new record, turn off Overwrite existing
mnemonic table in the Recreate State Machine Mnemonics dialog box.

Note: If you have added or deleted a signal from the FSM state signal group from within the
setup tab, delete the modified register group and add the FSM signals back again.

Related Information

Creating Mnemonics for Bit Patterns on page 209

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

157

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409959610054
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.3.4.2. Additional Considerations for State Machines in Signal Tap

• The Signal Tap configuration GUI recognizes state machines from your design only
if you use Intel Quartus Prime Integrated Synthesis. Conversely, the state machine
debugging feature is not able to track the FSM signals or state encoding if you use
other EDA synthesis tools.

• If you add post-fit FSM signals, the Signal Tap Logic Analyzer FSM debug feature
may not track all optimization changes that are a part of the compilation process.

• If the following two specific optimizations are enabled, the Signal Tap FSM debug
feature may not list mnemonic tables for state machines in the design:

— If you enabled the Physical Synthesis optimization, state registers may be
resource balanced (register retiming) to improve fMAX. The FSM debug feature
does not list post-fit FSM state registers if register retiming occurs.

— The FSM debugging feature does not list state signals that the Compiler
packed into RAM and DSP blocks during synthesis or Fitter optimizations.

• You can still use the FSM debugging feature to add pre-synthesis state signals.

Related Information

Enabling Physical Synthesis Optimization
In Intel Quartus Prime Standard Edition Handbook Volume 1

5.3.5. Specifying Sample Depth

The Sample depth setting specifies the number of samples the Signal Tap Logic
Analyzer captures and stores, for each signal in the captured data buffer.

To specify the sample depth:

1. Select the desired number in the Sample Depth drop-down menu.

The sample depth ranges from 0 to 128K.

In cases with limited device memory resources, the design may not be able to compile
due to the selected sample buffer size. Try reducing the sample depth to reduce
resource usage.

Related Information

Signal Configuration Pane (View Menu) (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

5.3.6. Capture Data to a Specific RAM Type

You have the option to select the RAM type where the Signal Tap Logic Analyzer stores
acquisition data. Once you allocate the Signal Tap Logic Analyzer buffer to a particular
RAM block, the entire RAM block becomes a dedicated resource for the logic analyzer.

RAM selection allows you to preserve a specific memory block for your design, and
allocate another portion of memory for Signal Tap Logic Analyzer data acquisition.

For example, if your design has an application that requires a large block of memory
resources, such as a large instruction or data cache, you can use MLAB, M512, or M4k
blocks for data acquisition and leave M9k blocks for the rest of your design.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

158

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#led1441830179619
http://http://quartushelp.altera.com/current/#mapIdTopics/mwh1465494383050.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To specify the RAM type to use for the Signal Tap Logic Analyzer buffer, go to the
Signal Configuration pane in the Signal Tap window, and select one Ram type
from the drop-down menu.

Use this feature only when the acquired data is smaller than the available memory of
the RAM type that you selected. The amount of data appears in the Signal Tap
resource estimator.

Related Information

Signal Configuration Pane (View Menu) (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

5.3.7. Select the Buffer Acquisition Mode

When you specify how the logic analyzer organizes the captured data buffer, you can
potentially reduce the amount of memory that Signal Tap requires for data acquisition.

There are two types of acquisition buffer within the Signal Tap Logic Analyzer—a non-
segmented (or circular) buffer and a segmented buffer.

• With a non-segmented buffer, the Signal Tap Logic Analyzer treats entire memory
space as a single FIFO, continuously filling the buffer until the logic analyzer
reaches a defined set of trigger conditions.

• With a segmented buffer, the memory space is split into separate buffers. Each
buffer acts as a separate FIFO with its own set of trigger conditions, and behaves
as a non-segmented buffer. Only a single buffer is active during an acquisition.
The Signal Tap Logic Analyzer advances to the next segment after the trigger
condition or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space.

Figure 47. Buffer Type Comparison in the Signal Tap Logic Analyzer
The figure illustrates the differences between the two buffer types.

Newly 
Captured
Data

Oldest Data
  Removed

Post-Trigger Pre-Trigger Center Trigger

1 1

All
Trigger Level

Segment 1 Segment 2 Segment 3 Segment 4

Segment
Trigger Level

1 1 ... 0 1 1 0 ... 0 1 1 1 ... 0 1 1 0 ... 0 1

0 0 1 0 0 1 0 1

Segment
Trigger Level

Segment
Trigger Level

1

(b) Segmented Buffer

(a) Circular Buffer

Both non-segmented and segmented buffers can use a preset trigger position (Pre-
Trigger, Center Trigger, Post-Trigger). Alternatively, you can define a custom trigger
position using the State-Based Triggering tab. Refer to Specify Trigger Position for
more details.

Related Information

• Specify Trigger Position on page 192

• Filtering Relevant Samples on page 161

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

159

http://http://quartushelp.altera.com/current/#mapIdTopics/mwh1465494383050.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.3.7.1. Non-Segmented Buffer

The non-segmented buffer is the default buffer type in the Signal Tap Logic Analyzer.

At runtime, the logic analyzer stores data in the buffer until the buffer fills up. From
that point on, new data overwrites the oldest data, until a specific trigger event
occurs. The amount of data the buffer captures after the trigger event depends on the
Trigger position setting:

• To capture most data before the trigger occurs, select Post trigger position from
the list

• To capture most data after the trigger, select Pre trigger position.

• To center the trigger position in the data, select Center trigger position.

Alternatively, use the custom State-based triggering flow to define a custom trigger
position within the capture buffer.

Related Information

Specify Trigger Position on page 192

5.3.7.2. Segmented Buffer

In a segmented buffer, the acquisition memory is split into segments of even size, and
you define a set of trigger conditions for each segment. Each segment acts as a non-
segmented buffer. A segmented buffer allows you to debug systems that contain
relatively infrequent recurring events.

If you want to have separate trigger conditions for each of the segmented buffers, you
must use the state-based trigger flow. The figure shows an example of a segmented
buffer system.

Figure 48. System that Generates Recurring Events
In this design, you want to ensure that the correct data is written to the SRAM controller by monitoring the
RDATA port whenever the address H'0F0F0F0F is sent into the RADDR port.

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]

WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers

(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals

With the buffer acquisition feature. you can monitor multiple read transactions from
the SRAM device without running the Signal Tap Logic Analyzer again, because you
split the memory to capture the same event multiple times, without wasting allocated
memory. The buffer captures as many cycles as the number of segments you define
under the Data settings in the Signal Configuration pane.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To enable and configure buffer acquisition, select Segmented in the Signal Tap Logic
Analyzer Editor and determine the number of segments to use. In the example in the
figure, selecting sixty-four 64-sample segments allows you to capture 64 read cycles.

Related Information

Capturing Data Using Segmented Buffers on page 206

5.3.8. Specifying Pipeline Settings

The Pipeline factor setting indicates the number of pipeline registers that the Intel
Quartus Prime software can add to boost the fMAX of the Signal Tap Logic Analyzer.

To specify the pipeline factor from the Signal Tap GUI:

• In the Signal Configuration pane, specify a pipeline factor ranging from 0 to 5.
The default value is 0.

Note: Setting the pipeline factor does not guarantee an increase in fMAX, as the pipeline
registers may not be in the critical paths.

5.3.8.1. Specifying Pipeline Settings from Platform Designer (Standard)

The Pipeline factor setting indicates the number of pipeline registers that you can
add to boost the fMAX of the Signal Tap Logic Analyzer. You can specify the pipeline
factor in the Signal Configuration pane. The pipeline factor ranges from 0 to 5, with
a default value of 0.

To specify the pipeline factor when you instantiate the Signal Tap Logic Analyzer
component from the Platform Designer (Standard) system:

1. Double-click Signal Tap Logic Analyzer component in the IP Catalog.

2. Specify the Pipeline Factor, along with other parameter values

Figure 49. Specifying the Pipeline Factor from Platform Designer (Standard)

5.3.9. Filtering Relevant Samples

The Storage Qualifier feature allows you to filter out individual samples not relevant to
debugging the design.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The Signal Tap Logic Analyzer offers a snapshot in time of the data stored in the
acquisition buffers. By default, the Signal Tap Logic Analyzer writes into acquisition
memory with data samples on every clock cycle. With a non-segmented buffer, there
is one data window that represents a comprehensive snapshot of the data stream.
Conversely, segmented buffers use several smaller sampling windows spread out over
more time, with each sampling window representing a contiguous data set.

With analysis using acquisition buffers you can capture most functional errors in a
chosen signal set, provided adequate trigger conditions and a generous sample depth
for the acquisition. However, each data window can have a considerable amount of
unnecessary data; for example, long periods of idle signals between data bursts. The
default behavior in the Signal Tap Logic Analyzer doesn't discard the redundant sample
bits.

The Storage Qualifier feature allows you to establish a condition that acts as a write
enable to the buffer during each clock cycle of data acquisition, thus allowing a more
efficient use of acquisition memory over a longer period of analysis.

Because you can create a discontinuity between any two samples in the buffer, the
Storage Qualifier feature is equivalent to creating a custom segmented buffer in which
the number and size of segment boundaries are adjustable.

Note: You can only use the Storage Qualifier feature with a non-segmented buffer. The IP
Catalog flow only supports the Input Port mode for the Storage Qualifier feature.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 50. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Notes to figure:

1. Non-segmented buffers capture a fixed sample window of contiguous data.

2. Segmented buffers divide the buffer into fixed sized segments, with each segment
having an equal sample depth.

3. Storage Qualifier allows you to define a custom sampling window for each
segment you create with a qualifying condition, thus potentially allowing a larger
time scale of coverage.

There are six storage qualifier types available under the Storage Qualifier feature:

• Continuous (default) Turns the Storage Qualifier off.

• Input port

• Transitional

• Conditional

• Start/Stop

• State-based

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 51. Storage Qualifier Settings

Upon the start of an acquisition, the Signal Tap Logic Analyzer examines each clock
cycle and writes the data into the buffer based upon the storage qualifier type and
condition. Acquisition stops when a defined set of trigger conditions occur.

The Signal Tap Logic Analyzer evaluates trigger conditions independently of storage
qualifier conditions.

Related Information

Define Trigger Conditions on page 151

5.3.9.1. Input Port Mode

When using the Input port mode, the Signal Tap Logic Analyzer takes any signal from
your design as an input. During acquisition, if the signal is high on the clock edge, the
Signal Tap Logic Analyzer stores the data in the buffer. If the signal is low on the clock
edge, the Logic Analyzer ignores the data sample. If you don't specify an internal
node, the Logic Analyzer creates and connects a pin to this input port.

If you are creating a Signal Tap Logic Analyzer instance through an .stp file, specify
the storage qualifier signal using the input port field located on the Setup tab. You
must specify this port for your project to compile.

If you use the parameter editor, the storage qualification input port, if specified,
appears in the generated instantiation template. You can then connect this port to a
signal in your RTL.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 52. Comparing Continuous and Input Port Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous Mode:

• Input Port Storage Qualifier:

5.3.9.2. Transitional Mode

In Transitional mode, the Logic Analyzer monitors changes in a set of signals, and
writes new data in the acquisition buffer only after detecting a change. You select the
signals for monitoring using the check boxes in the Storage Qualifier column.

Figure 53. Transitional Storage Qualifier Setup

Select signals to monitor 

Figure 54. Comparing Continuous and Transitional Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous:

• Transitional mode:

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.3.9.3. Conditional Mode

In Conditional mode, the Signal Tap Logic Analyzer determines whether to store a
sample by evaluating a combinational function of predefined signals within the node
list. The Signal Tap Logic Analyzer writes into the buffer during the clock cycles in
which the condition you specify evaluates TRUE.

You can select either Basic AND, Basic OR, Comparison, or Advanced storage
qualifier conditions. A Basic AND or Basic OR condition matches each signal to one
of the following:

• Don’t Care

• Low

• High

• Falling Edge

• Rising Edge

• Either Edge

If you specify a Basic AND storage qualifier condition for more than one signal, the
Signal Tap Logic Analyzer evaluates the logical AND of the conditions.

You can specify any other combinational or relational operators with the enabled signal
set for storage qualification through advanced storage conditions.

You can define storage qualification conditions similar to the manner in which you
define trigger conditions.

Figure 55. Conditional Storage Qualifier Setup
The figure details the conditional storage qualifier setup in the .stp file.

Signals not enabled for storage cannot be part 
of the Storage Qualifier condition

Storage Enable Storage Condition

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 56. Comparing Continuous and Conditional Capture Mode in Data Acquisition of a
Recurring Data Pattern

The data pattern is the same in both cases.

• Continuous sampling capture mode:

• Conditional sampling capture mode:

Related Information

• Basic Trigger Conditions on page 171

• Comparison Trigger Conditions on page 172

• Advanced Trigger Conditions on page 174

5.3.9.4. Start/Stop Mode

The Start/Stop mode uses two sets of conditions, one to start data capture and one to
stop data capture. If the start condition evaluates to TRUE, Signal Tap Logic Analyzer
stores the buffer data every clock cycle until the stop condition evaluates to TRUE,
which then pauses the data capture. The Logic Analyzer ignores additional start
signals received after the data capture starts. If both start and stop evaluate to TRUE
at the same time, the Logic Analyzer captures a single cycle.

Note: You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition.

Figure 57. Start/Stop Mode Storage Qualifier Setup
Start condition Stop Condition

Storage Qualifier Enabled signals

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 58. Comparing Continuous and Start/Stop Acquisition Modes for a Recurring Data
Pattern

• Continuous Mode:
 

 

• Start/Stop Storage Qualifier:
 

 

5.3.9.5. State-Based

The State-based storage qualification mode is part of the State-based triggering flow.
The state based triggering flow evaluates a conditional language to define how the
Signal Tap Logic Analyzer writes data into the buffer. With the State-based trigger
flow, you have command over boolean and relational operators to guide the execution
flow for the target acquisition buffer.

When you enable the storage qualifier feature for the State-based flow, two additional
commands become available: start_store and stop_store. These commands are
similar to the Start/Stop capture conditions. Upon the start of acquisition, the Signal
Tap Logic Analyzer doesn't write data into the buffer until a start_store action is
performed. The stop_store command pauses the acquisition. If both start_store
and stop_store actions occur within the same clock cycle, the Logic Analyzer stores
a single sample into the acquisition buffer.

Related Information

State-Based Triggering on page 185

5.3.9.6. Showing Data Discontinuities

When you turn on Record data discontinuities, the Signal Tap Logic Analyzer marks
the samples during which the acquisition paused from a storage qualifier. This marker
is displayed in the waveform viewer after acquisition completes.

5.3.9.7. Disable Storage Qualifier

You can quickly turn off the storage qualifier with the Disable Storage Qualifier
option, and perform a continuous capture. This option is run-time reconfigurable.
Changing storage qualifier mode from the Type field requires a recompilation of the
project.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

Runtime Reconfigurable Options on page 203

5.3.10. Manage Multiple Signal Tap Files and Configurations

You can debug different blocks in your design by grouping related monitoring signals.
Likewise, you can use a group of signals to define multiple trigger conditions. Each
combination of signals, capture settings, and trigger conditions determines a debug
configuration, and one configuration can have zero or more associated data logs.

Signal Tap Logic Analyzer allows you to save debug configurations in more than
one .stp file. Alternatively, you can embed multiple configurations within the
same .stp file, and use the Data Log as a managing tool.

Note: Each .stp file is associated with a programming (.sof) file. To function correctly, the
settings in the .stp file you use at runtime must match Signal Tap settings in
the .sof file you use to program the device.

Related Information

Ensure Setting Compatibility Between .stp and .sof Files on page 202

5.3.10.1. Data Log Pane

The Data Log pane displays all Signal Tap configurations and data capture results
stored within a single .stp file.

• To save the current configuration or capture in the Data Log—and .stp file, click

Edit ➤ Save to Data Log. Alternatively, click the Save to Data Log icon  at
the top of the Data Log pane.

• To generate a log entry after every data capture, click Edit ➤ Enable Data Log.
Alternatively, check the box at the top of the Data Log pane.

The Data Log displays its contents in a tree hierarchy. The active items display a
different icon.

Table 59. Data Log Items

Item Icon Contains one or
more

Comments

Unselected Selected

Instance Signal Set

Signal Set Trigger The Signal Set changes whenever you add a new
signal to Signal Tap. After a change in the Signal
Set, you need to recompile.

Trigger Capture Log A trigger changes when you change any trigger
condition. These changes do not require
recompilation.

Capture Log

The name on each entry displays the wall-clock time when Signal Tap Logic Analyzer
triggered, and the time elapsed from start acquisition to trigger activation. You can
rename entries so they make sense to you.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To switch between configurations, double-click an entry in the Data Log. As a result,
the Setup tab updates to display the active signal list and trigger conditions.

Example 21. Simple Data Log

On this example, the Data Log displays one instance with three signal set
configurations.

5.3.10.2. SOF Manager

The SOF Manager is in the JTAG Chain Configuration pane.

With the SOF Manager you can embed multiple SOFs into one .stp file. This action
lets you move the .stp file to a different location, either on the same computer or
across a network, without including the associated .sof separately. To embed a new

SOF in the .stp file, click the Attach SOF File icon .

Figure 59.  SOF Manager

Attach SOF File Icon

As you switch between configurations in the Data Log, you can extract the SOF that is
compatible with that configuration.

To download the new SOF to the FPGA, click the Program Device icon  in the SOF
Manager, after ensuring that the configuration of your .stp matches the design
programmed into the target device.

Related Information

Data Log Pane on page 169

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.4. Defining Triggers

At runtime the Signal Tap Logic Analyzer continuously samples activity from the
monitored signals. A trigger activates—that is, the logic analyzer stops and displays
the data—when the monitored signals reach the condition or set of conditions that you
specify.You specify trigger conditions in the Signal Tap Logic Analyzer Signal
Configuration pane.

