INSTITUTO FEDERAL SANTA CATARINA

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS ITAJAÍ PLANO DE ENSINO

IDENTIFICAÇÃO

Unidade Curricular: Circuitos Elétricos Módulo: II CH: 80h Ano: 2016-1 Professor: DOUGLAS ARS

Curso: Técnico Subsequente em Eletroeletrônica | Modalidade: Presencial | E-mail: douglas@ifsc.edu.br

COMPETÊNCIAS:

• Entender e identificar os elementos de circuito elétrico.

• Dominar técnicas de resolução de circuitos elétricos.

• Dominar técnicas de resolução de circuitos elétricos trifásicos.

BASES TECNOLÓGICAS:	CONTEÚDOS PROGRAMÁTICOS	С-Н	ESTRATÉGIAS DE ENSINO (teóricas e práticas)	RECURSOS DIDÁTICOS	AVALIAÇÃO
 Análise de circuitos elétricos em corrente contínua e corrente alternada (malha e nodal); Princípio da Superposição de fontes; Circuito Equivalente de Thevenin; Circuito Equivalente de Norton; Corrente alternada monofásica; Potência em corrente 	redução de circuitos Análise de malhas e nodal Circuitos equivalentes de Norton e Thevenin Princípio da Superposição de fontes Análise de circuitos em corrente alternada Simulação de circuitos elétricos.	12h 12h 8h 12h	aulas e material de apoio será disponibilizado na wiki da disciplina. É de responsabilidade do aluno o acesso à	-Microcomputador. -Slides. -Vídeos. -WiKi.	Três avaliações teóricas (AT1, AT2 e AT3) discursivas individuais, cuja nota pode variar de 1 a 10 inteiros. E uma avaliação prática de laboratório (AP1), que pode ser em equipe, e que também será avaliado com uma nota de 1 a 10. A nota final será calculada pela média aritmética das quatro avaliações. No final, os alunos que tiverem média menor que 6 (seis), farão a recuperação (REC) teórica. Essa nota substituirá a nota final.

alternada;	e CA.	
 Medida de potência monofásica; 	- Circuitos trifásicos.	8h
• Fator de potência;		
 Simulação de circuitos elétricos; 		
 Circuitos trifásicos; 		
 Cálculo e medição de potência em circuitos trifásicos; 		

REFERÊNCIAS BIBLIOGRÁFICAS

• Básica:

- 1. Introdução à Análise de Circuitos. Boylestad. R. L. 10^a. ed. São Paulo: Prentice-Hall do Brasil, 2007.
- 2. Fundamentos de Análise de Circuitos Elétricos. Johnson, D.E.; Hilburn J.L.; Johnson, J.R. 4ª ed. São Paulo: LTC, 1994.
- 3. Circuitos Elétricos. Edminister. Joseph A. ed. Clássica. São Paulo: Mc Graw Hill, 1991.
- 4. Circuitos Elétricos Orsini. Luiz Q., São Paulo: Edeard Blucher, 1975.
- 5. Análise de Circuitos de Corrente Alternada. Cutler, P. São Paulo: Mc Graw Hill, 1976.

• Complementar:

- 1. Eletricidade Princípios e Aplicações, Vol. 1 E Fowler, R.J. São Paulo: Makron Books, 1992.
- 2. Análise de Circuitos em Engenharia Hayt, W. Jr e Kemmerly, J.E. São Paulo: Mc Graw Hill, 1975.
- 3. Circuitos Polifásicos de Almeida, W.G. e Freitas, F.D. Brasília: Gutemberg Ltda, 1995.