

SENSORIAMENTO REMOTO DAS CONDIÇÕES AMBIENTAIS DE COLMEIAS DE ABELHAS UTILIZANDO RF:

Projeto RFabelhas

Manual de Instruções

Julho/2018

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA

Projeto RFabelhas

Manual de Instruções

São José – Julho 2018

Coordenador(a)

Prof. Marcos Moecke

Membros da Equipe

prof. Ramon Mayor Martins prof. Cleber Jorge Amaral Bolsista: Kristhine Schaeffer Fertig Bolsista: Tamara Arrigoni Bolsista: Natalia Miranda Bolsista: Yan Lucas Martins Colaborador voluntário: João Pedro Menegali Salvan Bittencourt

> Edital: CHAMADA PÚBLICA FAPESC No 08/2016

> > **Financiamento:** FAPESC (TO 2017TR000466)

Apoio:

EPAGRI CIRAM IFSC Campus São José

Projeto Rfabelhas

MANUAL DE INSTRUÇÕES

Criando um nó LoRa:	6
Criando um Gateway LoRa na TTN:	7
Sensores utilizados nas colmeias	8
Leitura dos dados na TTN e a publicação deles nos dois bancos de dados do InfluxDB e na EPAGRI	10
Visualização dos dados usando Grafana	11

Criando um nó LoRa:

Utilizando um arduino Mega + RFM95PW

Seguir o esquema de ligação ou a tabela seguinte:

		ARDUINO MEGA					
	RFM95PW	2560					
3v3	9	OPEN					
VCC	5	VCC (5Vd)dc					
GND	16 e 2	GND					
MOSI	11	51					
MISO	10	50					
SCK	12	52					
NSS	13	6		6			
RESE							
Т	14	5					
DI00	6	18		18		18	
DI01	7	3					
ANT	1	ANTENA					

Criando um Gateway LoRa na TTN:

- Em <u>https://account.thethingsnetwork.org/register</u> e cadastre um usuário e senha
- Depois de criada a conta, entre em <u>https://console.thethingsnetwork.org/gateways</u> e em "Register gateway"

eways > Register	
EGISTER GATEWAY	
Gateway EUI The EUI of the gateway as read from the LoRa module	
AA AA AA FF FF BB BB BB	🧔 8 bytes
 I'm using the legacy packet forwarder Select this if you are using the legacy <u>Semtech packet forwarder</u>. Description A human-readable description of the pateway. 	
Gateway Teste	0
Frequency Plan The frequency plan this gateway will use United States 915MHz	0
Router The router this gateway will connect to. To reduce latency, pick a router that is in a region which is close to the location of the router its	self.
ttn-router-brazil	0
Location The exact location of you gateway. This will be used if your gateway cannot determine its location by itself. Set a location by clicking on + PROFINE Sko Joko PROFINE CALLEDING ATUBA	the map. 1 lat 0.00000000 (*) 1ng 0.00000000 (*) RR 1 9 (*)
SANTA FELICIDADE AHU SÃO REAZ	- and a state of the

Sensores utilizados nas colmeias

Sensor de temperatura e umidade relativa

Está sendo utilizado o <u>Sensor de Umidade e Temperatura AM2302 DHT22</u>. Este sensor tem uma resolução de 0.1 % e acurácia (exatidão) de ±2% no sensor de humidade relativa e uma resolução de 0.1 % e acurácia (exatidão) de ±0.5% no sensor de temperatura. Esse sensor utiliza os pinos (ver AM2302 Pin assignments):

- 1 VDD Power (3.3V-5.5V)
- 2 SDA Serial data, bidirectional port
- 3 NC Empty
- 4 GND Ground

sensor de temperatura e umidade relativa interna

Atualmente o pino 2 desse sensor está conectado a porta digital PD8 do Arduino.

sensor de temperatura e umidade relativa externa

Atualmente o pino 2 desse sensor está conectado a porta digital PD7 do Arduino.