5.4.1. Basic Trigger Conditions

If you select the Basic AND or Basic OR trigger type, you must specify the trigger
pattern for each signal you added in the .stp. To specify the trigger pattern, right-
click the Trigger Conditions column and click the desired pattern. Set the trigger
pattern to any of the following conditions:

• Don’t Care

• Low

• High

• Falling Edge

• Rising Edge

• Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals in the .stp
file that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

When you add signals through plug-ins, you can create basic triggers using predefined
mnemonic table entries. For example, with the Nios II plug-in, if you specify an .elf
file from your Nios II IDE design, you can type the name of a function from your Nios
II code. The logic analyzer triggers when the Nios II instruction address matches the
address of the code function name that you specify.

Data capture stops and the Logic Analyzer stores the data in the buffer when the
logical AND of all the signals for a given trigger condition evaluates to TRUE.

Related Information

View, Analyze, and Use Captured Data on page 206

5.4.1.1. Using the Basic OR Trigger Condition with Nested Groups

When you specify a set of signals as a nested group (group of groups) with the Basic
OR trigger type, Signal Tap Logic Analyzer generates an advanced trigger condition.
This condition sorts signals within groups to minimize the need to recompile your
design. As long as the parent-child relationships of nodes are kept constant, the
advanced trigger condition does not change. You can modify the sibling relationships
of nodes and not need to recompile your design.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The evaluation precedence of a nested trigger condition starts at the bottom-level with
the leaf-groups. The Logic Analyzer uses the resulting logic value to compute the
parent group’s logic value. If you manually set the value of a group, the logic value of
the group's members doesn't influence the result of the group trigger. To create a
nested trigger condition:

1. Select Basic OR under Trigger Conditions.

2. In the Setup tab, select several nodes. Include groups in your selection.

3. Right-click the Setup tab and select Group.

4. Select the nested group and right-click to set a group trigger condition that applies
the reduction AND, OR, NAND, NOR, XOR, XNOR, or logical TRUE or FALSE.

Note: You can only select OR and AND group trigger conditions for bottom-level
groups (groups with no groups as children).

Figure 60. Applying Trigger Condition to Nested Group

5.4.2. Comparison Trigger Conditions

The Comparison trigger allows you to compare multiple grouped bits of a bus to an
expected integer value by specifying simple comparison conditions on the bus node.
The Comparison trigger preserves all the trigger conditions that the Basic OR trigger
includes. You can use the Comparison trigger in combination with other triggers. You
can also switch between Basic OR trigger and Comparison trigger at run-time,
without the need for recompilation.

Signal Tap Logic Analyzer supports the following types of Comparison trigger
conditions:

• Single-value comparison—compares a bus node’s value to a numeric value that
you specify. Use one of these operands for comparison: >, >=, ==, <=, <.
Returns 1 when the bus node matches the specified numeric value.

• Interval check—verifies whether a bus node’s value confines to an interval that
you define. Returns 1 when the bus node's value lies within the specified bounded
interval.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Follow these rules when using the Comparison trigger condition:

• Apply the Comparison trigger only to bus nodes consisting of leaf nodes.

• Do not form sub-groups within a bus node.

• Do not enable or disable individual trigger nodes within a bus node.

• Do not specify comparison values (in case of single-value comparison) or
boundary values (in case of interval check) exceeding the selected node’s bus-
width.

5.4.2.1. Specifying the Comparison Trigger Conditions

Follow these steps to specify the Comparison trigger conditions:

1. From the Setup tab, select Comparison under Trigger Conditions.

2. Right-click the node in the trigger editor, and select Compare.

Figure 61. Selecting the Comparison Trigger Condition

Select Comparison from the 
Trigger Conditions list

Right-click your node and select Compare 
to set trigger condition values

3. Select the Comparison type from the Compare window.

— If you choose Single-value comparison as your comparison type, specify
the operand and value.

— If you choose Interval check as your comparison type, provide the lower and
upper bound values for the interval.

You can also specify if you want to include or exclude the boundary values.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 62. Specifying the Comparison Values
Compares the bus node’s value to 
a specified numeric value

Verifies whether the bus node’s value 
confines to a specified bounded interval

Specify inclusion or exclusion of boundary values

4. Click OK. The trigger editor displays the resulting comparison expression in the
group node condition text box.

Note: You can modify the comparison condition in the text box with a valid
expression.

Figure 63. Resulting Comparison Condition in Text Box

Group node condition text box displaying
the resulting comparison expression 

Modify the comparison condition in the text box 
with a valid expression

5.4.3. Advanced Trigger Conditions

To capture data for a given combination of conditions, build an advanced trigger. The
Signal Tap Logic Analyzer provides the Advanced Trigger tab, which helps you build
a complex trigger expression using a GUI.

Open the Advanced Trigger tab by selecting Advanced in the Trigger Conditions
drop-down menu.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 64. Accessing the Advanced Trigger Condition Tab

Select Advanced from the
Trigger Conditions List

Figure 65. Advanced Trigger Condition Tab

Node List Pane

Object Library Pane

Advanced Trigger Condition Editor Window

To build a complex trigger condition in an expression tree, drag-and-drop operators
from the Object Library pane and the Node List pane into the Advanced Trigger
Configuration Editor window.

To configure the operators’ settings, double-click or right-click the operators that you
placed and click Properties.

Table 60. Advanced Triggering Operators

Category Name

Signal Detection Edge and Level Detector

Input Objects Bit
Bit Value
Bus
Bus Value

Comparison Less Than
Less Than or Equal To
Equality
Inequality
Greater Than or Equal To
Greater Than

Bitwise Bitwise Complement
Bitwise AND
Bitwise OR
Bitwise XOR

Logical Logical NOT
Logical AND
Logical OR
Logical XOR

Reduction Reduction AND
Reduction OR
Reduction XOR

Shift Left Shift

continued...   

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Category Name

Right Shift

Custom Trigger HDL

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the shortcut menu and select Arrange All Objects.
Alternatively, use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

5.4.3.1. Examples of Advanced Triggering Expressions

The following examples show how to use Advanced Triggering:

Figure 66. Bus outa Is Greater Than or Equal to Bus outb
Trigger when bus outa is greater than or equal to outb.

Figure 67. Enable Signal Has a Rising Edge
Trigger when bus outa is greater than or equal to bus outb, and when the enable signal has a rising edge.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 68.  Bitwise AND Operation
Trigger when bus outa is greater than or equal to bus outb, or when the enable signal has a rising edge. Or,
when a bitwise AND operation has been performed between bus outc and bus outd, and all bits of the result
of that operation are equal to 1.

5.4.4. Custom Trigger HDL Object

Signal Tap Logic Analyzer allows you to use your own HDL module to create a custom
trigger condition. You can use the Custom Trigger HDL object to simulate your
triggering logic and ensure that the logic itself is not faulty. Additionally, you can tap
instances of modules anywhere in the hierarchy of your design, without having to
manually route all the necessary connections.

The Custom Trigger HDL object appears in the Object Library pane of the Advanced
Trigger editor.

Figure 69. Object Library

5.4.4.1. Using the Custom Trigger HDL Object

To define a custom trigger flow:

1. Select the trigger you want to edit.

2. Open the Advanced Trigger tab by selecting Advanced in the Trigger
Conditions drop-down menu.

3. Add to your project the HDL source file that contains the trigger module using the
Project Navigator.

— Alternatively, append the HDL for your trigger module to a source file already
included in the project.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 70. HDL Trigger in the Project Navigator

4. Implement the inputs and outputs that your Custom Trigger HDL module requires.

5. Drag in your Custom Trigger HDL object and connect the object’s data input bus
and result output bit to the final trigger result.

Figure 71. Custom Trigger HDL Object

6. Right-click your Custom Trigger HDL object and configure the object’s properties.

Figure 72. Configure Object Properties

7. Compile your design.

8. Acquire data with Signal Tap using your custom Trigger HDL object.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Example 22. Verilog HDL Triggers

The following trigger uses configuration bitstream:

module test_trigger
    (
        input acq_clk, reset,
        input[3:0] data_in,
        input[1:0] pattern_in,
        output reg trigger_out
    );
    always @(pattern_in) begin
        case (pattern_in)
            2'b00:
                trigger_out = &data_in;
            2'b01:
                trigger_out = |data_in;
            2'b10:
                trigger_out = 1'b0;
            2'b11:
                trigger_out = 1'b1;
        endcase
    end
endmodule

This trigger does not have configuration bitstream:

module test_trigger_no_bs
    (
        input acq_clk, reset,
        input[3:0] data_in,
        output reg trigger_out
    );
    assign trigger_out = &data_in;
endmodule

5.4.4.2. Required Inputs and Outputs of Custom Trigger HDL Module

Table 61. Custom Trigger HDL Module Required Inputs and Outputs

Name Description Input/Output Required/ Optional

acq_clk Acquisition clock that Signal Tap uses Input Required

reset Reset that Signal Tap uses when restarting a
capture.

Input Required

data_in • Data input you connect in the Advanced
Trigger editor.

• Data your module uses to trigger.

Input Required

pattern_in • Module’s input for the configuration bitstream
property.

• Runtime configurable property that you can
set from Signal Tap GUI to change the
behavior of your trigger logic.

Input Optional

trigger_out Output signal of your module that asserts when
trigger conditions met.

Output Required

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.4.4.3. Custom Trigger HDL Module Properties

Table 62. Custom Trigger HDL Module Properties

Property Description

Custom HDL Module Name Module name of the triggering logic.

Configuration Bitstream • Allows to create trigger logic that you can configure at runtime, based upon
the value of the configuration bitstream.

• The Signal Tap logic analyzer reads the configuration bitstream property as
binary, therefore the bitstream must contain only the characters 1 and 0.

• The bit-width (number of 1s and 0s) must match the pattern_in bit width.
• A blank configuration bitstream implies that the module does not have a

pattern_in input.

Pipeline Specifies the number of pipeline stages in the triggering logic.
For example, if after receiving a triggering input the LA needs three clock cycles
to assert the trigger output, you can denote a pipeline value of three.

5.4.5. Trigger Condition Flow Control

The Trigger Condition Flow allows you to define the relationship between a set of
triggering conditions. Signal Tap Logic Analyzer Signal Configuration pane offers two
flow control mechanisms for organizing trigger conditions:

• Sequential Triggering—default triggering flow. Sequential triggering allows you
to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

• State-Based Triggering—gives the greatest control over your acquisition buffer.
Custom-based triggering allows you to organize trigger conditions into states
based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

5.4.5.1. Sequential Triggering

When you specify a sequential trigger the Signal Tap Logic Analyzer sequentially
evaluates each the conditions. The sequential triggering flow allows you to cascade up
to 10 levels of triggering conditions.

When the last triggering condition evaluates to TRUE, the Signal Tap Logic Analyzer
starts the data acquisition. For segmented buffers, every acquisition segment after the
first starts on the last condition that you specified. The Simple Sequential Triggering
feature allows you to specify basic triggers, comparison triggers, advanced triggers, or
a mix of all three.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 73. Sequential Triggering Flow
The figure illustrates the simple sequential triggering flow for non-segmented and segmented buffers.

Segmented  BufferNon Segmented Buffer
n ≤ 10

Trigger Condition n

Trigger Condition 1

Trigger Condition 2

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n - 2 transitions

Acquisition Segment m
trigger

trigger

trigger

Acquisition Buffer
trigger

n - 2 transitions

m-2 transitions

Acquisition Segment 2

Acquisition Segment 1

Notes to figure:

1. The acquisition buffer starts capture when all n triggering levels are satisfied,
where n<10.

The Signal Tap Logic Analyzer considers external triggers as level 0, evaluating
external triggers before any other trigger condition.

5.4.5.1.1. Configuring the Sequential Triggering Flow

To configure Signal Tap Logic Analyzer for sequential triggering:

1. On Trigger Flow Control, select Sequential

2. On Trigger Conditions, select the number of trigger conditions from the drop-
down list.
The Node List pane now displays the same number of trigger condition columns.

3. Configure each trigger condition in the Node List pane.

You can enable/disable any trigger condition from the column header.

Figure 74. Sequential Triggering Flow Configuration

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.4.5.1.2. Trigger that Skips Clock Cycles after Hitting Condition

Example 23. Trigger flow description that skips three clock cycles of samples after hitting
condition 1

Code:

State 1: ST1
    start_store
    if ( condition1 )
    begin
       stop_store;
       goto ST2;
    end
State 2: ST2
    if (c1 < 3)
       increment c1; //skip three clock cycles; c1 initialized to 0
    else if (c1 == 3)
    begin
       start_store;//start_store necessary to enable writing to finish
                     //acquisition
       trigger;
    end

The figures show the data transaction on a continuous capture and the data capture
when you apply the Trigger flow description.

Figure 75. Continuous Capture of Data Transaction

Figure 76. Capture of Data Transaction with Trigger Flow Description Applied

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.4.5.1.3. Storage Qualification with Post-Fill Count Value Less than m

Example 24. Real data acquisition of the previous scenario

Figure 77. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)
The data capture finishes successfully. It uses a buffer with a sample depth of 64, m = n = 10 , and post-
fill count = 5.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 78. Storage Qualification with Post-Fill Count Value Greater than m (Acquisition
Indefinitely Paused)
The logic analyzer pauses indefinitely, even after a trigger condition occurs due to a stop_store condition.
This scenario uses a sample depth of 64, with m = n = 10 and post-fill count = 15.

Figure 79. Waveform After Forcing the Analysis to Stop

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.

5.4.5.2. State-Based Triggering

With state-based triggering, a state diagram organizes the events that trigger the
acquisition buffer. The states capture all actions that the acquisition buffer performs,
and each state contains conditional expressions that define transition conditions.

Custom state-based triggering grants control over triggering condition arrangement.
Because the Logic Analyzer only captures samples of interest, custom state-based
triggering allows for more efficient use of the space available in the acquisition buffer.

To help you describe the relationship between triggering conditions, the state-based
triggering flow provides tooltips within the flow GUI. Additionally, you can use the
Signal Tap Trigger Flow Description Language, which is based upon conditional
expressions.

Figure 80. State-Based Triggering Flow

n ≤ 20

Segmented Acquisition Buffer

First Acquisition Segment Next Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition
 Condition: i

TC: j

TC: k

TC: l    S: 2
TCS: b     S: 3

TCS: c

State: 1
Trigger Condition Set: a

     S: n (last state)
TCS: d

segment_trigger segment_trigger segment_trigger segment_trigger

Notes to figure:

1. You can define up to 20 different states.

2. The logic analyzer evaluates external trigger inputs that you define before any
conditions in the custom state-based triggering flow.

Each state allows you to define a set of conditional expressions. Conditional
expressions are Boolean expressions that depend on a combination of triggering
conditions, counters, and status flags. You configure the triggering conditions within
the Setup tab. The Signal Tap Logic Analyzer custom-based triggering flow provides
counters and status flags.

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides an
optional count that specifies the number of samples the buffer captures before the
logic analyzer stops acquisition of the current segment. The count argument allows
you to control the amount of data the buffer captures before and after a triggering
event occurs.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The logic analyzer uses counter and status flag resources as
optional inputs in conditional expressions. Counters and status flags are useful for
counting the number of occurrences of certain events and for aiding in triggering flow
control.

The state-based triggering flow allows you to capture a sequence of events that may
not necessarily be contiguous in time. For example, a communication transaction
between two devices that includes a hand shaking protocol containing a sequence of
acknowledgements.

5.4.5.2.1. State-Based Triggering Flow Tab

The State-Based Trigger Flow tab is the control interface for the custom state-
based triggering flow.

This tab is only available when you select State-Based on the Trigger Flow Control
list. If you specify Trigger Flow Control as Sequential, the State-Based Trigger
Flow tab is not visible.

Figure 81. State-Based Triggering Flow Tab

The State-Based Trigger Flow tab contains three panes:

State Diagram Pane

The State Diagram pane provides a graphical overview of your triggering flow. this
pane displays the number of available states and the state transitions. To adjust the
number of available states, use the menu above the graphical overview.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


State Machine Pane

The State Machine pane contains the text entry boxes where you define the
triggering flow and actions associated with each state.

• You can define the triggering flow using the Signal Tap Trigger Flow Description
Language, a simple language based on “if-else” conditional statements.

• Tooltips appear when you move the mouse over the cursor, to guide command
entry into the state boxes.

• The GUI provides a syntax check on your flow description in real-time and
highlights any errors in the text flow.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window,
select the appropriate option under State Display mode.

Related Information

Signal Tap Trigger Flow Description Language on page 188

Resources Pane

The Resources pane allows you to declare status flags and counters for your Custom
Triggering Flow's conditional expressions.

• You can increment/decrement counters or set/clear status flags within your
triggering flow.

• You can specify up to 20 counters and 20 status flags.

• To initialize counter and status flags, right-click the row in the table and select Set
Initial Value.

• To specify a counter width, right-click the counter in the table and select Set
Width.

• To assist in debugging your trigger flow specification, the logic analyzer
dynamically updates counters and flag values after acquisition starts.

The Configurable at runtime settings allow you to control which options can change
at runtime without requiring a recompilation.

Table 63. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In
addition, you can modify the segment_trigger and trigger action post-fill
count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.

Related Information

• Performance and Resource Considerations on page 200

• Runtime Reconfigurable Options on page 203

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.4.5.2.2. Trigger Lock Mode

Trigger lock mode restricts changes to only the configuration settings that you specify
as Configurable at runtime. The runtime configurable settings for the Custom
Trigger Flow tab are on by default.

Note: You may get some performance advantages by disabling some of the runtime
configurable options.

You can restrict changes to your Signal Tap configuration to include only the options
that do not require a recompilation. Trigger lock-mode allows you to make changes
that reflect immediately in the device.

1. On the Setup tab, point to Lock Mode and select Allow trigger condition
changes only.

Figure 82. Allow Trigger Conditions Change Only

2. Modify the Trigger Flow conditions.

Incremental Route lock-mode restricts the GUI to only allow changes that require an
Incremental Route compilation using Rapid Recompile. Use Rapid Recompile to
perform incremental routing and gain a 2-4x speedup over the initial full compilation.

5.4.5.3. Signal Tap Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional expressions per
state to define a set of actions.

To describe the actions the Logic Analyzer evaluates when a state is reached, you
follow this syntax:

Syntax of Trigger Flow Description Language

state <state_label>:
    <action_list>
    if (<boolean_expression>)
        <action_list>
    [else if (<boolean_expression>)
        <action_list>]
    [else
        <action_list>]

• Non-terminals are delimited by "<>".

