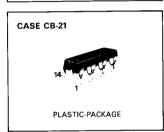
THOMSON-EFCIS

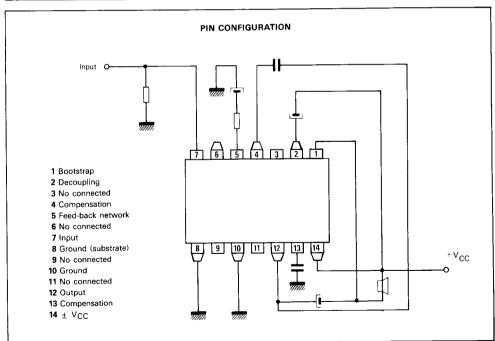
Integrated Circuits

TBA820

AF AMPLIFIER

The TBA820 is a monolithic integrated audio power amplifier. Its main features:


- working with supply voltages from 3 to 16 volts,
- low idle current (4 mA typ.),
- high efficiency,


make it especially suitable for mobile, battery operated equipments. Other features include:

- output power up to 2W without any external heat sink,
- high input impedance, low bias current,
- high ripple rejection,
- no thermal runaway,
- · no cross-over distortion,
- few external components required.

The TBA820 is supplied in a quad-in-line, 14 leads package.

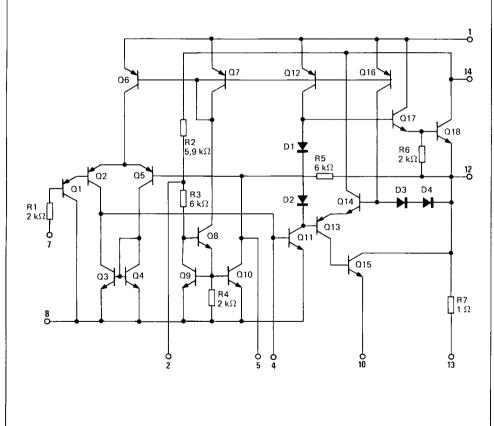
AF AMPLIFIER

NT7905-A 1/8

THOMSON-EFCIS

Sales headquarters 45, av. de l'Europe - 78140 VELIZY - FRANCE Tel. : (3) 946 97 19 / Telex : 204780 F

ABSOLUTE RATINGS (LIMITING VALUES)


Rating	Symbol	Value	Unit V	
Supply voltage	Vcc	16		
Output peak current	10	1.5	A	
Storage temperature	T _{stg}	- 40, + 150	°C	
Junction temperature	Tj	+ 150	°C	

Mintj = -40 pm THE

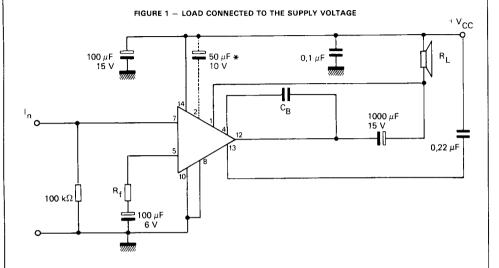
THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Junction-ambient thermal resistance	R _{th(j - a)}	80	°C/W

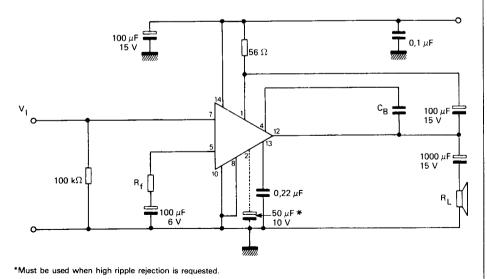
SCHEMATIC DIAGRAM

2/8

ELECTRICAL CHARACTERISTICS

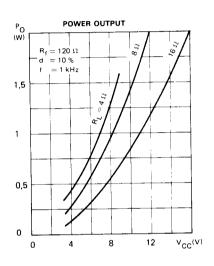

 $T_{amb} = 25 \,^{\circ}C \text{ (note 1)}$

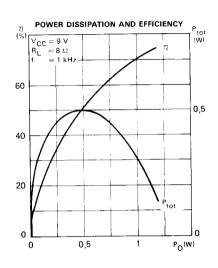
(Unless otherwise stated)

