AF AMPLIFIER

The TBA820 is a monolithic integrated audio power amplifier. Its main features:
- working with supply voltages from 3 to 16 volts,
- low idle current (4 mA typ.),
- high efficiency,
make it especially suitable for mobile, battery operated equipments.

Other features include:
- output power up to 2W without any external heat sink,
- high input impedance, low bias current,
- high ripple rejection,
- no thermal runaway,
- no cross-over distortion,
- few external components required.

The TBA820 is supplied in a quad-in-line, 14 leads package.
ABSOLUTE RATINGS (LIMITING VALUES)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{CC}</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Output peak current</td>
<td>I_{O}</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-40, +150</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_{j}</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-ambient thermal resistance</td>
<td>R_{th(j - a)}</td>
<td>80</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

SCHEMATIC DIAGRAM
ELECTRICAL CHARACTERISTICS

*\(T_{\text{amb}} = 25^\circ \text{C} \) (note 1)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{\text{CC}})</td>
<td>3</td>
<td>—</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent output voltage</td>
<td>(V_O)</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CC}} = 9 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent drain current</td>
<td>(I_{\text{CC}})</td>
<td>—</td>
<td>4</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(V_{\text{CC}} = 9 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias current</td>
<td>(I)</td>
<td>—</td>
<td>0.1</td>
<td>—</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(V_{\text{CC}} = 9 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output power</td>
<td>(P_O)</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>W</td>
</tr>
<tr>
<td>(V_{\text{CC}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CC}} = 12 \text{ V}); (R_L = 8 \Omega); (R_f = 120 \Omega); (d = 10%); (f = 1 \text{ kHz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CC}} = 9 \text{ V}); (R_L = 4 \Omega); (R_f = 120 \Omega); (d = 10%); (f = 1 \text{ kHz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CC}} = 9 \text{ V}); (R_L = 8 \Omega); (R_f = 120 \Omega); (d = 10%); (f = 1 \text{ kHz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CC}} = 6 \text{ V}); (R_L = 4 \Omega); (R_f = 120 \Omega); (d = 10%); (f = 1 \text{ kHz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input sensitivity</td>
<td>(S)</td>
<td>—</td>
<td>16</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td>(V_{\text{CC}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CC}} = 9 \text{ V}); (P_O = 1.2 \text{ W}); (R_L = 8 \Omega); (R_f = 33 \Omega); (f = 1 \text{ kHz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency response (at 3 dB)</td>
<td>(B)</td>
<td>25</td>
<td>7000</td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>(V_{\text{CC}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CC}} = 9 \text{ V}); (R_L = 8 \Omega); (R_f = 120 \Omega); (C_B = 680 \text{ pF})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CC}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distortion</td>
<td>(d)</td>
<td>0.8</td>
<td>—</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>(V_{\text{CC}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage gain (open loop)</td>
<td>(A_{V})</td>
<td>—</td>
<td>75</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Voltage gain (closed loop)</td>
<td>(A_{V})</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Input noise voltage</td>
<td>(V_n)</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>(\mu \text{V}_{\text{eff}})</td>
</tr>
<tr>
<td>Input noise current</td>
<td>(I_n)</td>
<td>—</td>
<td>0.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Signal to noise ratio</td>
<td>(V_{\text{CC}} = 9 \text{ V}); (R_L = 8 \Omega); (R_f = 120 \Omega); (R_1 = 100 \text{ k}\Omega)</td>
<td>70</td>
<td>—</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Supply voltage rejection (see fig. 2)</td>
<td>(\text{SVR})</td>
<td>—</td>
<td>42</td>
<td>—</td>
<td>dB</td>
</tr>
</tbody>
</table>

Note 1: The characteristics above were obtained using the circuit shown in fig. 1.
TEST AND APPLICATION CIRCUITS

FIGURE 1 – LOAD CONNECTED TO THE SUPPLY VOLTAGE

FIGURE 2 – LOAD CONNECTED TO GROUND

*Must be used when high ripple rejection is requested.
TYPICAL CHARACTERISTICS

POWER OUTPUT

\[P_O \ (\text{W}) \]

\[V_{CC} \ (\text{V}) \]

- \(R_T = 120 \ \Omega \)
- \(\Delta = 10\% \)
- \(f = 1 \ \text{kHz} \)

- \(R_L = 4 \ \Omega \)
- \(8 \ \Omega \)
- \(16 \ \Omega \)

POWER DISSIPATION AND EFFICIENCY

\[\eta \ (\%) \]

\[P_{\text{tot}} \ (\text{W}) \]

- \(V_{CC} = 9 \ \text{V} \)
- \(R_L = 8 \ \Omega \)
- \(f = 1 \ \text{kHz} \)

MAXIMUM POWER DISSIPATION

\[P_{\text{tot}} \ (\text{max}) \ (\text{W}) \]

- \(t_{amb} = 50^\circ \text{C} \)
- \(R_L = 4 \ \Omega \)
- \(R_L = 8 \ \Omega \)

POWER RATING CHART

\[t_{amb} \ (^\circ \text{C}) \]

- \(R_{\text{th}} \)

0 4 8 12

0 4 8 12

0 0.5 1 2 3 4

0 1 2 3 4 5

0 0.5 1 1.5

0 50 100

0 0.5 1 1.5

-50 0 50 100

THOMSON-EFCIS Integrated Circuits

433
TYPICAL CHARACTERISTICS

SENSITIVITY

\[V_{CC} = 9 \text{ V} \]
\[R_L = 8 \text{ } \Omega \]
\[f = 1 \text{ kHz} \]

\[V_I \text{ (mV)} \]

\[V_I \text{ (mV)} \]

\[P_O = 50 \text{ mW} \]

\[P_O = 10 \text{ mW} \]

\[R_T (\Omega) \]

\[A_V \text{ (dB)} \]

\[V_{CC} = 9 \text{ V} \]
\[R_L = 8 \text{ } \Omega \]
\[f = 1 \text{ kHz} \]

DISTORTION

\[V_{CC} = 9 \text{ V} \]
\[R_L = 8 \text{ } \Omega \]
\[f = 1 \text{ kHz} \]

\[d \text{ (%)} \]

\[V_{CC} \text{ = 9 V} \]
\[R_L = 8 \Omega \]

\[P_O = 50 \text{ mW} \]

\[f \text{ (Hz)} \]

\[P_O = 500 \text{ mW} \]

\[10^1 \text{ to } 5^5 \]
TYPICAL CHARACTERISTICS

TYPICAL VALUE OF C_D VERSUS R_f AND B

- $V_{CC} = 9$ V
- $R_L = 6$ Ω
- $B_{max} = 5$ kHz
- $B_{max} = 10$ kHz
- $B_{max} = 20$ kHz

QUIESCENT OUTPUT VOLTAGE AT PIN 12

QUIESCENT CURRENT

THOMSON - EFCIS Integrated Circuits
CASE CB-21

PLASTIC PACKAGE

These specifications are subject to change without notice. Please inquire with our sales offices about the availability of the different packages.
This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.