• Optional arguments are delimited by "[]"

• The priority for evaluation of conditional statements is from top to bottom.

• The Trigger Flow Description Language allows multiple else if conditions.

<state_label> on page 189

<boolean_expression> on page 189

<action_list> on page 190

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

Custom Triggering Flow Application Examples on page 217

5.4.5.3.1. <state_label>

Identifies a given state. You use the state label to start describing the actions the
Logic Analyzer evaluates once said state is reached. You can also use the state label
with the goto command.

The state description header syntax is:
state <state_label>

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

5.4.5.3.2. <boolean_expression>

Collection of operators and operands that evaluate into a Boolean result. The
operators can be logical or relational. Depending on the operator, the operand can
reference a trigger condition, a counter and a register, or a numeric value. To group a
set of operands within an expression, you use parentheses.

Table 64. Logical Operators
Logical operators accept any boolean expression as an operand.

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 65. Relational Operators
You use relational operators on counters or status flags.

Operator Description Syntax

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal
to

<identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to table:
1. <identifier> indicates a counter or status flag.
2. <numerical_value> indicates an integer.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Note: • The <boolean_expression> in an if statement can contain a single event or
multiple event conditions.

• When the boolean expression evaluates TRUE, the logic analyzer evaluates all the
commands in the <action_list> concurrently.

5.4.5.3.3. <action_list>

List of actions that the Logic Analyzer performs within a state once a condition is
satisfied.

• Each action must end with a semicolon (;).

• If you specify more than one action within an if or an else if clause, you must
delimit the action_list with begin and end tokens.

Possible actions include:

Resource Manipulation Action

The resources the trigger flow description uses can be either counters or status flags.

Table 66. Resource Manipulation Actions

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status flag to 1 set <register_flag_identifier>;

clear Sets a status flag to 0 clear <register_flag_identifier>;

Buffer Control Actions

Actions that control the acquisition buffer.

Table 67. Buffer Control Actions

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in every
flow definition.

trigger <post-fill_count>;

segment_trigger Available only in segmented acquisition mode.
Ends acquisition of the current segment. After
evaluating this command, the Signal Tap Logic
Analyzer starts acquiring from the next segment. If
all segments are written, the Logic Analyzer
overwrites the oldest segment with the latest
sample. When a trigger action is evaluated the
acquisition stops.

segment_trigger <post-fill_count>;

start_store Active only in state-based storage qualifier mode.
Asserts the write_enable to the Signal Tap
acquisition buffer.

start_store

continued...   

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Action Description Syntax

stop_store Active only in state-based storage qualifier mode.
De-asserts the write_enable signal to the Signal
Tap acquisition buffer.

stop_store

Both trigger and segment_trigger actions accept an optional post-fill_count
argument.

Related Information

Post-fill Count on page 193

State Transition Action

Specifies the next state in the custom state control flow. The syntax is:
goto <state_label>;

5.4.5.4. State-Based Storage Qualifier Feature

Selecting a state-based storage qualifier type enables the start_store and
stop_store actions. When you use these actions in conjunction with the expressions
of the State-based trigger flow, you get maximum flexibility to control data written
into the acquisition buffer.

Note: You can only apply the start_store and stop_store commands to a non-
segmented buffer.

The start_store and stop_store commands are similar to the start and stop
conditions of the start/stop storage qualifier mode. If you enable storage
qualification, Signal Tap Logic Analyzer doesn't write data into the acquisition buffer
until the start_store command occurs. However, in the state-based storage
qualifier type you must include a trigger command as part of the trigger flow
description. This trigger command is necessary to complete the acquisition and
display the results on the waveform display.

5.4.5.4.1. Storage Qualification Feature for the State-Based Trigger Flow.

This trigger flow description contains three trigger conditions that happen at different
times after you click Start Analysis:

State 1: ST1:
    if ( condition1 )
       start_store;
    else if ( condition2 )
       trigger value;
    else if ( condition3 )
       stop_store;

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 83. Capture Scenario for Storage Qualification with the State-Based Trigger Flow

a b c Sample

n samples

m samples

Time Scale for data stream
at the start of acquisition

Condition 1 occurs Condition 3 occursCondition 2 occurs

When you apply the trigger flow to the scenario in the figure:

1. The Signal Tap Logic Analyzer does not write into the acquisition buffer until
Condition 1 occurs (sample a).

2. When Condition 2 occurs (sample b), the logic analyzer evaluates the trigger
value command, and continues to write into the buffer to finish the acquisition.

3. The trigger flow specifies a stop_store command at sample c, which occurs m
samples after the trigger point.

4. If the data acquisition finishes the post-fill acquisition samples before Condition 3
occurs, the logic analyzer finishes the acquisition and displays the contents of the
waveform. In this case, the capture ends if the post-fill count value is < m.

5. If the post-fill count value in the Trigger Flow description 1 is > m samples, the
buffer pauses acquisition indefinitely, provided there is no recurrence of Condition
1 to trigger the logic analyzer to start capturing data again.

The Signal Tap Logic Analyzer continues to evaluate the stop_store and
start_store commands even after evaluating the trigger. If the acquisition paused,
click Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state update in real-time during a data
acquisition.

5.4.6. Specify Trigger Position

You can specify the amount of data the Logic Analyzer acquires before and after a
trigger event. Positions for Runtime and Power-Up triggers are separate.

Signal Tap Logic Analyzer offers three pre-defined ratios of pre-trigger data to post-
trigger data:

• Pre—Saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

• Center—Saves 50% pre-trigger and 50% post-trigger data.

• Post—Saves signal activity that occurred before the trigger (88% pre-trigger,
12% post-trigger).

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

State-Based Triggering on page 185

5.4.6.1. Post-fill Count

In a custom state-based triggering flow with the segment_trigger and trigger
buffer control actions, you can use the post-fill_count argument to specify a
custom trigger position.

• If you do not use the post-fill_count argument, the trigger position for the
affected buffer defaults to the trigger position you specified in the Setup tab.

• In the trigger buffer control action (for non-segmented buffers), post-
fill_count specifies the number of samples to capture before stopping data
acquisition.

• In the segment_trigger buffer control action (for segmented buffer), post-
fill_count specifies a data segment.

Note: In the case of segment_trigger, acquisition of the current buffer stops
immediately if a subsequent triggering action is issued in the next state,
regardless of the current buffer's post-fill count. The Logic Analyzer discards
the remaining unfilled post-count acquisitions in the current buffer, and
displays them as grayed-out samples in the data window.

When the Signal Tap data window displays the captured data, the trigger position
appears as the number of post-count samples from the end of the acquisition segment
or buffer.

Sample Number of Trigger Position = (N – Post-Fill Count)

In this case, N is the sample depth of either the acquisition segment or non-
segmented buffer.

Related Information

Buffer Control Actions on page 190

5.4.7. Power-Up Triggers

Power-up triggers capture events that occur during device initialization, immediately
after you power or reset the FPGA.

The typical use of Signal Tap Logic Analyzer is triggering events that occur during
normal device operation. You start an analysis manually once the target device is fully
powered on and the JTAG connection for the device is available. With Signal Tap
Power-Up Trigger feature, the Signal Tap Logic Analyzer captures data immediately
after device initialization.

You can add a different Power-Up Trigger to each logic analyzer instance in the Signal
Tap Instance Manager pane.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.4.7.1. Enabling a Power-Up Trigger

To enable the Power-Up Trigger for a logic analyzer instance:

• Right-click the instance and click Enable Power-Up Trigger.

Figure 84. Enabling Power-Up Trigger in Signal Tap Logic Analyzer Editor

Power-Up Trigger appears as a child instance below the name of the selected
instance. The node list displays the default trigger conditions.

To disable a Power-Up Trigger, right-click the instance and click Disable Power-Up
Trigger.

5.4.7.2. Configuring Power-Up Trigger Conditions

• Any change that you make to a Power-Up Trigger conditions requires that you
recompile the Signal Tap Logic Analyzer instance, even if a similar change to the
Runtime Trigger conditions does not require a recompilation.

• You can also force trigger conditions with the In-System Sources and Probes in
conjunction with the Signal Tap Logic Analyzer. The In-System Sources and Probes
feature allows you to drive and sample values on to selected nets over the JTAG
chain.

Related Information

Design Debugging Using In-System Sources and Probes on page 235

5.4.7.3. Managing Signal Tap Instances with Run-Time and Power-Up Trigger
Conditions

On instances that have two both types of trigger conditions, Power-Up Trigger
conditions are color coded light blue, while Run-Time Trigger conditions remain white.

• To switch between the trigger conditions of the Power-Up Trigger and the Run-
Time Trigger, double-click the instance name or the Power-Up Trigger name in the
Instance Manager.

• To copy trigger conditions from a Run-Time Trigger to a Power-Up Trigger or vice
versa, right-click the trigger name in the Instance Manager and click Duplicate
Trigger. Alternatively, select the trigger name and click Edit ➤ Duplicate
Trigger.

Note: Run-time trigger conditions allow fewer adjustments than power-up trigger conditions.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.4.8. External Triggers

External trigger inputs allow you to trigger the Signal Tap Logic Analyzer from an
external source.

The external trigger input behaves like trigger condition 0, in that the condition must
evaluate to TRUE before the logic analyzer evaluates any other trigger conditions.

The Signal Tap Logic Analyzer supplies a signal to trigger external devices or other
logic analyzer instances. These features allow you to synchronize external logic
analysis equipment with the internal logic analyzer. Power-Up Triggers can use the
external triggers feature, but they must use the same source or target signal as their
associated Run-Time Trigger.

You can use external triggers to perform cross-triggering on a hard processor system
(HPS):

• The processor debugger allows you to configure the HPS to obey or disregard
cross-trigger request from the FPGA, and to issue or not issue cross-trigger
requests to the FPGA.

• The processor debugger in combination with the Signal Tap external trigger
feature allow you to develop a dynamic combination of cross-trigger behaviors.

• You can implement a system-level debugging solution for an Intel FPGA SoC by
using the cross-triggering feature with the ARM Development Studio 5 (DS-5)
software.

Related Information

• FPGA-Adaptive Software Debug and Performance Analysis white paper

• Signal Configuration Pane
In Intel Quartus Prime Help

5.4.8.1. Using the Trigger Out of One Analyzer as the Trigger In of Another
Analyzer

An advanced feature of the Signal Tap Logic Analyzer is the ability to use the
Trigger out of one analyzer as the Trigger in to another analyzer. This feature allows
you to synchronize and debug events that occur across multiple clock domains.

To perform this operation, first turn on Trigger out for the source logic analyzer
instance. On the Instance list of the Trigger out trigger, select the targeted logic
analyzer instance. For example, if the instance named auto_signaltap_0 should
trigger auto_signaltap_1, select auto_signaltap_1|trigger_in .

Turning on Trigger out automatically enables the Trigger in of the targeted logic
analyzer instance and fills in the Instance field of the Trigger in trigger with the
Trigger out signal from the source logic analyzer instance. In this example,
auto_signaltap_0 is targeting auto_signaltap_1. The Trigger In Instance field
of auto_signaltap_1 is automatically filled in with auto_signaltap_0|
trigger_out.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

195

http://www.altera.com/literature/wp/wp-01198-fpga-software-debug-soc.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.5. Compiling the Design

To incorporate the Signal Tap logic in your design and enable the JTAG connection, you
must compile your project. When you add a .stp file to your project, the Signal Tap
Logic Analyzer becomes part of your design. When you debug your design with a
traditional external logic analyzer, you must often make changes to the signals you
want to monitor as well as the trigger conditions.

Note: Because these adjustments require that you recompile your design when using the
Signal Tap Logic Analyzer, use the Signal Tap Logic Analyzer feature along with
incremental compilation in the Intel Quartus Prime software to reduce recompilation
time.

5.5.1. Faster Compilations with Intel Quartus Prime Incremental
Compilation

You can add a Signal Tap Logic Analyzer instance to your design without recompiling
your original source code. Incremental compilation enables you to preserve the
synthesis and fitting results of your original design.

When you compile your design including a .stp file, Intel Quartus Prime software
automatically adds the sld_signaltap and sld_hub entities to the compilation
hierarchy. These two entities are the main components of the Signal Tap Logic
Analyzer, providing the trigger logic and JTAG interface required for operation.

Incremental compilation is also useful when you want to modify the configuration of
the .stp file. For example, you can change the buffer sample depth or memory type
without performing a full compilation. Instead, you only recompile the Signal Tap Logic
Analyzer, configured as its own design partition.

5.5.1.1. Enabling Incremental Compilation for Your Design

When enabled for your design, the Signal Tap Logic Analyzer is always a separate
partition. After the first compilation, you can use the Signal Tap Logic Analyzer to
analyze signals from the post-fit netlist. If your partitions are designed correctly,
subsequent compilations due to Signal Tap Logic Analyzer settings take less time.

The netlist type for the top-level partition defaults to source. To take advantage of
incremental compilation, specify the Netlist types for the partitions you want to tap as
Post-fit.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

196

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958382198
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958382198
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.5.1.2. Using Incremental Compilation with the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer uses the incremental compilation flow by default. For all
signals that you want to connect to the Signal Tap Logic Analyzer from the post-fit
netlist:

1. In the Design Partitions window, set the netlist type of the partition that contains
the signals to Post-Fit, with a Fitter Preservation Level of Placement and
Routing.

2. In the Node Finder, use the Signal Tap: post-fitting filter to add the signals of
interest to your Signal Tap configuration file.

3. If you want to add signals from the pre-synthesis netlist, set the netlist type to
Source File and use the Signal Tap: pre-synthesis filter in the Node Finder.
Do not use the netlist type Post-Synthesis with the Signal Tap Logic Analyzer.

Caution: When using post-fit and pre-synthesis nodes:

• Read all incremental compilation guidelines to ensure the proper partitioning of a
project.

• To speed up compile time, use only post-fit nodes for partitions specified as
preservation-level post-fit.

• Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap pre-
synthesis nodes for a particular partition, make all tapped nodes in that partition
pre-synthesis nodes and change the netlist type to source in the design partitions
window.

Node names can differ between a pre-synthesis netlist and a post-fit netlist. In
general, registers and user input signals share common names between the two
netlists. During compilation, certain optimizations change the names of combinational
signals in your RTL. If the type of node name chosen does not match the netlist type,
the compiler may not be able to find the signal to connect to your Signal Tap Logic
Analyzer instance for analysis. The compiler issues a critical warning to alert you of
this scenario. The signal that is not connected is tied to ground in the Signal Tap
data tab.

If you do use incremental compilation flow with the Signal Tap Logic Analyzer and
source file changes are necessary, be aware that you may have to remove compiler-
generated post-fit net names. Source code changes force the affected partition to go
through resynthesis. During synthesis, the compiler cannot find compiler-generated
net names from a previous compilation.

Note: Intel FPGA recommends using only registered and user-input signals as debugging
taps in your .stp whenever possible.

Both registered and user-supplied input signals share common node names in the pre-
synthesis and post-fit netlist. As a result, using only registered and user-supplied
input signals in your .stp limits the changes you need to make to your Signal Tap
Logic Analyzer configuration.

You can check the nodes that are connected to each Signal Tap instance using the In-
System Debugging compilation reports. These reports list each node name you
selected to connect to a Signal Tap instance, the netlist type used for the particular
connection, and the actual node name used after compilation. If the incremental

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


compilation flow is not used, the In-System Debugging reports are located in the
Analysis & Synthesis folder. If the incremental compilation flow is used, this report is
located in the Partition Merge folder.

To verify that your original design was not modified, examine the messages in the
Partition Merge section of the Compilation Report.

Unless you make changes to your design partitions that require recompilation, only
the Signal Tap design partition is recompiled. If you make subsequent changes to only
the .stp, only the Signal Tap design partition must be recompiled, reducing your
recompilation time.

5.5.2. Prevent Changes Requiring Recompilation

Configure the .stp to prevent changes that normally require recompilation. To do
this, select a Lock mode from above the node list in the Setup tab. To lock your
configuration, choose Allow trigger condition changes only.

Figure 85. Allow Trigger Conditions Change Only

Related Information

Verify Whether You Need to Recompile Your Project on page 198

5.5.3. Verify Whether You Need to Recompile Your Project

Before starting a debugging session, do not make any changes to the .stp settings
that require recompiling the project.

To verify whether a change you made requires recompiling the project, check the
Signal Tap status display at the top of the Instance Manager pane. This feature
allows you to undo the change, so that you do not need to recompile your project.

Related Information

Prevent Changes Requiring Recompilation on page 198

5.5.4. Incremental Route with Rapid Recompile

You can use Incremental Route with Rapid Recompile to decrease compilation times.
After performing a full compilation on your design, you can use the Incremental Route
flow to achieve a 2-4x speedup over a flat compile. The Incremental Route flow is not
compatible with Partial Reconfiguration.

Intel Quartus Prime Standard Edition software supports Incremental Route with Rapid
Recompile for Arria V, Cyclone V, and Stratix V devices.

5.5.4.1. Using the Incremental Route Flow

To use the Incremental Route flow:

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. Open your design and run Analysis & Elaboration (or a full compilation) to give
node visibility in Signal Tap.

2. Add Signal Tap to your design.

3. In the Signal Tap Signal Configuration pane, specify Manual in the Nodes
Allocated field for Trigger and Data nodes (and Storage Qualifier, if used).

Figure 86. Manually Allocate Nodes

Manual node allocation allows you to control the number of nodes compiled into
the design, which is critical for the Incremental Route flow.

When you select Auto allocation, the number of nodes compiled into the design
matches the number of nodes in the Setup tab. If you add a node later, you
create a mismatch between the amount of nodes the device requires and the
amount of compiled nodes, and you must perform a full compilation.

4. Specify the number of nodes that you estimate necessary for the debugging
process. You can increase the number of nodes later, but this requires more
compilation time.

5. Add the nodes that you want to tap.

6. If you have not fully compiled your project, run a full compilation. Otherwise, start
incremental compile using Rapid Recompile.

7. Debug and determine additional signals of interest.

8. (Optional) Select Allow incremental route changes only lock-mode.