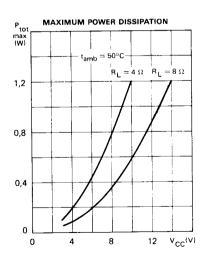

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	v _{cc}	3		16	V
Quiescent output voltage Pin 12	v _o				V
V _{CC} = 9 V		4	4.5	5	
Quiescent drain current	,cc				mA
V _{CC} = 9 V		_	4		
Bias current Pin 7	I				μΑ
V _{CC} = 9 V		-	0.1	_	
Output power	Po				w
$V_{CC} = 12$ V; $R_L = 8 \Omega$; $R_f = 120 \Omega$; $d = 10 \%$; $f = 1 \text{ kHz}$		-	2	-	
$V_{CC} = 9 \ V; R_L = 4 \Omega; R_f = 120 \Omega; d = 10 \%; f = 1 \text{ kHz}$		-	1.6		
$V_{CC} = 9 \ V; R_L = 8 \Omega; R_f = 120 \Omega; d = 10 \%; f = 1 \text{ kHz}$		_	1.2 0.75	_	
$V_{CC} = 6 \text{ V}; R_L = 4 \Omega; R_f = 120 \Omega; d = 10 \%; f = 1 \text{ kHz}$		_	0.22	_	
$V_{CC} = 3.5 \text{ V}$; $R_{L} = 4 \Omega$; $R_{f} = 120 \Omega$; $d = 10 \%$; $f = 1 \text{ kHz}$	s				mV
Input sensitivity			16	_	
$V_{CC} = 9 \text{ V} : P_{O} = 1.2 \text{ W} : R_{L} = 8 \Omega : R_{f} = 33 \Omega : f = 1 \text{ kHz}$ $V_{CC} = 9 \text{ V} : P_{O} = 1.2 \text{ W} : R_{L} = 8 \Omega : R_{f} = 120 \Omega : f = 1 \text{ kHz}$		_	60	_	
$V_{CC} = 9 \text{ V}$; $P_{O} = 50 \text{ mW}$; $R_{L} = 8 \Omega$; $R_{f} = 33 \Omega$; $f = 1 \text{ kHz}$		-	3.5	-	
$V_{CC} = 9 \text{ V}; P_{O} = 50 \text{ mW}; R_{L} = 8 \Omega; R_{f} = 120 \Omega; f = 1 \text{ kHz}$		-	12		
Input resistance	Rį		5		MΩ
Frequency response (- 3 dB)	В				Hz
$V_{CC} = 9 \text{ V}; R_L = 8 \Omega; R_f = 120 \Omega; C_B = 680 \text{ pF}$ $V_{CC} = 9 \text{ V}; R_L = 8 \Omega; R_f = 120 \Omega; C_B = 220 \text{ pF}$		25 to 7.000 25 to 20.000			
Distortion	d				%
$V_{CC} = 9 \text{ V} : P_{O} = 500 \text{ mW}; R_{L} = 8 \Omega; R_{f} = 33 \Omega; f = 1 \text{ kHz} $ $V_{CC} = 9 \text{ V} : P_{O} = 500 \text{ mW}; R_{L} = 8 \Omega; R_{f} = 120 \Omega; f = 1 \text{ kHz}$			0.8 0.4		
Voltage gain (open (oop)	A _V				dB
$V_{CC} = 9 \text{ V}$; $R_L = 8 \Omega$; $f = 1 \text{ kHz}$		_	75	_	1
Voltage gain (closed loop)	A _V				dB
$\begin{array}{lll} V_{CC} = 9 \; V \; ; \; R_L = 8 \; \Omega \; ; \; R_f = \; 33 \; \Omega \; ; \; f = 1 \; kHz \\ V_{CC} = 9 \; V \; ; \; R_L = 8 \; \Omega \; ; \; R_f = \; 120 \; \Omega \; ; \; f = \; 1 \; kHz \end{array}$			45 34	_	
Input noise voltage	V _n				μV _{eff}
V _{CC} = 9 V; B (-3 dB) = 25 to 20.000 Hz		_	3		
Input noise current	l _n				
V _{CC} = 9 V; B (- 3 dB) = 25 to 20.000 Hz			0.4		
Signal to noise ratio					dB
$V_{CC} = 9 \text{ V} : \text{R}_{L} = 8 \Omega : \text{R}_{f} = 120 \Omega : \text{R}_{1} = 100 \text{ k}\Omega$ $P_{O} = 1.2 \text{ W} : \text{B} (-3 \text{ dB}) = 25 \text{ to } 20.000 \text{ Hz}$		_	70	_	
Supply voltage rejection (see fig. 2)	SVR				dB
$V_{CC} = 9 \text{ V}; R_L = 8 \Omega; R_f = 120 \Omega; C6 = 50 \mu\text{F}$ f (ripple) = 100 Hz		_	42	-	

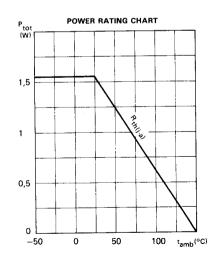
Note 1: The characteristics above were obtained using the circuit shown in fig. 1.

TEST AND APPLICATION CIRCUITS

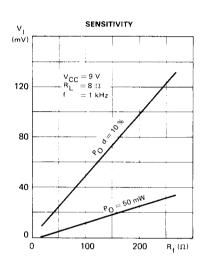


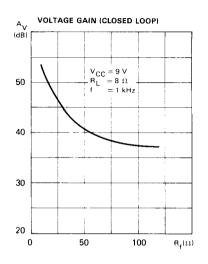

FIGURE 2 - LOAD CONNECTED TO GROUND

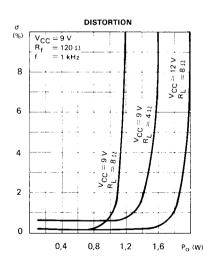


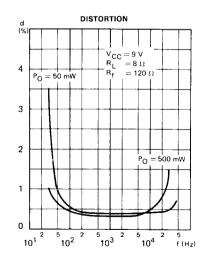

4/8

TYPICAL CHARACTERISTICS

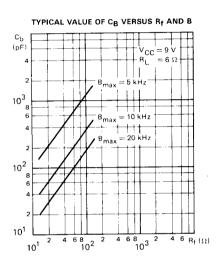


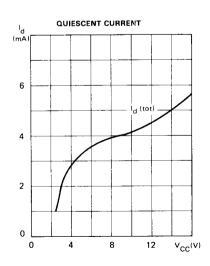






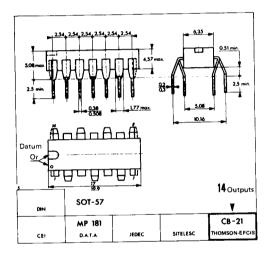
TYPICAL CHARACTERISTICS





6/8

TYPICAL CHARACTERISTICS



CASE CB-21

PLASTIC PACKAGE

These specifications are subject to change without notice.

Please inquire with our sales offices about the availability of the different packages.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.