Sensor de iluminância

Está sendo utilizado o <u>Sensor de Luz BH1750FVI Lux</u>. Este sensor utiliza uma interface I2C para a comunicações, usando os seguintes pinos:

- 1 VDD Power (3.3V-5.5V)
- 2 GND Ground
- 3 SCL Clock line
- 4 SDA Serial data, bidirectional port
- 5 ADDR Slave address selector

Atualmente os pinos da comunicação I2C (<u>Wire.h</u>) utiliza os pinos 20 (SDA) e 21 (SCL) no caso do Arduino Mega.

A definição do endereço do dispositivo é feito pelo terminal ADDR.

ADDR = 'H' => bx1011100 = 0x5C

ADDR = 'L' => bx0100011 = 0x23

Dúvida?

Qual é o endereço atualmente utilizado?

Para detectar o endereço do dispositivo na I2C pode ser usado o programa I2C Scanner.

Sensor de peso

Para a medição do peso da colmeia estão sendo usadas 4 <u>células de carga de até 50kg</u> em conjunto com o <u>Módulo Conversor HX711</u>. As células de carga estão ligadas em ponte de Wheatstone. A precisão do conversor análogico-digital (ADC) é de 24 bits. Esse sensor utiliza os pinos:

- 1 VDD Power (2.7 ~ 5.5V)
- 2 PD_SCK Power down control (high active) and serial clock input

- 3 DOUT Serial data output
- 4 GND Ground

Atualmente o pino 2 desse sensor está conectado a PD9 e o pino 3 a PD10 do Arduino.

Real Time Clock

Para permitir a ativação sincronizada das medições e transmissões, usamos o <u>Real Time Clock RTC DS3231</u>. Ele dispõe de um sensor de temperatura e do RTC. Este RTC utiliza uma interface I2C para a comunicações, usando os seguintes pinos:

- 1 GND Ground
- 2 VDD Power (3.3V-5.5V)
- 3 SDA Serial data, bidirectional port
- 4 SCL Clock line
- 5 SQW -
- 6 32k -

https://howtomechatronics.com/tutorials/arduino/arduino-ds3231-real-time-clock-tutorial/

Bibliotecas necessárias

Para compilar o código do Arduino será necessário incluir as bibliotecas correspondentes. Um bom repositório para as bibliotecas é <u>https://www.arduinolibraries.info/</u> Será necessário importar:

- <u>DHT sensor library</u> DHT_sensor_library-1.3.0.zip
- BH1750FVI BH1750FVI-1.0.0.zip
- BH1750 master github
- <u>Queuetue HX711 Library</u> Queuetue_HX711_Library-1.0.1.zip
- HX711_ADC HX711_ADC-1.0.2.zip
- <u>HX711 master github</u>

Leitura dos dados na TTN e a publicação deles nos dois bancos de dados do InfluxDB e na EPAGRI

Os dados decodificados na TTN devem ser recuperados por um servidor que esteja na NUVEM para evitar o trafego desnecessário no link GPRS. Assim, os serviços e timer que estão sendo executados na Raspberry Pi devem ser movidos para um servidor na nuvem. Para os estudos iniciais foram criados dois servidores (containers) na nuvem. Um sem acesso ao systemd, e portanto deve ser programado com a crontab. O acesso é feito através das portas 711, usando o usuário e a senha padrão do projeto.

Visualização dos dados usando Grafana

Instalações necessárias

Store and visualize data using Node-RED, InfluxDB and Grafana

A instalação e uso do Node-RED foi substituida por um simples comando de acesso ao banco de dados da TTN. Talvez haja problema de segurança como senha podendo ser capturada. Na situação atual do projeto, vamos manter assim e investigar isso numa próxima etapa.

Install InfluxDB and create a database

Install Grafana

💿 • 🖨 Dat	a Sources +		
Edit dat	a source		
Name	RFabelhas	Default	
Туре	InfluxDB		
HTTP setting	<u>zs</u>		
URL	http://10.10.10.106:8086		
Access	proxy		
HTTP Auth			
Basic Auth	With Credentials		
TLS Client Auth	With CA Cert 🛛		
Skip TLS Verific	ation (Insecure)		
Basic Auth Det	ails		
User	rfabelhas		
Password			
InfluxDB De	tails		
Database	teste		
User	rfabelhas Password •		
Min time interv	al 5m O		
Save & Test	Delete Cancel		

Configuração do Dashboard