Figure 87. Incremental Route Lock-Mode

9. Add additional nodes in the Signal Tap Setup tab.

— Do not exceed the number of manually allocated nodes you specified.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


— Avoid making changes to non-runtime configurable settings.

10. Click the Rapid Recompile icon  from the toolbar. Alternatively, click Processing
➤ Start Rapid Recompile.

Note: The previous steps set up your design for Incremental Route, but the actual
Incremental Route process begins when you perform a Rapid Recompile.

5.5.4.2. Tips to Achieve Maximum Speedup

• Basic AND (which applies to Storage Qualifier as well as trigger input) is the
fastest for the Incremental Route flow.

• Basic OR is slower for the Incremental Route flow, but if you avoid changing the
parent-child relationship of nodes within groups, you can minimize the impact on
compile time. You can change the sibling relationships of nodes.

— Basic OR and advanced triggers require re-synthesis when you change the
number/names of tapped nodes.

• Use the Incremental Route lock-mode to avoid inadvertent changes requiring a full
compilation.

5.5.5. Timing Preservation with the Signal Tap Logic Analyzer

In addition to verifying functionality, timing closure is one of the most crucial
processes in successful operation of a design.

Note: When you compile a project with a Signal Tap Logic Analyzer without the use of
incremental compilation, you must add IP to the existing design. This addition often
impacts the existing placement, routing, and timing of the design. To minimize the
effect that the Signal Tap Logic Analyzer has on the design, use incremental
compilation for the project. Incremental compilation is the default setting in new
designs. You can easily enable incremental compilation in existing designs. When the
Signal Tap Logic Analyzer is in a design partition, it has little to no affect on the
design.

For Intel Arria 10 devices, the Intel Quartus Prime Standard Edition software does not
support timing preservation for post-fit taps with Rapid Recompile.

The following techniques can help you maintain timing:

• Avoid adding critical path signals to the .stp file.

• Minimize the number of combinational signals you add to the .stp file, and add
registers whenever possible.

• Specify an fMAX constraint for each clock in the design.

Related Information

Timing Closure and Optimization
>In Intel Quartus Prime Standard Edition User Guide: Design Optimization

5.5.6. Performance and Resource Considerations

When you perform logic analysis of your design, you can see the necessary trade-off
between runtime flexibility, timing performance, and resource usage.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

200

https://www.intel.com/content/www/us/en/programmable/documentation/zov1529446404644.html#mwh1410471203263
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The Signal Tap Logic Analyzer allows you to select runtime configurable parameters to
balance the need for runtime flexibility, speed, and area.

The default values of the runtime configurable parameters provide maximum
flexibility, so you can complete debugging as quickly as possible; however, you can
adjust these settings to determine whether there is a more appropriate configuration
for your design. Because performance results are design-dependent, try these options
in different combinations until you achieve the desired balance between functionality,
performance, and utilization.

5.5.6.1. Signal Tap Logic in Critical Path

If Signal Tap logic is part of your critical path, follow these tips to speed up the
performance of the Signal Tap Logic Analyzer:

• Disable runtime configurable options—Certain resources are allocated to
accommodate for runtime flexibility. If you use either advanced triggers or State-
based triggering flow, disable runtime configurable parameters for a boost in fMAX
of the Signal Tap logic.

— If you are using State-based triggering flow, try disabling the Goto state
destination option and performing a recompilation before disabling the other
runtime configurable options. The Goto state destination option has the
greatest impact on fMAX, as compared to the other runtime configurable
options.

• Minimize the number of signals that have Trigger Enable selected—By
default, Signal Tap Logic Analyzer enable the Trigger Enable option for all signals
that you add to the .stp file. For signals that you do not plan to use as triggers,
turn this option off.

• Turn on Physical Synthesis for register retiming—If many (more than the
number of inputs that fit in a LAB) enabled triggering signals fan-in logic to a
gate-based triggering condition (basic trigger condition or a logical reduction
operator in the advanced trigger tab), turn on Perform register retiming. This
can help balance combinational logic across LABs.

5.5.6.2.  Signal Tap Logic Using Critical Resources

If your design is resource constrained, follow these tips to reduce the logic or memory
the Signal Tap Logic Analyzer uses:

• Disable runtime configurable options—Disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in fewer LEs.

• Minimize the number of segments in the acquisition buffer—You can reduce
the logic resources that the Signal Tap Logic Analyzer uses if you limit the
segments in your sampling buffer

• Disable the Data Enable for signals that you use only for triggering—By
default, Signal Tap Logic Analyzer enables data enable options for all signals.
Turning off the data enable option for signals you use only as trigger inputs saves
on memory resources.

5.6. Program the Target Device or Devices

After you add the Signal Tap Logic Analyzer to your project and re-compile, you can
configure the FPGA target device.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


If you want to debug multiple designs simultaneously, configure the device from
the .stp instead of the Intel Quartus Prime Programmer. This allows you to open
more than one .stp file and program multiple devices.

5.6.1. Ensure Setting Compatibility Between .stp and .sof Files

A .stp file is compatible with a .sof file when the settings for the logic analyzer,
such as the size of the capture buffer and the monitoring and triggering signals match
the programming settings of the target device. If the files are not compatible you can
still program the device, but you cannot run or control the logic analyzer from the
Signal Tap Logic Analyzer Editor.

• To ensure programming compatibility, program the device with the .sof file
generated in the most recent compilation.

• To check whether a particular .sof is compatible with the current Signal Tap
configuration, attach the .sof to the SOF manager.

Note: When the Signal Tap Logic Analyzer detects incompatibility after the analysis starts,
the Intel Quartus Prime software generates a system error message containing two
CRC values: the expected value and the value retrieved from the .stp instance on the
device. The CRC value comes from all Signal Tap settings that affect the compilation.

As a best practice, use the .stp file with a Intel Quartus Prime project. The project
database contains information about the integrity of the current Signal Tap Logic
Analyzer session. Without the project database, there is no way to verify that the
current .stp file matches the .sof file in the device. If you have an .stp file that
does not match the .sof file, the Signal Tap Logic Analyzer can capture incorrect
data.

Related Information

Manage Multiple Signal Tap Files and Configurations on page 169

5.7. Running the Signal Tap Logic Analyzer

Debugging Signal Tap Logic Analyzer is similar using an external logic analyzer. You
initialize the logic analyzer by starting an analysis. When your trigger event occurs,
the logic analyzer stores the captured data in the device's memory buffer, and then
transfers this data to the .stp file with the JTAG connection.

You can also perform the equivalent of a force trigger instruction that lets you view
the captured data currently in the buffer without a trigger event occurring.

The flowchart shows how you operate the Signal Tap Logic Analyzer. indicates where
Power-Up and Runtime Trigger events occur and when captured data from these
events is available for analysis.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 88. Power-Up and Runtime Trigger Events Flowchart

Manually Run
Signal Tap Logic Analyzer

Compile Design

Start

End

Yes

No

No

Yes

Yes

No

Program Device

No

Yes

Manually Read 
Data from Device

Trigger Occurred?

Analyze Data: Power-Up
or Run-Time Trigger

Continue Debugging?Make Changes to Setup
(If Needed)

Changes Require
Recompile?

Data Downloaded?

Manually Stop Analyzer

Possible Missed Trigger
(Unless Power-Up
Trigger Enabled)

You can also use In-System Sources and Probes in conjunction with the Signal Tap
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain.

Related Information

Design Debugging Using In-System Sources and Probes on page 235

5.7.1. Runtime Reconfigurable Options

When you use Runtime Trigger mode, you can change certain settings in the .stp
without recompiling your design.

Table 68. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic Storage
Qualifier Conditions

You can change without recompiling all signals that have the Trigger
condition turned on to any basic trigger condition value

Comparison Trigger Conditions and Comparison
Storage Qualifier Conditions

All the comparison operands, the comparison numeric values, and the
interval bound values are runtime-configurable.
You can also switch from Comparison to Basic OR trigger at runtime
without recompiling.

Advanced Trigger Conditions and Advanced
Storage Qualifier Conditions

Many operators include runtime configurable settings. For example, all
comparison operators are runtime-configurable. Configurable settings
appear with a white background in the block representation. This
runtime reconfigurable option is turned on in the Object Properties
dialog box.

Switching between a storage-qualified and a
continuous acquisition

Within any storage-qualified mode, you can switch to continuous
capture mode without recompiling the design. To enable this feature,
turn on disable storage qualifier.

State-based trigger flow parameters Refer to Runtime Reconfigurable Settings, State-Based Triggering
Flow

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Runtime Reconfigurable options can save time during the debugging cycle by allowing
you to cover a wider possible scenario of events without the need to recompile the
design. You may experience a slight impact to the performance and logic utilization.
You can turn off runtime re-configurability for advanced trigger conditions and the
state-based trigger flow parameters, boosting performance and decreasing area
utilization.

To configure the .stp file to prevent changes that normally require recompilation in
the Setup tab, select Allow Trigger Condition changes only above the node list.

In Incremental Route lock mode, Allow incremental route changes only, limits to
changes that only require an Incremental Route compilation, and not a full compile.

This example illustrates a potential use case for Runtime Reconfigurable features, by
providing a storage qualified enabled State-based trigger flow description, and
showing how to modify the size of a capture window at runtime without a recompile.
This example gives you equivalent functionality to a segmented buffer with a single
trigger condition where the segment sizes are runtime reconfigurable.

state ST1:
if ( condition1 && (c1 <= m) )// each "segment"  triggers on condition
                              // 1
begin                           // m  = number of total "segments"
   start_store;
   increment c1;
   goto ST2:
End

else (c1 > m )                // This else condition handles the last
                              // segment.
begin
    start_store
    Trigger (n-1)
end

state ST2:
if ( c2 >= n)                //n = number of samples to capture in each
                             //segment.
begin
    reset c2;
    stop_store;
    goto ST1;
end
    
else (c2 < n)
begin
    increment c2;
    goto ST2;
end

Note: m x n must equal the sample depth to efficiently use the space in the sample buffer.

The next figure shows the segmented buffer that the trigger flow example describes.

Figure 89. Segmented Buffer Created with Storage Qualifier and State-Based Trigger
Total sample depth is fixed, where m x n must equal sample depth.

Segment 1

1 n

Segment 2

1 n

Segment m

1 n

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


During runtime, you can modify the values m and n. Changing the m and n values in
the trigger flow description adjust the segment boundaries without recompiling.

You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

This example is like the previous example with an additional state inserted. You use
this extra state to specify a different trigger condition that does not use the storage
qualifier feature. You insert status flags into the conditional statements to control the
execution of the trigger flow.

state ST1 :
    if (condition2  && f1)               // additional state added for a non-
segmented
                                        // acquisition set f1 to enable state
        begin
             start_store;
             trigger
        end
    else if (! f1)
        goto ST2;
state ST2:
    if ( (condition1 && (c1 <= m)  && f2) // f2 status flag used to mask state. 
Set f2
                                          // to enable
        begin            
           start_store;
           increment c1;
           goto ST3:
        end
    else (c1 > m )        
           start_store    
   Trigger (n-1)
    end
state ST3:
    if ( c2 >= n)         
        begin
            reset c2;
            stop_store;
            goto ST1;
        end    
    else (c2 < n)
    begin
        increment c2;
        goto ST2;
    end

5.7.2. Signal Tap Status Messages

The following table describes the text messages that might appear in the Signal Tap
Status Indicator in the Instance Manager pane before, during, or after data
acquisition. These messages allow you to monitor the state of the logic analyzer and
identify the operation that the Logic Analyzer is performing.

Table 69. Messages in the Signal Tap Status Indicator

Message Message Description

Not running The Signal Tap Logic Analyzer is not running.
This message appears when there is no connection to a device, or
the device is not configured.

(Power-Up Trigger) Waiting for clock (1) The Signal Tap Logic Analyzer is performing a Runtime or Power-Up
Trigger acquisition and is waiting for the clock signal to transition.

continued...   

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

205

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Message Message Description

Acquiring (Power-Up) pre-trigger data (1) The trigger condition has not been evaluated yet.
If the acquisition mode is non-segmented buffer and the storage
qualifier type is continuous, the Signal Tap Logic Analyzer collects a
full buffer of data.

Trigger In conditions met Trigger In condition has occurred. The Signal Tap Logic Analyzer is
waiting for the first trigger condition to occur.
This message only appears when a Trigger In condition exists.

Waiting for (Power-up) trigger (1) The Signal Tap Logic Analyzer is waiting for the trigger event to
occur.

Trigger level <x> met Trigger condition x occurred. The Signal Tap Logic Analyzer is
waiting for condition x + 1 to occur.

Acquiring (power-up) post-trigger data (1) The entire trigger event occurred. The Signal Tap Logic Analyzer is
acquiring the post-trigger data.
You define the amount of post-trigger data to collect (between
12%, 50%, and 88%) when you select the non-segmented buffer
acquisition mode.

Offload acquired (Power-Up) data (1) The JTAG chain is transmitting data to the Intel Quartus Prime
software.

Ready to acquire The Signal Tap Logic Analyzer is waiting for you to initialize the
analyzer.

1. This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the
text in parentheses appears.

Note: In segmented acquisition mode, pre-trigger and post-trigger do not apply.

5.8. View, Analyze, and Use Captured Data

The Signal Tap Logic Analyzer interface allows you to examine the data captured
manually or with a trigger. When in the Data view, you isolate the data of interest with
the drag-to-zoom feature, enabled with a left-click.

5.8.1. Capturing Data Using Segmented Buffers

Segmented Acquisition buffers can perform captures with separate trigger conditions
for each acquisition segment. These buffers allow you to capture recurring events or
sequences of events that span over a long period.

Each acquisition segment acts as a non-segmented buffer, continuously capturing data
after activation. When you run analyses with segmented buffers, the Signal Tap Logic
Analyzer captures back-to-back data for each acquisition segment within the data
buffer. You define the trigger flow, or the type and order in which the trigger
conditions evaluate for each buffer, either in the Sequential trigger flow control or in
the Custom State-based trigger flow control.

The following figure shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 90. Segmented Acquisition Buffer

0

1

1

Segment 1 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 1
Post Pre

0

1

1

Segment 2 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 2
Post Pre

0

1

1

Segment 3 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 3
Post Pre

0

1

1

Segment 4 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 4
Post Pre

When the Signal Tap Logic Analyzer finishes an acquisition with a segment and
advances to the next segment to start a new acquisition. The data capture that
appears in the waveform viewer depends on when a trigger condition occurs. The
figure illustrates the data capture method. The Trigger markers—Trigger 1, Trigger 2,
Trigger 3 and Trigger 4—refer to the evaluation of the segment_trigger and
trigger commands in the Custom State-based trigger flow. In sequential flows, the
Trigger markers refer to trigger conditions that you specify within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the Signal Tap
Logic Analyzer starts evaluating Trigger 2 immediately. Data Acquisition for Segment 2
buffer starts when either Segment Buffer 1 finishes its post-fill count, or when Trigger
2 evaluates as TRUE, whichever condition occurs first. Thus, trigger conditions
associated with the next buffer in the data capture sequence can preempt the post-fill
count of the current active buffer. This allows the Signal Tap Logic Analyzer to
accurately capture all the trigger conditions that occurred. Unused samples appear as
a blank space in the waveform viewer.

Figure 91. Segmented Capture with Preemption of Acquisition Segments
The figure shows a capture using sequential flow control with the trigger condition for each segment specified
as Don’t Care.

Each segment before the last captures only one sample, because the next trigger
condition immediately preempts capture of the current buffer. The trigger position for
all segments is specified as pre-trigger (10% of the data is before the trigger condition
and 90% of the data is after the trigger position). Because the last segment starts
immediately with the trigger condition, the segment contains only post-trigger data.
The three empty samples in the last segment are left over from the pre-trigger
samples that the Signal Tap Logic Analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. A custom state-based trigger flow provides maximum flexibility defining
the trigger position. By adjusting the trigger position specific to the debugging
requirements, you can help maximize the use of the allocated buffer space.

Related Information

Segmented Buffer on page 160

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.8.2. Differences in Pre-Fill Write Behavior Between Different Acquisition
Modes

Different acquisition modes capture different amounts of data immediately after
running the Signal Tap Logic Analyzer and before any trigger conditions occur.

Non-Segmented Buffers in Continuous Mode

In configurations with non-segmented buffers running in continuous mode, the buffer
must be full with sampled data before evaluating any trigger condition. Only after the
buffer is full, the Signal Tap logic analyzer starts retrieving data through the JTAG
connection and evaluates the trigger condition.

If you perform a Stop Analysis, Signal Tap prevents the buffer from being dumped
during the first acquisition prior to a trigger condition.

Buffers with Storage Qualification

For buffers using a storage qualification mode, the Signal Tap Logic Analyzer
immediately evaluates all trigger conditions while writing samples into the acquisition
memory. This evaluation is especially important when using any storage qualification
on the data set. The logic analyzer may miss a trigger condition if it waits to capture a
full buffer's worth of data before evaluating any trigger conditions.

If a trigger activates before the specified amount of pre-trigger data has occurred, the
Signal Tap Logic Analyzer begins filling memory with post-trigger data, regardless of
the amount of pre-trigger data you specify. For example, if you set the trigger position
to 50% and set the logic analyzer to trigger on a processor reset, start the logic
analyzer, and then power on the target system, the trigger activates. However, the
logic analyzer memory contains only post-trigger data, and not any pre-trigger data,
because the trigger event has higher precedence than the capture of pre-trigger data.

5.8.2.1. Example

The figures for continuous data capture and conditional data capture show the
difference between a non-segmented buffer in continuous mode and a non-segmented
buffer using a storage qualifier. The configuration of the logic analyzer waveforms is a
base trigger condition, sample depth of 64 bits, and Post trigger position.

Figure 92. Signal Tap Logic Analyzer Continuous Data Capture

In the continuous data capture, Trig1 occurs several times in the data buffer before
the Signal Tap Logic Analyzer trigger activates. The buffer needs to be full before the
logic analyzer evaluates any trigger condition. After the trigger condition occurs, the
logic analyzer continues acquisition for eight additional samples (12% of the buffer, as
defined by the "post-trigger" position).

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

208

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 93. Signal Tap Logic Analyzer Conditional Data Capture

Note to figure:

1. Conditional capture, storage always enabled, post-fill count.

2. Signal Tap Logic Analyzer capture of a recurring pattern using a non-segmented
buffer in conditional mode. The configuration of the logic analyzer is a basic
trigger condition "Trig1" and sample depth of 64 bits. The Trigger in condition is
Don't care, so the buffer captures all samples.

In conditional capture the logic analyzer triggers immediately. As in continuous
capture, the logic analyzer completes the acquisition with eight samples, or 12% of
64, the sample capacity of the acquisition buffer.

5.8.3. Creating Mnemonics for Bit Patterns

A mnemonic table allows you to assign a meaningful name to a set of bit patterns,
such as a bus. To create a mnemonic table:

1. Right-click the Setup or Data tab of a Signal Tap instance, and click Mnemonic
Table Setup.

2. Create a mnemonic table by entering sets of bit patterns and specifying a label to
represent each pattern.

3. Assign the table to a group of signals by right-clicking the group, clicking Bus
Display Format, and selecting the mnemonic table.

4. On the Setup tab, you can create basic triggers with meaningful names by right-
clicking an entry in the Trigger Conditions column and selecting a label from the
table you assigned to the signal group.

On the Data tab, if data captured matches a bit pattern contained in an assigned
mnemonic table, the Signal Tap GUI replaces the signal group data with the
appropriate label, simplifying the visual inspection of expected data patterns.

5.8.4. Automatic Mnemonics with a Plug-In

When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click the name of the signal or signal
group. On the Bus Display Format shortcut menu, then click the name of the
mnemonic table that matches the plug-in.

As an example, the Nios II plug-in helps you to monitor signal activity for your design
as the code is executed. If you set up the logic analyzer to trigger on a function name
in your Nios II code based on data from an .elf, you can see the function name in
the Instance Address signal group at the trigger sample, along with the

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

209

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


corresponding disassembled code in the Disassembly signal group, as shown in 
Figure 13–52. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

Figure 94. Data Tab when the Nios II Plug-In is Used

5.8.5. Locating a Node in the Design

When you find the source of an error in your design using the Signal Tap Logic
Analyzer, you can use the node locate feature to locate that signal in many of the tools
found in the Intel Quartus Prime software, as well as in your design files. This lets you
find the source of the problem quickly so you can modify your design to correct the
flaw. To locate a signal from the Signal Tap Logic Analyzer in one of the Intel Quartus
Prime software tools or your design files, right-click the signal in the .stp, and click
Locate in <tool name>.

You can locate a signal from the node list with the following tools:

• Assignment Editor

• Pin Planner

• Timing Closure Floorplan

• Chip Planner

• Resource Property Editor

• Technology Map Viewer

• RTL Viewer

• Design File

5.8.6. Saving Captured Data

When you save a data capture, Signal Tap Logic Analyzer stores this data in the
active .stp file, and the Data Log adds the capture as a log entry under the current
configuration.

When analysis is set to Auto-run mode, the Logic Analyzer creates a separate entry
in the Data Log to store the data captured each time the trigger occurred. This allows
you to review the captured data for each trigger event.

The default name for a log is based time stamp when the Logic Analyzer acquired the
data. As a best practice, rename the data log with a more meaningful name.

The organization of logs is hierarchical; the Logic Analyzer groups similar logs of
captured data in trigger sets.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

210

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

Data Log Pane on page 169

5.8.7. Exporting Captured Data to Other File Formats

You can export captured data to the following file formats, for use with other EDA
simulation tools:

• Comma Separated Values File (.csv)

• Table File (.tbl)

• Value Change Dump File (.vcd)

• Vector Waveform File (.vwf)

• Graphics format files (.jpg, .bmp)

To export the captured data from Signal Tap Logic Analyzer, on the File menu, click
Export and specify the File Name, Export Format, and Clock Period.

5.8.8. Creating a Signal Tap List File

A .stp list file contains all the data the logic analyzer captures for a trigger event, in
text format.

Each row of the list file corresponds to one captured sample in the buffer. Columns
correspond to the value of each of the captured signals or signal groups for that
sample. If you defined a mnemonic table for the captured data, a matching entry from
the table replaces the numerical values in the list.

The .stp list file is especially useful when combined with a plug-in that includes
instruction code disassembly. You can view the order of instruction code execution
during the same time period of the trigger event.

To create a .stp list file in the Intel Quartus Prime software, click File ➤ Create/
Update ➤ Create Signal Tap List File.

Related Information

Adding Signals with a Plug-In on page 156

5.9. Other Features

The Signal Tap Logic Analyzer provides optional features not specific to a task flow.
The following techniques can offer advantages in specific scenarios.

5.9.1. Creating Signal Tap File from Design Instances

In addition to providing GUI support for generation of .stp files, the Intel Quartus
Prime software supports generation of a Signal Tap instance from logic defined in HDL
source files. This technique is helpful to modify runtime configurable trigger
conditions, acquire data, and view acquired data on the data log via Signal Tap
utilities.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

211

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.9.1.1. Creating a .stp File from a Design Instance

To generate a .stp file from parameterized HDL instances within your design:

1. Open or create an Intel Quartus Prime project that includes one or more HDL
instances of the Signal Tap logic analyzer.

2. Click Processing ➤ Start ➤ Start Analysis & Synthesis.

3. Click File ➤ Create/Update ➤ Create Signal Tap File from Design
Instance(s).

4. Specify a location for the .stp file that generates, and click Save.

Figure 95. Create Signal Tap File from Design Instances Dialog Box

Note: If your project contains partial reconfiguration partitions, the Create Signal
Tap File from Design Instance(s) dialog box displays a tree view of the
PR partitions in the project. Select a partition from the view, and click
Create Signal Tap file. The resultant .stp file that generates contains all
HDL instances in the corresponding PR partition. The resultant .stp file
does not include the instances in any nested partial reconfiguration
partition.

Figure 96. Selecting Partition for .stp File Generation

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

212

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


After successful .stp file creation, the Signal Tap Logic Analyzer appears. All the
fields are read-only, except runtime-configurable trigger conditions.

Figure 97. Generated .stp File

Related Information

• Create Signal Tap File from Design Instances
In Intel Quartus Prime Help

• Custom Trigger HDL Object on page 177

5.9.2. Using the Signal Tap MATLAB MEX Function to Capture Data

When you use MATLAB for DSP design, you can acquire data from the Signal Tap Logic
Analyzer directly into a matrix in the MATLAB environment by calling the MATLAB MEX
function alt_signaltap_run, built into the Intel Quartus Prime software. If you use
the MATLAB MEX function in a loop, you can perform as many acquisitions in the same
amount of time as you can when using Signal Tap in the Intel Quartus Prime software
environment.

Note: The Signal Tap MATLAB MEX function is available in the Windows* version and Linux
version of the Intel Quartus Prime software. This function is compatible with MATLAB
Release 14 Original Release Version 7 and later.

To set up the Intel Quartus Prime software and the MATLAB environment to perform
Signal Tap acquisitions:

1. In the Intel Quartus Prime software, create an .stp file.

2. In the node list in the Data tab of the Signal Tap Logic Analyzer Editor, organize
the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

213

http://quartushelp.altera.com/current/#program/ela/ela_com_create_stp_from_mf.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Each column of the imported matrix represents a single Signal Tap acquisition
sample, while each row represents a signal or group of signals in the order you
defined in the Data tab.

Note: Signal groups that the Signal Tap Logic Analyzer acquires and transfers into
the MATLAB MEX function have a width limit of 32 signals. To use the
MATLAB MEX function with a bus or signal group that contains more than 32
signals, split the group into smaller groups that do not exceed the limit.

3. Save the .stp file and compile your design. Program your device and run the
Signal Tap Logic Analyzer to ensure your trigger conditions and signal acquisition
work correctly.

4. In the MATLAB environment, add the Intel Quartus Prime binary directory to your
path with the following command:

addpath <Quartus install directory>\win

You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run

5. Use the MATLAB MEX function to open the JTAG connection to the device and run
the Signal Tap Logic Analyzer to acquire data. When you finish acquiring data,
close the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]);

When capturing data, you must assign a filename, for example, <stp filename> as
a requirement of the MATLAB MEX function. Other MATLAB MEX function options
are described in the table:

Table 70. Signal Tap MATLAB MEX Function Options

Option Usage Description

signed

unsigned

'signed'

'unsigned'

The signed option turns signal group data into 32-bit two’s-
complement signed integers. The MSB of the group as
defined in the Signal Tap Data tab is the sign bit. The
unsigned option keeps the data as an unsigned integer.
The default is signed.

<instance name> 'auto_signaltap_0' Specify a Signal Tap instance if more than one instance is
defined. The default is the first instance in the .stp,
auto_signaltap_0.

<signal set name>
<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the Signal Tap data
log if multiple configurations are present in the .stp. The
default is the active signal set and trigger in the file.

During data acquisition, you can enable or disable verbose mode to see the status
of the logic analyzer. To enable or disable verbose mode, use the following
commands:

alt_signaltap_run('VERBOSE_ON');-alt_signaltap_run('VERBOSE_OFF');

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

214

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run('END_CONNECTION');

For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

5.9.3. Using Signal Tap in a Lab Environment

You can install a stand-alone version of the Signal Tap Logic Analyzer. This version is
particularly useful in a lab environment in which you do not have a workstation that
meets the requirements for a complete Intel Quartus Prime installation, or if you do
not have a license for a full installation of the Intel Quartus Prime software. The
standalone version of the Signal Tap Logic Analyzer is included with and requires the
Intel Quartus Prime stand-alone Programmer which is available from the Downloads
page of the Altera website.

5.9.4. Remote Debugging Using the Signal Tap Logic Analyzer

5.9.4.1. Debugging Using a Local PC and an SoC

You can use the System Console with Signal Tap Logic Analyzer to remote debug your
Intel FPGA SoC. This method requires one local PC, an existing TCP/IP connection, a
programming device at the remote location, and an Intel FPGA SoC.

Related Information

Remote Hardware Debugging over TCP/IP

5.9.4.2. Debugging Using a Local PC and a Remote PC

You can use the Signal Tap Logic Analyzer to debug a design that is running on a
device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:

• The Intel Quartus Prime software installed on the local PC

• Stand-alone Signal Tap Logic Analyzer or the full version of the Intel Quartus
Prime software installed on the remote PC

• Programming hardware connected to the device on the PCB at the remote location

• TCP/IP protocol connection

5.9.4.2.1. Equipment Setup

1. On the PC in the remote location, install the standalone version of the Signal Tap
Logic Analyzer, included in the Intel Quartus Prime stand-alone Programmer, or
the full version of the Intel Quartus Prime software.

2. Connect the remote computer to Intel programming hardware, such as the or Intel
FPGA Download Cable.

3. On the local PC, install the full version of the Intel Quartus Prime software.

4. Connect the local PC to the remote PC across a LAN with the TCP/IP protocol.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

215

http://www.altera.com
http://www.altera.com/literature/an/an_693.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.9.5. Using the Signal Tap Logic Analyzer in Devices with Configuration
Bitstream Security

Certain device families support bitstream decryption during configuration using an on-
device AES decryption engine. You can still use the Signal Tap Logic Analyzer to
analyze functional data within the FPGA. However, note that JTAG configuration is not
possible after the security key has been programmed into the device.

Intel FPGA recommends that you use an unencrypted bitstream during the prototype
and debugging phases of the design. Using an unencrypted bitstream allows you to
generate new programming files and reconfigure the device over the JTAG connection
during the debugging cycle.

If you must use the Signal Tap Logic Analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design must
contain at least one instance of the Signal Tap Logic Analyzer. After the FPGA is
configured with a Signal Tap Logic Analyzer instance in the design, when you open the
Signal Tap Logic Analyzer in the Intel Quartus Prime software, you then scan the chain
and are ready to acquire data with the JTAG connection.

5.9.6. Monitor FPGA Resources Used by the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer has a built-in resource estimator that calculates the
logic resources and amount of memory that each logic analyzer instance uses.
Furthermore, because the most demanding on-chip resource for the logic analyzer is
memory usage, the resource estimator reports the ratio of total RAM usage in your
design to the total amount of RAM available, given the results of the last compilation.
The resource estimator provides a warning if a potential for a “no-fit” occurs.

You can see resource usage (by instance and total) in the columns of the Instance
Manager pane of the Signal Tap Logic Analyzer Editor. Use this feature when you
know that your design is running low on resources.

The logic element value that the resource usage estimator reports may vary by as
much as 10% from the actual resource usage.

5.10. Design Example: Using Signal Tap Logic Analyzers

The system in this example contains many components, including a Nios processor, a
direct memory access (DMA) controller, on-chip memory, and an interface to external
SDRAM memory. After you press a button, the processor initiates a DMA transfer,
which you analyze using the Signal Tap Logic Analyzer. In this example, the Nios
processor executes a simple C program from on-chip memory and waits for you to
press a button.

Related Information

AN 446: Debugging Nios II Systems with the Signal Tap Embedded Logic Analyzer
application note

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

216

http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an446.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5.11. Custom Triggering Flow Application Examples

The custom triggering flow in the Signal Tap Logic Analyzer is most useful for
organizing a number of triggering conditions and for precise control over the
acquisition buffer. This section provides two application examples for defining a
custom triggering flow within the Signal Tap Logic Analyzer. Both examples can be
easily copied and pasted directly into the state machine description box by using the
state display mode All states in one window.

Related Information

On-chip Debugging Design Examples website

5.11.1. Design Example 1: Specifying a Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer.

The example shows how to apply a trigger position to all segments in the acquisition
buffer. The example describes a triggering flow for an acquisition buffer split into four
segments. If each acquisition segment is 64 samples in depth, the trigger position for
each buffer is at sample #34. The acquisition stops after all segments are filled once.

if (c1 == 3 && condition1)
    trigger 30;
else if ( condition1 )
begin
    segment_trigger 30;
    increment c1;
end

Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values.

The Data tab displays the last acquisition before stopping the buffer as the last
sample number in the affected segment. The trigger position in the affected segment
is then defined by N – post count fill, where N is the number of samples per
segment.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

217

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 98. Specifying a Custom Trigger Position

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample

5.11.2. Design Example 2: Trigger When triggercond1 Occurs Ten Times
between triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events
before triggering the acquisition buffer. The example shows such a sample flow. This
example uses three basic triggering conditions configured in the Signal Tap Setup tab.

This example triggers the acquisition buffer when condition1 occurs after
condition3 and occurs ten times prior to condition3. If condition3 occurs prior
to ten repetitions of condition1, the state machine transitions to a permanent wait
state.

state ST1:
if ( condition2  )
begin
   reset c1;
   goto ST2;
end
State ST2 :
if ( condition1 )
    increment c1;
else if (condition3 && c1 < 10)
    goto ST3;
else if ( condition3 && c1 >= 10)
    trigger;
ST3:
goto ST3;

5.12. Signal Tap Scripting Support

The Intel Quartus Prime supports automating Signal Tap procedures in a scripting
environment, as Tcl scripts or through the quartus_stp executable. For detailed
information about scripting command options, refer to the Intel Quartus Prime
Command-Line and Tcl API Help browser. To run the Help browser, type quartus_sh
--qhelp at the command prompt.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

218

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

5.12.1. Signal Tap Command-Line Options

You can use the following options with the quartus_stp executable:

Table 71. quartus_stp Command-Line Options

Option Usage Description

--stp_file <stp_filename> Required Specifies the name of the .stp file.

--enable Optional Sets the ENABLE_SIGNALTAP option to ON in the project's .qsf file, so
the Signal Tap Logic Analyzer runs in the next compilation.
If you omit this option, the Intel Quartus Prime software uses the current
value of ENABLE_SIGNALTAP in the .qsf file.
Writes subsequent Signal Tap assignments to the .stp that appears in
the .qsf file. If the .qsf file does not specify a .stp file, you must use
the --stp_file option.

--disable Optional Sets the ENABLE_SIGNALTAP option to OFF in the project's .qsf file, so
the Signal Tap Logic Analyzer does not in the next compilation.
If you omit the --disable option, the Intel Quartus Prime software
uses the current value of ENABLE_SIGNALTAP in the .qsf file.

--
create_signaltap_hdl_file

Optional Creates an .stp file representing the Signal Tap instance. You must use
the --stp_file option to create an .stp.
Equivalent to the Create Signal Tap File from Design Instances
command in the Intel Quartus Prime software
.

Examples

The first example illustrates how to compile a design with the Signal Tap Logic
Analyzer at the command line.

quartus_stp filtref --stp_file stp1.stp --enable
quartus_map filtref --source=filtref.bdf --family=CYCLONE
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns
quartus_asm filtref

The quartus_stp --stp_file stp1.stp --enable command creates the QSF
variable and instructs the Intel Quartus Prime software to compile the stp1.stp file
with your design. The --enable option must be applied for the Signal Tap Logic
Analyzer to compile into your design.

The following example creates a new .stp after building the Signal Tap Logic Analyzer
instance with the IP Catalog.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp

5.12.2. Data Capture from the Command Line

The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Intel Quartus Prime GUI.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

219

https://www.intel.com/content/www/us/en/programmable/documentation/jeb1529967983176.html#mwh1410471013439
https://www.intel.com/content/www/us/en/programmable/documentation/jeb1529967983176.html#mwh1410470998554
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Note: You cannot execute Signal Tap Tcl commands from within the Tcl console in the Intel
Quartus Prime software.

To execute a Tcl script containing Signal Tap Logic Analyzer Tcl commands, use:

quartus_stp -t <Tcl file>

Example 25. Continuously Capturing Data

This excerpt shows commands you can use to continuously capture data. Once the
capture meets trigger condition e, the Signal Tap Logic Analyzer starts the capture and
stores the data in the data log.

#  Open Signal Tap session
open_session -name stp1.stp

###  Start acquisition of instances auto_signaltap_0 and
###  auto_signaltap_1 at the same time

# Calling run_multiple_end starts all instances
run_multiple_start

run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5

run_multiple_end

# Close Signal Tap session
close_session

Related Information

::quartus::stp
In Intel Quartus Prime Help

5.13. Design Debugging with the Signal Tap Logic Analyzer Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Renamed topic: Untappable Signals to Signals Unavailable for Signal

Tap Debugging.

2017.11.06 17.1.0 • Clarified information about the Data Log Pane.
• Updated Figure: Data Log and renamed to Simple Data Log.
• Added Figure: Accessing the Advanced Trigger Condition Tab.

2017.05.08 17.0.0 • Added: Open Standalone Signal Tap Logic Analyzer GUI.
• Updated figures on Create Signal Tap File from Design Instance(s).

2016.10.31 16.1.0 • Added: Create SignalTap II File from Design Instance(s).
• Removed reference to unsupported Talkback feature.

2016.05.03 16.0.0 • Added: Specifying the Pipeline Factor
• Added: Comparison Trigger Conditions

continued...   

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

220

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_stp_ver_1.0.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Version Intel Quartus
Prime Version

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Added content for Floating Point Display Format in table: SignalTap II Logic
Analyzer Features and Benefits.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

December 2014 14.1.0 • Added MAX 10 as supported device.
• Removed Full Incremental Compilation setting and Post-Fit (Strict)

netlist type setting information.
• Removed outdated GUI images from "Using Incremental Compilation

with the SignalTap II Logic Analyzer" section.

June 2014 14.0.0 • DITA conversion.
• Replaced MegaWizard Plug-In Manager and Megafunction content with

IP Catalog and parameter editor content.
• Added flows for custom trigger HDL object, Incremental Route with

Rapid Recompile, and nested groups with Basic OR.
• GUI changes: toolbar, drag to zoom, disable/enable instance, trigger

log time-stamping.

November 2013 13.1.0 Removed HardCopy material. Added section on using cross-triggering with
DS-5 tool and added link to white paper 01198. Added section on remote
debugging an Altera SoC and added link to application note 693. Updated
support for MEX function.

May 2013 13.0.0 • Added recommendation to use the state-based flow for segmented
buffers with separate trigger conditions, information about Basic OR
trigger condition, and hard processor system (HPS) external triggers.

• Updated “Segmented Buffer” on page 13-17, Conditional Mode on page
13-21, Creating Basic Trigger Conditions on page 13-16, and Using
External Triggers on page 13-48.

June 2012 12.0.0 Updated Figure 13–5 on page 13–16 and “Adding Signals to the SignalTap
II File” on page 13–10.

November 2011 11.0.1 Template update.
Minor editorial updates.

May 2011 11.0.0 Updated the requirement for the standalone SignalTap II software.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Add new acquisition buffer content to the “View, Analyze, and Use
Captured Data” section.

• Added script sample for generating hexadecimal CRC values in
programmed devices.

• Created cross references to Quartus II Help for duplicated procedural
content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Updated Table 13–1
• Updated “Using Incremental Compilation with the SignalTap II Logic

Analyzer” on page 13–45
• Added new Figure 13–33
• Made minor editorial updates

November 2008 8.1.0 Updated for the Quartus II software version 8.1 release:

continued...   

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

221

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Version Intel Quartus
Prime Version

Changes

• Added new section “Using the Storage Qualifier Feature” on page 14–
25

• Added description of start_store and stop_store commands in
section “Trigger Condition Flow Control” on page 14–36

• Added new section “Runtime Reconfigurable Options” on page 14–63

May 2008 8.0.0 Updated for the Quartus II software version 8.0:
• Added “Debugging Finite State machines” on page 14-24
• Documented various GUI usability enhancements, including

improvements to the resource estimator, the bus find feature, and the
dynamic display updates to the counter and flag resources in the State-
based trigger flow control tab

• Added “Capturing Data Using Segmented Buffers” on page 14–16
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

222

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


7. In-System Debugging Using External Logic Analyzers

7.1. About the Intel Quartus Prime Logic Analyzer Interface

The Intel Quartus Prime Logic Analyzer Interface (LAI) allows you to use an external
logic analyzer and a minimal number of Intel-supported device I/O pins to examine
the behavior of internal signals while your design is running at full speed on your
Intel-supported device.

The LAI connects a large set of internal device signals to a small number of output
pins. You can connect these output pins to an external logic analyzer for debugging
purposes. In the Intel Quartus Prime LAI, the internal signals are grouped together,
distributed to a user-configurable multiplexer, and then output to available I/O pins on
your Intel-supported device. Instead of having a one-to-one relationship between
internal signals and output pins, the Intel Quartus Prime LAI enables you to map many
internal signals to a smaller number of output pins. The exact number of internal
signals that you can map to an output pin varies based on the multiplexer settings in
the Intel Quartus Prime LAI.

Note: The term “logic analyzer” when used in this document includes both logic analyzers
and oscilloscopes equipped with digital channels, commonly referred to as mixed
signal analyzers or MSOs.

The LAI does not support Hard Processor System (HPS) I/Os.

Related Information

Device Support Center

7.2. Choosing a Logic Analyzer

The Intel Quartus Prime software offers the following two general purpose on-chip
debugging tools for debugging a large set of RTL signals from your design:

• The Signal Tap Logic Analyzer

• An external logic analyzer, which connects to internal signals in your Intel-
supported device by using the Intel Quartus Prime LAI

Table 72. Comparing the Signal Tap Logic Analyzer with the Logic Analyzer Interface

Feature Description Recommended Logic
Analyzer

Sample Depth You have access to a wider sample depth with an
external logic analyzer. In the Signal Tap Logic
Analyzer, the maximum sample depth is set to

LAI

continued...   

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/support/devices/dvs-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


Feature Description Recommended Logic
Analyzer

128 Kb, which is a device constraint. However, with
an external logic analyzer, there are no device
constraints, providing you a wider sample depth.

Debugging Timing Issues Using an external logic analyzer provides you with
access to a “timing” mode, which enables you to
debug combined streams of data.

LAI

Performance You frequently have limited routing resources
available to place and route when you use the Signal
Tap Logic Analyzer with your design. An external logic
analyzer adds minimal logic, which removes resource
limits on place-and-route.

LAI

Triggering Capability The Signal Tap Logic Analyzer offers triggering
capabilities that are comparable to external logic
analyzers.

LAI or Signal Tap

Use of Output Pins Using the Signal Tap Logic Analyzer, no additional
output pins are required. Using an external logic
analyzer requires the use of additional output pins.

Signal Tap

Acquisition Speed With the Signal Tap Logic Analyzer, you can acquire
data at speeds of over 200 MHz. You can achieve the
same acquisition speeds with an external logic
analyzer; however, you must consider signal integrity
issues.

Signal Tap

Related Information

System Debugging Tools Overview on page 7

7.2.1. Required Components

To perform analysis using the LAI you need the following components:

• Intel Quartus Prime software version 15.1 or later

• The device under test

• An external logic analyzer

• An Intel FPGA communications cable

• A cable to connect the Intel-supported device to the external logic analyzer

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

224

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 99. LAI and Hardware Setup

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

FPGA Programming
Hardware Quartus Prime Software

External Logic Analyzer
Board

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
the JTAG port. Support varies by vendor.

7.3. Flow for Using the LAI

Figure 100. LAI Workflow

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus Prime Software

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
the JTAG port. Support varies by vendor.

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

225

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


7.3.1. Defining Parameters for the Logic Analyzer Interface

The Logic Analyzer Interface Editor allows you to define the parameters of the LAI.

• Click Tools ➤ Logic Analyzer Interface Editor.

Figure 101. Logic Analyzer Interface Editor

• In the Setup View list, select Core Parameters.

• Specify the parameters of the LAI instance.

Related Information

LAI Core Parameters on page 229

7.3.2. Mapping the LAI File Pins to Available I/O Pins

To assign pin locations for the LAI:

1. Select Pins in the Setup View list

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

226

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 102. Mapping LAI file Pins

2. Double-click the Location column next to the reserved pins in the Name column,
and select a pin from the list.

3. Right-click the selected pin and locate in the Pin Planner.

Related Information

Managing Device I/O Pins
In Intel Quartus Prime Standard Edition Handbook Volume 2

7.3.3. Mapping Internal Signals to the LAI Banks

After specifiing the number of banks to use in the Core Parameters settings page,
you must assign internal signals for each bank in the LAI.

1. Click the Setup View arrow and select Bank n or All Banks.

2. To view all the bank connections, click Setup View and then select All Banks.

3. Before making bank assignments, right click the Node list and select Add Nodes
to open the Node Finder.

4. Find the signals that you want to acquire.

5. Drag the signals from the Node Finder dialog box into the bank Setup View.

When adding signals, use Signal Tap: pre-synthesis for non-incrementally
routed instances and Signal Tap: post-fitting for incrementally routed instances

As you continue to make assignments in the bank Setup View, the schematic of
the LAI in the Logical View pane begins to reflect the changes.

6. Continue making assignments for each bank in the Setup View until you add all
the internal signals that you want to acquire.

Related Information

Node Finder Command
In Intel Quartus Prime Help

7.3.4. Compiling Your Intel Quartus Prime Project

After you save your .lai file, a dialog box prompts you to enable the Logic Analyzer
Interface instance for the active project. Alternatively, you can define the .lai file
your project uses in the Global Project Settings dialog box. After specifying the
name of your .lai file, compile your project.

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

227

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410471036713
http://quartushelp.altera.com/current/#assign/unb/unb_com_node_finder.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To verify the Logic Analyzer Interface is properly compiled with your project, expand
the entity hierarchy in the Project Navigator. If the LAI is compiled with your design,
the sld_hub and sld_multitap entities are shown in the Project Navigator.

Figure 103. Project Navigator

7.3.5. Programming Your Intel-Supported Device Using the LAI

After compilation completes, you must configure your Intel-supported device before
using the LAI.

You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can also
consist of devices that do not support the LAI or non-Intel, JTAG-compliant devices. To
use the LAI in more than one Intel-supported device, create an .lai file and
configure an .lai file for each Intel-supported device that you want to analyze.

7.4. Controlling the Active Bank During Runtime

When you have programmed your Intel-supported device, you can control which bank
you map to the reserved .lai file output pins. To control which bank you map, in the
schematic in the Logical View, right-click the bank and click Connect Bank.

Figure 104. Configuring Banks

7.4.1. Acquiring Data on Your Logic Analyzer

To acquire data on your logic analyzer, you must establish a connection between your
device and the external logic analyzer. For more information about this process and for
guidelines about how to establish connections between debugging headers and logic
analyzers, refer to the documentation for your logic analyzer.

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

228

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


7.5. Using the LAI with Incremental Compilation

The Incremental Compilation feature in the Intel Quartus Prime software allows you to
preserve the synthesis and fitting results of your design. In cases where you only
modify a portion of a design, or you wish to preserve the optimization results from a
previous compilation, this ability allows reducing compilation times

Because LAI consists of only a small portion of your design, incremental compilation
helps minimizing compilation time. Incremental compilation works best when you are
only changing a small portion of your design. Incremental compilation yields an
accurate representation of your design behavior when changing the .lai file through
multiple compilations.

7.6. LAI Core Parameters

The table lists the LAI file core parameters:

Table 73. LAI File Core Parameters

Parameter Range Value Description

Pin Count 1 - 255 Number of pins dedicated to the LAI. You must connect the pins to a
debug header on the board.
Within the device, The Compiler maps each pin to a user-
configurable number of internal signals.

Bank Count 1 - 255 Number of internal signals that you want to map to each pin.
For example, a Bank Count of 8 implies that you connect eight
internal signals to each pin.

Output/Capture Mode Specifies the acquisition mode. The two options are:
• Combinational/Timing—This acquisition mode uses the

external logic analyzer’s internal clock to determine when to
sample data.
This acquisition mode requires you to manually determine the
sample frequency to debug and verify the system, because the
data sampling is asynchronous to the Intel-supported device.
This mode is effective if you want to measure timing information
such as channel-to-channel skew. For more information about the
sampling frequency and the speeds at which it can run, refer to
the external logic analyzer's data sheet.

• Registered/State—This acquisition mode determines when to
sample from a signal on the system under test. Consequently, the
data samples are synchronous with the Intel-supported device.
The Registered/State mode provides a functional view of the
Intel-supported device while it is running. This mode is effective
when you verify the functionality of the design.

Clock Specifies the sample clock. You can use any signal in the design as a
sample clock. However, for best results, use a clock with an
operating frequency fast enough to sample the data that you want to
acquire.
Note: The Clock parameter is available only when Output/

Capture Mode is set to Registered State.

Power-Up State Specifies the power-up state of the pins designated for use with the
LAI. You can select tri-stated for all pins, or selecting a particular
bank that you enable.

Related Information

Defining Parameters for the Logic Analyzer Interface on page 226

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

229

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


7.7. In-System Debugging Using External Logic Analyzers Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 • Moved list of LAI File Core Parameters from Configuring the File Core
Parameters to its own topic, and added links.

2017.05.08 17.0.0 • Updated figure: LAI Instance in Compilation Report.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion
• Added limitation about HPS I/O support

June 2012 12.0.0 Removed survey link

November 2011 10.1.1 Changed to new document template

December 2010 10.1.0 • Minor editorial updates
• Changed to new document template

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Created links to the Intel Quartus Prime Help
• Editorial updates
• Removed Referenced Documents section

November 2009 9.1.0 • Removed references to APEX devices
• Editorial updates

March 2009 9.0.0 • Minor editorial updates
• Removed Figures 15–4, 15–5, and 15–11 from 8.1 version

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content

May 2008 8.0.0 • Updated device support list on page 15–3
• Added links to referenced documents throughout the chapter
• Added “Referenced Documents”
• Added reference to Section V. In-System Debugging
• Minor editorial updates

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

230

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


8. In-System Modification of Memory and Constants
The Intel Quartus Prime In-System Memory Content Editor (ISMCE) allows to view and
update memories and constants at runtime through the JTAG interface. By testing
changes to memory contents in the FPGA while the design is running, you can identify,
test, and resolve issues.

The ability to read data from memories and constants can help you identify the source
of problems, and the write capability allows you to bypass functional issues by writing
expected data.

When you use the In-System Memory Content Editor in conjunction with the Signal
Tap Logic Analyzer, you can view and debug your design in the hardware lab.

Related Information

• System Debugging Tools Overview on page 7

• Design Debugging with the Signal Tap Logic Analyzer on page 147

• Megafunctions/LPM
List of the types of memories and constants currently supported by the Intel
Quartus Prime software

8.1. Setting Up In-System Modifiable Memories and Constants

When you specify that a memory or constant is run-time modifiable, the Intel Quartus
Prime software changes the default implementation. A single-port RAM is converted to
a dual-port RAM, and a constant is implemented in registers instead of look-up tables
(LUTs). These changes enable run-time modification without changing the functionality
of your design.

If you instantiate a memory or constant IP core directly with ports and parameters in
VHDL or Verilog HDL, add or modify the lpm_hint parameter as follows:

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES,
   INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
   "ENABLE_RUNTIME_MOD = YES,
   INSTANCE_NAME = <instantiation name>";

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://quartushelp.altera.com/current/index.htm#hdl/mega/mega_list_mega_lpm.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


8.2. Running the In-System Memory Content Editor

The In-System Memory Content Editor has three separate panes: the Instance
Manager, the JTAG Chain Configuration, and the Hex Editor.

The Instance Manager pane displays all available run-time modifiable memories and
constants in your FPGA device. The JTAG Chain Configuration pane allows you to
program your FPGA and select the Intel FPGA device in the chain to update.

Using the In-System Memory Content Editor does not require that you open a project.
The In-System Memory Content Editor retrieves all instances of run-time configurable
memories and constants by scanning the JTAG chain and sending a query to the
specific device selected in the JTAG Chain Configuration pane.

If you have more than one device with in-system configurable memories or constants
in a JTAG chain, you can launch multiple In-System Memory Content Editors within the
Intel Quartus Prime software to access the memories and constants in each of the
devices. Each In-System Memory Content Editor can access the in-system memories
and constants in a single device.

8.2.1. Instance Manager

You can read and write to in-system memory with the Instance Manager pane.
When you scan the JTAG chain to update the Instance Manager pane, you can view
a list of all run-time modifiable memories and constants in the design. The Instance
Manager pane displays the Index, Instance, Status, Width, Depth, Type, and Mode of
each element in the list.

Note: In addition to the buttons available in the Instance Manager pane, you can read and
write data by selecting commands from the Processing menu, or the right-click menu
in the Instance Manager pane or Hex Editor pane.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running, Offloading data,
or Updating data. The health monitor provides information about the status of the
editor.

The Intel Quartus Prime software assigns a different index number to each in-system
memory and constant to distinguish between multiple instances of the same memory
or constant function. View the In-System Memory Content Editor Settings section
of the Compilation Report to match an index number with the corresponding instance
ID.

Related Information

Instance Manager Pane
In Intel Quartus Prime Help

8.2.2. Editing Data Displayed in the Hex Editor Pane

You can edit data read from your in-system memories and constants displayed in the
Hex Editor pane by typing values directly into the editor or by importing memory
files.

8. In-System Modification of Memory and Constants

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

232

http://quartushelp.altera.com/current/index.htm#program/red/red_com_instance_manager.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


8.2.3. Importing and Exporting Memory Files

The In-System Memory Content Editor allows you to import and export data values for
memories that have the In-System Updating feature enabled. Importing from a data
file enables you to quickly load an entire memory image. Exporting to a data file
enables you to save the contents of the memory for future use.

8.2.4. Scripting Support

The Intel Quartus Prime software allows you to perform runtime modification of
memories and constants in scripted flows.

You can enable memory and constant instances to be runtime modifiable from the HDL
code. Additionally, the In-System Memory Content Editor supports reading and writing
of memory contents via Tcl commands from the insystem_memory_edit package.

Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

• Command Line Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

• API Functions for Tcl
In Intel Quartus Prime Help

8.2.5. Programming the Device with the In-System Memory Content
Editor

After compilation, you must program the design in the FPGA. You can use the JTAG
Chain Configuration Pane to program the device from within the In-System Memory
Content Editor.

8.2.6. Example: Using the In-System Memory Content Editor with the
Signal Tap Logic Analyzer

The following scenario describes how you can use the In-System Updating of Memory
and Constants feature with the Signal Tap Logic Analyzer to efficiently debug your
design. You can use the In-System Memory Content Editor and the Signal Tap Logic
Analyzer simultaneously with the JTAG interface.

Scenario: After completing your FPGA design, you find that the characteristics of your
FIR filter design are not as expected.

1. To locate the source of the problem, change all your FIR filter coefficients to be in-
system modifiable and instantiate the Signal Tap Logic Analyzer.

2. Using the Signal Tap Logic Analyzer to tap and trigger on internal design nodes,
you find the FIR filter to be functioning outside of the expected cutoff frequency.

3. Using the In-System Memory Content Editor, you check the correctness of the
FIR filter coefficients. Upon reading each coefficient, you discover that one of the
coefficients is incorrect.

4. Because your coefficients are in-system modifiable, you update the coefficients
with the correct data with the In-System Memory Content Editor.

8. In-System Modification of Memory and Constants

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

233

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410471013439
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410470998554
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


In this scenario, you can quickly locate the source of the problem using both the
In-System Memory Content Editor and the Signal Tap Logic Analyzer. You can also
verify the functionality of your device by changing the coefficient values before
modifying the design source files.

You can also modify the coefficients with the In-System Memory Content Editor to
vary the characteristics of the FIR filter, for example, filter attenuation, transition
bandwidth, cut-off frequency, and windowing function.

8.3. In-System Modification of Memory and Constants Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 • Removed obsolete example.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion.
• Removed references to megafunction and replaced with IP core.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.3 Template update.

December 2010 10.0.2 Changed to new document template. No change to content.

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Inserted links to Intel Quartus Prime Help
• Removed Reference Documents section

November 2009 9.1.0 • Delete references to APEX devices
• Style changes

March 2009 9.0.0 No change to content

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Added reference to Section V. In-System Debugging in volume 3 of the
Intel Quartus Prime Handbook on page 16-1

• Removed references to the Mercury device, as it is now considered to
be a “Mature” device

• Added links to referenced documents throughout document
• Minor editorial updates

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

8. In-System Modification of Memory and Constants

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

234

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


9. Design Debugging Using In-System Sources and Probes
The Signal Tap Logic Analyzer and Signal Probe allow you to read or “tap” internal
logic signals during run time as a way to debug your logic design.

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run time.

You can make the debugging cycle more efficient when you can drive any internal
signal manually within your design, which allows you to perform the following actions:

• Force the occurrence of trigger conditions set up in the Signal Tap Logic Analyzer

• Create simple test vectors to exercise your design without using external test
equipment

• Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Intel Quartus Prime software extends
the portfolio of verification tools, and allows you to easily control any internal signal
and provides you with a completely dynamic debugging environment. Coupled with
either the Signal Tap Logic Analyzer or Signal Probe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

The Virtual JTAG IP core and the In-System Memory Content Editor also give you the
capability to drive virtual inputs into your design. The Intel Quartus Prime software
offers a variety of on-chip debugging tools.

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE IP core
and an interface to control the ALTSOURCE_PROBE IP core instances during run time.
Each ALTSOURCE_PROBE IP core instance provides you with source output ports and
probe input ports, where source ports drive selected signals and probe ports sample
selected signals. When you compile your design, the ALTSOURCE_PROBE IP core sets
up a register chain to either drive or sample the selected nodes in your logic design.
During run time, the In-System Sources and Probes Editor uses a JTAG connection to
shift data to and from the ALTSOURCE_PROBE IP core instances. The figure shows a
block diagram of the components that make up the In-System Sources and Probes
Editor.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


Figure 105. In-System Sources and Probes Editor Block Diagram

Design Logic

altsource_probe
Megafunction

Probes Sources

JTAG
Controller

FPGA
Programming

Hardware

Quartus Prime
Software

FPGA

D Q

D Q

The ALTSOURCE_PROBE IP core hides the detailed transactions between the JTAG
controller and the registers instrumented in your design to give you a basic building
block for stimulating and probing your design. Additionally, the In-System Sources and
Probes Editor provides single-cycle samples and single-cycle writes to selected logic
nodes. You can use this feature to input simple virtual stimuli and to capture the
current value on instrumented nodes. Because the In-System Sources and Probes
Editor gives you access to logic nodes in your design, you can toggle the inputs of low-
level components during the debugging process. If used in conjunction with the Signal
Tap Logic Analyzer, you can force trigger conditions to help isolate your problem and
shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

• Creating virtual push buttons

• Creating a virtual front panel to interface with your design

• Emulating external sensor data

• Monitoring and changing run time constants on the fly

The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE IP core instances to increase the level of automation.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

236

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

System Debugging Tools
For an overview and comparison of all the tools available in the Intel Quartus Prime
software on-chip debugging tool suite

9.1. Hardware and Software Requirements

The following components are required to use the In-System Sources and Probes
Editor:

• Intel Quartus Prime software

or

• Intel Quartus Prime Lite Edition

• Download Cable (USB-BlasterTM download cable or ByteBlasterTM cable)

• Intel FPGA development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

• Arria® series

• Stratix® series

• Cyclone® series

• MAX® series

9.2. Design Flow Using the In-System Sources and Probes Editor

The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of
the In-System Sources and Probes IP core.

After you compile the design, you can control each instance via the In-System
Sources and Probes Editor pane or via a Tcl interface.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

237

http://www.altera.com/literature/lit-qts.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 106. FPGA Design Flow Using the In-System Sources and Probes Editor

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project or Open an 
Existing Project

Configure altsource_probe 
Megafunction

Instrument selected logic nodes 
by Instantiating the 

altsource_probe Megafunction 
variation file into the HDL 

Design

Compile the design

Program Target Device(s)

Control Source and Probe 
Instance(s)

Debug/Modify HDL

9.2.1. Instantiating the In-System Sources and Probes IP Core

To instantiate the In-System Sources and Probes IP core in a design:

1. In the IP Catalog (Tools ➤ IP Catalog), type In-System Sources and
Probes.

2. Double-click In-System Sources and Probes to open the parameter editor.

3. Specify a name for the IP variation.

4. Specify the parameters for the IP variation.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

238

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The IP core supports up to 512 bits for each source, and design can include up to
128 instances of this IP core.

5. Click Generate or Finish to generate IP core synthesis and simulation files
matching your specifications.

6. Using the generated template, instantiate the In-System Sources and Probes IP
core in your design.

Note: The In-System Sources and Probes Editor does not support simulation. Remove the
In-System Sources and Probes IP core before you create a simulation netlist.

9.2.2. In-System Sources and Probes IP Core Parameters

Use the template to instantiate the variation file in your design.

Table 74. In-System Sources and Probes IP Port Information

Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input Source Data is written synchronously to this clock. This input is required
if you turn on Source Clock in the Advanced Options box in the
parameter editor.

source_ena No Input Clock enable signal for source_clk. This input is required if specified in
the Advanced Options box in the parameter editor.

source[] No Output Used to drive inputs to user design.

You can include up to 128 instances of the in-system sources and probes IP core in
your design, if your device has available resources. Each instance of the IP core uses a
pair of registers per signal for the width of the widest port in the IP core. Additionally,
there is some fixed overhead logic to accommodate communication between the IP
core instances and the JTAG controller. You can also specify an additional pair of
registers per source port for synchronization.

You can use the Intel Quartus Prime incremental compilation feature to reduce
compilation time. Incremental compilation allows you to organize your design into
logical partitions. During recompilation of a design, incremental compilation preserves
the compilation results and performance of unchanged partitions and reduces design
iteration time by compiling only modified design partitions.

9.3. Compiling the Design

When you compile your design that includes the In-System Sources and ProbesIP
core, the In-System Sources and Probes and SLD Hub Controller IP core are added to
your compilation hierarchy automatically. These IP cores provide communication
between the JTAG controller and your instrumented logic.

You can modify the number of connections to your design by editing the In-System
Sources and Probes IP core. To open the design instance you want to modify in the
parameter editor, double-click the instance in the Project Navigator. You can then
modify the connections in the HDL source file. You must recompile your design after
you make changes.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

239

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


You can use the Intel Quartus Prime incremental compilation feature to reduce
compilation design into logical partitions. During recompilation of a design,
incremental compilation preserves the compilation results and performance of
unchanged partitions and reduces design iteration time by compiling only modified
design partitions.

9.4. Running the In-System Sources and Probes Editor

The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE IP core instances within your design. The editor allows you to
view all available run time controllable instances of the ALTSOURCE_PROBE IP core in
your design, provides a push-button interface to drive all your source nodes, and
provides a logging feature to store your probe and source data.

To run the In-System Sources and Probes Editor:

• On the Tools menu, click In-System Sources and Probes Editor.

9.4.1. In-System Sources and Probes Editor GUI

The In-System Sources and Probes Editor contains three panes:

• JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

• Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

• In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open a
Intel Quartus Prime software project. The In-System Sources and Probes Editor
retrieves all instances of the ALTSOURCE_PROBE IP core by scanning the JTAG chain
and sending a query to the device selected in the JTAG Chain Configuration pane.
You can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE IP core instances in a single device. If you have more than one
device containing IP core instances in a JTAG chain, you can launch multiple In-
System Sources and Probes Editor panes to access the IP core instances in each
device.

9.4.2. Programming Your Device With JTAG Chain Configuration

After you compile your project, you must configure your FPGA before you use the In-
System Sources and Probes Editor.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

240

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To configure a device to use with the In-System Sources and Probes Editor, perform
the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances.
(The .sof may be automatically detected).

5. Click Program Device to program the target device.

9.4.3. Instance Manager

The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design, and allows you to configure data acquisition.

The Instance Manager pane contains the following buttons and sub-panes:

• Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

• Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read
interval setting.

• Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

• Read Source Data—Reads the data of the sources in the selected instances.

• Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by clicking
Manual.

• Event Log—Controls the event log that appears in the In-System Sources and
Probes Editor pane.

• Write Source Data—Allows you to manually or continuously write data to the
system.

Beside each entry, the Instance Manager pane displays the instance status. The
possible instance statuses are Not running Offloading data, Updating data, and
Unexpected JTAG communication error.

9.4.4. In-System Sources and Probes Editor Pane

The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design.

The data is organized according to the index number of the instance. The editor
provides an easy way to manage your signals, and allows you to rename signals or
group them into buses. All data collected from in-system source and probe nodes is
recorded in the event log and you can view the data as a timing diagram.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

241

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


9.4.4.1. Reading Probe Data

You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data.

This action produces a single sample of the probe data and updates the data column
of the selected index in the In-System Sources and Probes Editor pane. You can
save the data to an event log by turning on the Save data to event log option in the
Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously
read probe data. While reading, the status of the active instance shows Unloading.
You can read continuously from multiple instances.

You can access read data with the shortcut menus in the Instance Manager pane.

To adjust the probe read interval, in the Instance Manager pane, turn on the
Manual option in the Probe read interval sub-pane, and specify the sample rate in
the text field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You
can adjust the event log window buffer size in the Maximum Size box.

9.4.4.2. Writing Data

To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer.

Modified values that are not written out to the ALTSOURCE_PROBE instances appear in
red. To update the ALTSOURCE_PROBE instance, highlight the instance in the
Instance Manager pane and click Write source data. The Write source data
function is also available via the shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications you
make to the source data buffer to also write immediately to the ALTSOURCE_PROBE
instances. To continuously update the ALTSOURCE_PROBE instances, change the
Write source data field from Manually to Continuously.

9.4.4.3. Organizing Data

The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

The In-System Sources and Probes Editor pane allows you to rename any signal.
To rename a signal, double-click the name of the signal and type the new name.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

242

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over
the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (.spf). To save changes, on the File menu, click Save. The file contains
all the modifications you made to the signal groups, as well as the current data event
log.

9.5. Tcl interface for the In-System Sources and Probes Editor

To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run
quartus_stp.

The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

Table 75. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source_prob
e

-device_name <device name>
-hardware_name <hardware name>

Opens a handle to a device with the specified
hardware.
Call this command before starting any
transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware name>

Returns a list of all ALTSOURCE_PROBE
instances in your design. Each record
returned is in the following format:
{<instance Index>, <source width>, <probe
width>, <instance name>}

read_probe_data -instance_index <instance_index>
-value_in_hex (optional)

Retrieves the current value of the probe.
A string is returned that specifies the status
of each probe, with the MSB as the left-most
bit.

read_source_data -instance_index <instance_index>
-value_in_hex (optional)

Retrieves the current value of the sources.
A string is returned that specifies the status
of each source, with the MSB as the left-most
bit.

write_source_data -instance_index <instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.
A binary string is sent to the source ports,
with the MSB as the left-most bit.

end_insystem_source_probe None Releases the JTAG chain.
Issue this command when all transactions are
finished.

The example shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in the figure below. The
example design contains a DCFIFO with ALTSOURCE_PROBE instances to read from
and write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE
instances. A pulse generator is added to the read request and write request control

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

243

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in the example below, provide visibility into the contents of
the FIFO by performing single sample write and read operations and reporting the
state of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the Signal Tap Logic Analyzer.

Figure 107. DCFIFO Example Design Controlled by Tcl Script

Write_clock

write_req
data[7..0]

write_clock

read_req

read_clock

wr_full

Q[7..0]

rd_empty

data_out

read_clock
source_read_sel

s_read_req

s_write_req

rd_req_in

wr_req_in

data_in[7..0]

altsource_probe
(Instance 1)

altsource_probe
(Instance 0)

source_write_sel

s_data[7..0]
D Q

D Q

## Setup USB hardware  - assumes only USB Blaster is installed and
## an FPGA is the only device in the JTAG chain
set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
## write procedure :  argument value is integer
proc write {value} {
global device_name usb
variable full
start_insystem_source_probe -device_name $device_name -hardware_name $usb
#read full flag
set full [read_probe_data -instance_index 0]
if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}
##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel
##int2bits is custom procedure that returns a bitstring from an integer 
    ## argument
write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]
##clear transaction
write_source_data -instance_index 0 -value 0

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

244

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


end_insystem_source_probe
}
proc read {} {
global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name $usb
##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag
set empty [read_probe_data -instance_index 1]
if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }
## toggle select line for read transaction
## Source_read_sel = bit 0; s_read_reg = bit 1
## pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex
set x [read_probe_data -instance_index 1 ]
end_insystem_source_probe
return $x
}

Related Information

• Tcl Scripting

• Intel Quartus Prime Settings File Manual

• Command Line Scripting

9.6. Design Example: Dynamic PLL Reconfiguration

The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to
provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG IP core provides an easy interface to
access the register chain counters. The ALTPLL_RECONFIG IP core provides a cache
that contains all modifiable PLL parameters. After you update all the PLL parameters in
the cache, the ALTPLL_RECONFIG IP core drives the PLL register chain to update the
PLL with the updated parameters. The figure shows a Stratix-enhanced PLL with
reconfigurable coefficients.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

245

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410471013439
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410470998554
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 108. Stratix-Enhanced PLL with Reconfigurable Coefficients

÷n Δtn

Δt
m

÷m

÷g0 Δt
g0

÷e3 Δt
e3

÷g3 Δt
g3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)

The following design example uses an ALTSOURCE_PROBE instance to update the PLL
parameters in the ALTPLL_RECONFIG IP core cache. The ALTPLL_RECONFIG IP core
connects to an enhanced PLL in a Stratix FPGA to drive the register chain containing
the PLL reconfigurable coefficients. This design example uses a Tcl/Tk script to
generate a GUI where you can enter in new m and n values for the enhanced PLL. The
Tcl script extracts the m and n values from the GUI, shifts the values out to the
ALTSOURCE_PROBE instances to update the values in the ALTPLL_RECONFIG IP core
cache, and asserts the reconfiguration signal on the ALTPLL_RECONFIG IP core. The
reconfiguration signal on the ALTPLL_RECONFIG IP core starts the register chain
transaction to update all PLL reconfigurable coefficients.

Figure 109. Block Diagram of Dynamic PLL Reconfiguration Design Example

In-System Sources
and Probes
Tcl Interface

JTAG
Interface

Counter
Parameters

Stratix FPGA50 MHz

PLL_scandata
PLL_scandlk
PLL_scanaclr

E0

C0

C1

fref

Stratix-Enhanced
PLLalt_pll_reconfig

Megafunction

In-System
Sources and

Probes

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

246

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


This design example was created using a Nios II Development Kit, Stratix Edition. The
file sourceprobe_DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

• Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in the figure below.

• Interactive_Reconfig.qar—The archived Intel Quartus Prime project for this
design example.

Figure 110. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources
and Probes Tcl Package

Related Information

On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

9.7. Design Debugging Using In-System Sources and Probes
Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 Added details on finding the In-System Sources and Probes in the IP
Catalog.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 Minor corrections. Changed to new document template.

July 2010 10.0.0 Minor corrections.

November 2009 9.1.0 • Removed references to obsolete devices.
• Style changes.

continued...   

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

247

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Documented that this feature does not support simulation on page 17–
5

• Updated Figure 17–8 for Interactive PLL reconfiguration manager
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

248

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html


• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

250

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel Quartus Prime Standard Edition User Guide: Debug Tools
	Contents
	1. System Debugging Tools Overview
	1.1. System Debugging Tools Portfolio
	1.1.1. System Debugging Tools Comparison
	1.1.2. Suggested Tools for Common Debugging Requirements
	1.1.3. Debugging Ecosystem

	1.2. Tools for Monitoring RTL Nodes
	1.2.1. Resource Usage
	1.2.1.1. Overhead Logic
	1.2.1.1.1. For Signal Tap Logic Analyzer
	1.2.1.1.2. For Signal Probe
	1.2.1.1.3. For Logic Analyzer Interface

	1.2.1.2. Resource Estimation

	1.2.2. Pin Usage
	1.2.2.1. For Signal Tap Logic Analyzer
	1.2.2.2. For Signal Probe
	1.2.2.3. For Logic Analyzer Interface

	1.2.3. Usability Enhancements
	1.2.3.1. Incremental Compilation
	1.2.3.2. Incremental Routing
	1.2.3.3. Automation Via Scripting
	1.2.3.4. Remote Debugging


	1.3. Stimulus-Capable Tools
	1.3.1. In-System Sources and Probes
	1.3.1.1. Push Button Functionality

	1.3.2. In-System Memory Content Editor
	1.3.2.1. Generate Test Vectors

	1.3.3. System Console
	1.3.3.1. Test Signal Integrity
	1.3.3.2. Board Bring-Up and Verification
	1.3.3.3. Test Link Signal Integrity with Transceiver Toolkit


	1.4. Virtual JTAG Interface Intel FPGA IP
	1.5. System-Level Debug Fabric
	1.6. System Debugging Tools Overview Revision History

	2. Analyzing and Debugging Designs with System Console
	2.1. Introduction to System Console
	2.2. System Console Debugging Flow
	2.3. IP Cores that Interact with System Console
	2.3.1. Services Provided through Debug Agents

	2.4. Starting System Console
	2.4.1. Starting System Console from Nios II Command Shell
	2.4.2. Starting Stand-Alone System Console
	2.4.3. Starting System Console from Platform Designer (Standard)
	2.4.4. Starting System Console from Intel Quartus Prime
	2.4.5. Customizing Startup

	2.5. System Console GUI
	2.5.1. System Explorer Pane

	2.6. System Console Commands
	2.7. Running System Console in Command-Line Mode
	2.8. System Console Services
	2.8.1. Locating Available Services
	2.8.2. Opening and Closing Services
	2.8.3. SLD Service
	2.8.3.1. SLD Commands

	2.8.4. In-System Sources and Probes Service
	2.8.4.1. In-System Sources and Probes Commands

	2.8.5. Monitor Service
	2.8.5.1. Monitor Commands

	2.8.6. Device Service
	2.8.6.1. Device Commands

	2.8.7. Design Service
	2.8.7.1. Design Service Commands

	2.8.8. Bytestream Service
	2.8.8.1. Bytestream Commands

	2.8.9. JTAG Debug Service
	2.8.9.1. JTAG Debug Commands


	2.9. Working with Toolkits
	2.9.1. Convert your Dashboard Scripts to Toolkit API
	2.9.2. Creating a Toolkit Description File
	2.9.3. Registering a Toolkit
	2.9.4. Launching a Toolkit
	2.9.5. Matching Toolkits with IP Cores
	2.9.6. Toolkit API
	2.9.6.1. Customizing Toolkit API Widgets
	2.9.6.2. Toolkit API Script Examples
	2.9.6.3. Toolkit API GUI Example
	2.9.6.3.1. Toolkit API GUI Example .tcl File

	2.9.6.4. Toolkit API Commands
	2.9.6.4.1. toolkit_register
	2.9.6.4.2. toolkit_open
	2.9.6.4.3. get_quartus_ini
	2.9.6.4.4. toolkit_get_context
	2.9.6.4.5. toolkit_get_types
	2.9.6.4.6. toolkit_get_properties
	2.9.6.4.7. toolkit_add
	2.9.6.4.8. toolkit_get_property
	2.9.6.4.9. toolkit_set_property
	2.9.6.4.10. toolkit_remove
	2.9.6.4.11. toolkit_get_widget_dimensions

	2.9.6.5. Toolkit API Properties
	2.9.6.5.1. Widget Types and Properties
	2.9.6.5.2. barChart Properties
	2.9.6.5.3. button Properties
	2.9.6.5.4. checkBox Properties
	2.9.6.5.5. comboBox Properties
	2.9.6.5.6. dial Properties
	2.9.6.5.7. fileChooserButton Properties
	2.9.6.5.8. group Properties
	2.9.6.5.9. label Properties
	2.9.6.5.10. led Properties
	2.9.6.5.11. lineChart Properties
	2.9.6.5.12. list Properties
	2.9.6.5.13. pieChart Properties
	2.9.6.5.14. table Properties
	2.9.6.5.15. text Properties
	2.9.6.5.16. textField Properties
	2.9.6.5.17. timeChart Properties
	2.9.6.5.18. xyChart Properties



	2.10. ADC Toolkit
	2.10.1. ADC Toolkit Terms
	2.10.2. Setting the Frequency of the Reference Signal
	2.10.3. Tuning the Signal Generator
	2.10.4. Running a Signal Quality Test
	2.10.5. Running a Linearity Test
	2.10.6. ADC Toolkit Data Views

	2.11. System Console Examples and Tutorials
	2.11.1. Nios II Processor Example
	2.11.1.1. Processor Commands


	2.12. On-Board Intel FPGA Download Cable II Support
	2.13. MATLAB and Simulink* in a System Verification Flow
	2.13.1. Supported MATLAB API Commands
	2.13.2. High Level Flow

	2.14. Deprecated Commands
	2.15. Analyzing and Debugging Designs with the System Console Revision History

	3. Debugging Transceiver Links
	3.1. Channel Manager
	3.1.1. Channel Display Modes

	3.2. Transceiver Debugging Flow Walkthrough
	3.3. Modifying the Design to Enable Transceiver Debug
	3.3.1. Adapting an Intel FPGA Design Example
	3.3.1.1. Modifying Stratix V Design Examples
	3.3.1.1.1. Generating reconfig_clk from an Internal PLL


	3.3.2. Stratix V Debug System Configuration
	3.3.2.1. Bit Error Rate Test Configuration (Stratix V)
	3.3.2.2. PRBS Signal Eye Test Configuration (Stratix V)
	3.3.2.2.1. Enabling Serial Bit Comparator Mode (Stratix V)

	3.3.2.3. Custom Traffic Signal Eye Test Configuration (Stratix V)
	3.3.2.4. Link Optimization Test Configuration (Stratix V)
	3.3.2.5. PMA Analog Setting Control Configuration (Stratix V)

	3.3.3. Instantiating and Parameterizing Intel Arria 10 Debug IP cores
	3.3.3.1. Debug Settings for Transceiver IP Cores


	3.4. Programming the Design into an Intel FPGA
	3.5. Loading the Design in the Transceiver Toolkit
	3.6. Linking Hardware Resources
	3.6.1. Linking One Design to One Device
	3.6.2. Linking Two Designs to Two Devices
	3.6.3. Linking One Design on Two Devices
	3.6.4. Linking Designs and Devices on Separate Boards
	3.6.5. Verifying Hardware Connections

	3.7. Identifying Transceiver Channels
	3.7.1. Controlling Transceiver Channels

	3.8. Creating Transceiver Links
	3.9. Running Link Tests
	3.9.1. Running BER Tests
	3.9.2. Signal Eye Margin Testing (Stratix V only)
	3.9.2.1. Running PRBS Signal Eye Tests (Stratix V only)

	3.9.3. Running Custom Traffic Tests (Stratix V only)
	3.9.4. Link Optimization Tests
	3.9.4.1. Running the Auto Sweep Test
	3.9.4.2. Determining the Best Tap Settings


	3.10. Controlling PMA Analog Settings
	3.10.1. Intel Arria 10 and Intel Cyclone 10 GX PMA Settings

	3.11. User Interface Settings Reference
	3.12. Troubleshooting Common Errors
	3.13. Scripting API Reference
	3.13.1. Transceiver Toolkit Commands
	3.13.2. Data Pattern Generator Commands
	3.13.3. Data Pattern Checker Commands

	3.14. Debugging Transceiver Links Revision History

	4. Quick Design Debugging Using Signal Probe
	4.1. Design Flow Using Signal Probe
	4.1.1. Perform a Full Compilation
	4.1.2. Reserve Signal Probe Pins
	4.1.3. Assign Signal Probe Sources
	4.1.4. Add Registers Between Pipeline Paths and Signal Probe Pins
	4.1.5. Perform a Signal Probe Compilation
	4.1.6. Analyze the Results of a Signal Probe Compilation
	4.1.7. What a Signal Probe Compilation Does
	4.1.8. Understanding the Results of a Signal Probe Compilation
	4.1.8.1. Analyzing Signal Probe Routing Failures


	4.2. Scripting Support
	4.2.1. Making a Signal Probe Pin
	4.2.2. Deleting a Signal Probe Pin
	4.2.3. Enabling a Signal Probe Pin
	4.2.4. Disabling a Signal Probe Pin
	4.2.5. Performing a Signal Probe Compilation
	4.2.5.1. Script Example

	4.2.6. Reserving Signal Probe Pins
	4.2.6.1. Common Problems When Reserving a Signal Probe Pin

	4.2.7. Adding Signal Probe Sources
	4.2.8. Assigning I/O Standards
	4.2.9. Adding Registers for Pipelining
	4.2.10. Running Signal Probe Immediately After a Full Compilation
	4.2.11. Running Signal Probe Manually
	4.2.12. Enabling or Disabling All Signal Probe Routing
	4.2.13. Allowing Signal Probe to Modify Fitting Results

	4.3. Quick Design Debugging Using Signal Probe Revision History

	5. Design Debugging with the Signal Tap Logic Analyzer
	5.1. The Signal Tap Logic Analyzer
	5.1.1. Hardware and Software Requirements
	5.1.1.1. Opening the Standalone Signal Tap Logic Analyzer GUI

	5.1.2. Signal Tap Logic Analyzer Features and Benefits
	5.1.3. Backward Compatibility with Previous Versions of Intel Quartus Prime Software

	5.2. Signal Tap Logic Analyzer Task Flow Overview
	5.2.1. Add the Signal Tap Logic Analyzer to Your Design
	5.2.2. Configure the Signal Tap Logic Analyzer
	5.2.3. Define Trigger Conditions
	5.2.4. Compile the Design
	5.2.5. Program the Target Device or Devices
	5.2.6. Run the Signal Tap Logic Analyzer
	5.2.7. View, Analyze, and Use Captured Data

	5.3. Configuring the Signal Tap Logic Analyzer
	5.3.1. Assigning an Acquisition Clock
	5.3.2. Adding Signals to the Signal Tap File
	5.3.2.1. Pre-Synthesis Signals
	5.3.2.2. Post-Fit Signals
	5.3.2.2.1. Assigning Data Signals with the Technology Map Viewer

	5.3.2.3. Signal Preservation
	5.3.2.4. Node List Signal Use Options
	5.3.2.4.1. Disabling and Enabling a Signal Tap Instance

	5.3.2.5. Signals Unavailable for Signal Tap Debugging

	5.3.3. Adding Signals with a Plug-In
	5.3.4. Adding Finite State Machine State Encoding Registers
	5.3.4.1. Modify and Restore Mnemonic Tables for State Machines
	5.3.4.2. Additional Considerations for State Machines in Signal Tap

	5.3.5. Specifying Sample Depth
	5.3.6. Capture Data to a Specific RAM Type
	5.3.7. Select the Buffer Acquisition Mode
	5.3.7.1. Non-Segmented Buffer
	5.3.7.2. Segmented Buffer

	5.3.8. Specifying Pipeline Settings
	5.3.8.1. Specifying Pipeline Settings from Platform Designer (Standard)

	5.3.9. Filtering Relevant Samples
	5.3.9.1. Input Port Mode
	5.3.9.2. Transitional Mode
	5.3.9.3. Conditional Mode
	5.3.9.4. Start/Stop Mode
	5.3.9.5. State-Based
	5.3.9.6. Showing Data Discontinuities
	5.3.9.7. Disable Storage Qualifier

	5.3.10. Manage Multiple Signal Tap Files and Configurations
	5.3.10.1. Data Log Pane
	5.3.10.2. SOF Manager


	5.4. Defining Triggers
	5.4.1. Basic Trigger Conditions
	5.4.1.1. Using the Basic OR Trigger Condition with Nested Groups

	5.4.2. Comparison Trigger Conditions
	5.4.2.1. Specifying the Comparison Trigger Conditions

	5.4.3. Advanced Trigger Conditions
	5.4.3.1. Examples of Advanced Triggering Expressions

	5.4.4. Custom Trigger HDL Object
	5.4.4.1. Using the Custom Trigger HDL Object
	5.4.4.2. Required Inputs and Outputs of Custom Trigger HDL Module
	5.4.4.3. Custom Trigger HDL Module Properties

	5.4.5. Trigger Condition Flow Control
	5.4.5.1. Sequential Triggering
	5.4.5.1.1. Configuring the Sequential Triggering Flow
	5.4.5.1.2. Trigger that Skips Clock Cycles after Hitting Condition
	5.4.5.1.3. Storage Qualification with Post-Fill Count Value Less than m

	5.4.5.2. State-Based Triggering
	5.4.5.2.1. State-Based Triggering Flow Tab
	State Diagram Pane
	State Machine Pane
	Resources Pane

	5.4.5.2.2. Trigger Lock Mode

	5.4.5.3. Signal Tap Trigger Flow Description Language
	5.4.5.3.1. <state_label>
	5.4.5.3.2. <boolean_expression>
	5.4.5.3.3. <action_list>
	Resource Manipulation Action
	Buffer Control Actions
	State Transition Action


	5.4.5.4. State-Based Storage Qualifier Feature
	5.4.5.4.1. Storage Qualification Feature for the State-Based Trigger Flow.


	5.4.6. Specify Trigger Position
	5.4.6.1. Post-fill Count

	5.4.7. Power-Up Triggers
	5.4.7.1. Enabling a Power-Up Trigger
	5.4.7.2. Configuring Power-Up Trigger Conditions
	5.4.7.3. Managing Signal Tap Instances with Run-Time and Power-Up Trigger Conditions

	5.4.8. External Triggers
	5.4.8.1. Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer


	5.5. Compiling the Design
	5.5.1. Faster Compilations with Intel Quartus Prime Incremental Compilation
	5.5.1.1. Enabling Incremental Compilation for Your Design
	5.5.1.2. Using Incremental Compilation with the Signal Tap Logic Analyzer

	5.5.2. Prevent Changes Requiring Recompilation
	5.5.3. Verify Whether You Need to Recompile Your Project
	5.5.4. Incremental Route with Rapid Recompile
	5.5.4.1. Using the Incremental Route Flow
	5.5.4.2. Tips to Achieve Maximum Speedup

	5.5.5. Timing Preservation with the Signal Tap Logic Analyzer
	5.5.6. Performance and Resource Considerations
	5.5.6.1. Signal Tap Logic in Critical Path
	5.5.6.2.  Signal Tap Logic Using Critical Resources


	5.6. Program the Target Device or Devices
	5.6.1. Ensure Setting Compatibility Between .stp and .sof Files

	5.7. Running the Signal Tap Logic Analyzer
	5.7.1. Runtime Reconfigurable Options
	5.7.2. Signal Tap Status Messages

	5.8. View, Analyze, and Use Captured Data
	5.8.1. Capturing Data Using Segmented Buffers
	5.8.2. Differences in Pre-Fill Write Behavior Between Different Acquisition Modes
	5.8.2.1. Example

	5.8.3. Creating Mnemonics for Bit Patterns
	5.8.4. Automatic Mnemonics with a Plug-In
	5.8.5. Locating a Node in the Design
	5.8.6. Saving Captured Data
	5.8.7. Exporting Captured Data to Other File Formats
	5.8.8. Creating a Signal Tap List File

	5.9. Other Features
	5.9.1. Creating Signal Tap File from Design Instances
	5.9.1.1. Creating a .stp File from a Design Instance

	5.9.2. Using the Signal Tap MATLAB MEX Function to Capture Data
	5.9.3. Using Signal Tap in a Lab Environment
	5.9.4. Remote Debugging Using the Signal Tap Logic Analyzer
	5.9.4.1. Debugging Using a Local PC and an SoC
	5.9.4.2. Debugging Using a Local PC and a Remote PC
	5.9.4.2.1. Equipment Setup


	5.9.5. Using the Signal Tap Logic Analyzer in Devices with Configuration Bitstream Security
	5.9.6. Monitor FPGA Resources Used by the Signal Tap Logic Analyzer

	5.10. Design Example: Using Signal Tap Logic Analyzers
	5.11. Custom Triggering Flow Application Examples
	5.11.1. Design Example 1: Specifying a Custom Trigger Position
	5.11.2. Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	5.12. Signal Tap Scripting Support
	5.12.1. Signal Tap Command-Line Options
	5.12.2. Data Capture from the Command Line

	5.13. Design Debugging with the Signal Tap Logic Analyzer Revision History

	7. In-System Debugging Using External Logic Analyzers
	7.1. About the Intel Quartus Prime Logic Analyzer Interface
	7.2. Choosing a Logic Analyzer
	7.2.1. Required Components

	7.3. Flow for Using the LAI
	7.3.1. Defining Parameters for the Logic Analyzer Interface
	7.3.2. Mapping the LAI File Pins to Available I/O Pins
	7.3.3. Mapping Internal Signals to the LAI Banks
	7.3.4. Compiling Your Intel Quartus Prime Project
	7.3.5. Programming Your Intel-Supported Device Using the LAI

	7.4. Controlling the Active Bank During Runtime
	7.4.1. Acquiring Data on Your Logic Analyzer

	7.5. Using the LAI with Incremental Compilation
	7.6. LAI Core Parameters
	7.7. In-System Debugging Using External Logic Analyzers Revision History

	8. In-System Modification of Memory and Constants
	8.1. Setting Up In-System Modifiable Memories and Constants
	8.2. Running the In-System Memory Content Editor
	8.2.1. Instance Manager
	8.2.2. Editing Data Displayed in the Hex Editor Pane
	8.2.3. Importing and Exporting Memory Files
	8.2.4. Scripting Support
	8.2.5. Programming the Device with the In-System Memory Content Editor
	8.2.6. Example: Using the In-System Memory Content Editor with the Signal Tap Logic Analyzer

	8.3. In-System Modification of Memory and Constants Revision History

	9. Design Debugging Using In-System Sources and Probes
	9.1. Hardware and Software Requirements
	9.2. Design Flow Using the In-System Sources and Probes Editor
	9.2.1. Instantiating the In-System Sources and Probes IP Core
	9.2.2. In-System Sources and Probes IP Core Parameters

	9.3. Compiling the Design
	9.4. Running the In-System Sources and Probes Editor
	9.4.1. In-System Sources and Probes Editor GUI
	9.4.2. Programming Your Device With JTAG Chain Configuration
	9.4.3. Instance Manager
	9.4.4. In-System Sources and Probes Editor Pane
	9.4.4.1. Reading Probe Data
	9.4.4.2. Writing Data
	9.4.4.3. Organizing Data


	9.5. Tcl interface for the In-System Sources and Probes Editor
	9.6. Design Example: Dynamic PLL Reconfiguration
	9.7. Design Debugging Using In-System Sources and Probes Revision History

	A. Intel Quartus Prime Standard Edition User Guides

