
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com

Designing with Low-Level Primitives
User Guide

Software Version 7.1
Document Version: 3.0
Document Date: April 2007

http://www.altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii MegaCore Version a.b.c variable Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

UG-83105-3.0

Altera Corporation
Contents
About this User Guide .. v
How to Contact Altera .. v
Typographic Conventions .. vi

Chapter 1. Low-Level Primitive Design
Introduction .. 1–1
Low-Level Primitive Examples ... 1–2

LCELL Primitive ... 1–2
Using I/Os ... 1–6
Using Registers in Altera FPGAs ... 1–7
Creating Memory for Your Design .. 1–9
Look-Up Table Buffer Primitives ... 1–13

Chapter 2. Primitive Reference
Primitives .. 2–1

ALT_INBUF .. 2–1
ALT_OUTBUF .. 2–3
ALT_OUTBUF_TRI .. 2–6
ALT_IOBUF ... 2–8
ALT_INBUF_DIFF ... 2–11
ALT_OUTBUF_DIFF ... 2–13
ALT_OUTBUF_TRI_DIFF ... 2–14
ALT_IOBUF_DIFF .. 2–19
ALT_BIDIR_DIFF ... 2–22
ALT_BIDIR_BUF .. 2–25
LCELL .. 2–27
DFF ... 2–28
CARRY and CARRY_SUM ... 2–29
CASCADE ... 2–30
LUT_INPUT .. 2–31
LUT_OUTPUT .. 2–32

Synthesis Attributes .. 2–33
 iii

Contents
iv Altera Corporation
Designing with Low-Level Primitives User Guide

Altera Corporation
April 2007
About this User Guide
Document
Revision History

The table below shows the revision history for this document.

How to Contact
Altera

For the most up-to-date information about Altera® products, go to the
Altera world wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Date and
Document

Version
Changes Made Summary of Changes

April 2007
v3.0

Made changes to the Guide:
● Added examples 1–8, 2–4, 2–6, 2–8
● Added these new sections:

“ALT_INBUF_DIFF” on page 2–11
“ALT_OUTBUF_DIFF” on page 2–13
“ALT_OUTBUF_TRI_DIFF” on page 2–14
“ALT_IOBUF_DIFF” on page 2–19
“ALT_BIDIR_DIFF” on page 2–22
“ALT_BIDIR_BUF” on page 2–25

● Removed most of the “Synthesis Attributes” on page 2–33
section, replaced with a reference to the Quartus II
Handbook.

Technical changes to
coincide with changes to
the Quartus II software
7.0.0 release

May 2006
v2.0

Technical changes to coincide with changes to the Quartus II
software 6.0.0 release —

October 2005
v1.0

Initial Release —

Information Type Resource

Technical support www.altera.com/mysupport/

Product literature www.altera.com

Altera literature services literature@altera.com (1)

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.
v
Designing with Low-Level Primitives User Guide

http://www.altera.com/mysupport/
http://www.altera.com
mailto:literature@altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

Typographic Conventions
Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN
75: High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
vi Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Altera Corporation
April 2007
1. Low-Level Primitive
Design
Introduction Your hardware description language (HDL) coding style can have a
significant effect on the quality of results that you achieve for
programmable logic designs. Although synthesis tools optimize HDL
code for both logic utilization and performance, sometimes the best
optimizations require engineering knowledge of the design. Therefore, it
is important to consider the HDL coding style that you adopt when
creating your programmable logic design.

Low-level HDL design is the practice of using low-level primitives and
assignments in your HDL code to dictate a particular hardware
implementation for a piece of logic. Low-level primitives are small
architectural building blocks that assist you in creating your design. With
the Quartus® II software, you have the option of using low-level HDL
design techniques that can help you to achieve better resource utilization
or faster timing results.

Using low-level primitives in your design enables you to control the
hardware implementation for a cone of logic in your design. These cones
can be as small as an LCELL instantiation, which prevents the Quartus II
synthesis engine from performing optimizations, to larger, more complex
examples that specify the encoding method for a finite state machine
(FSM).

The Quartus II software can synthesize and place and route designs that
instantiate low-level primitives. This user guide describes the support
that the Quartus II software offers for creating a design with primitives
and includes the definition of each primitive, usage guidelines, and
example designs.

Using the Quartus II software, you can instantiate a Quartus II primitive
into your HDL design. The source files for Quartus II primitives are built
into the Quartus II software.
 1–1

Low-Level Primitive Examples
Example 1–1 is a small Verilog example that shows an instantiation of a
DFF primitive and an ALT_OUTBUF_TRI primitive.

Example 1–1. Instantiation of a DFF Primitive and alt_outbuf_tri Primitive, Verilog
module compinst (data, clock, clearn, presetn,

 a, b, q_out, t_out);
 input data, clock, clearn, presetn, a, b;
 output q_out, t_out;

dff dff_inst (.d (data), .q (q_out), .clk (clock),
//dff is a primitive

 .clrn(clearn),.prn (presetn));
alt_outbuf_tri tri_inst (.i(b), .oe(a), .o(t_out))
// alt_outbuf_tri is a primitive

endmodule

Low-Level
Primitive
Examples

The following sections provide examples of how you can implement
low-level primitives:

■ “LCELL Primitive”
■ “Using I/Os” on page 1–6
■ “Using Registers in Altera FPGAs” on page 1–7
■ “Creating Memory for Your Design” on page 1–9
■ “Look-Up Table Buffer Primitives” on page 1–13

For detailed specification of the primitive’s ports used in these sections,
refer to “Primitives” on page 2–1.

LCELL Primitive

The LCELL primitive allows you to break up your design into
manageable parts and prevents the Quartus II synthesis engine from
merging logic. This is especially useful when you are trying to debug
your design at the implementation level.
1–2 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Low-Level Primitive Design
In Example 1–2, the LCELL primitive separates the logic in your design.
The first code example and the resulting view from the Quartus II
Technology Map Viewer (Figure 1–1) show that the logic is merged
during the synthesis process.

Example 1–2. LCELL Primitive Separates Logic
module logic_merge(

clk,
addr,
data,
dataout

);

input clk;
input [3:0] addr;
input [2:0] data;
output[2:0] dataout;
reg [2:0] dataout;

wire temp_0;
wire temp_1;
wire temp_2;
wire temp_3;
wire temp_4;
wire temp_5;
wire temp_6;

assign temp_3 = addr[0] & addr[1] & addr[2] & addr[3];
assign temp_4 = addr[3] & addr[2] & addr[1] & addr[0];
assign temp_1 = addr[1] & addr[2] & addr[3];
assign temp_2 = temp_1 & addr[0];
assign temp_5 = temp_2 & data[0];
assign temp_6 = temp_3 & data[1];
assign temp_0 = temp_4 & data[2];
always@(posedge clk)
begin

dataout[2] <= temp_0;
end

always@(posedge clk)
begin

dataout[0] <= temp_5;
end

always@(posedge clk)
begin

dataout[1] <= temp_6;
end

endmodule
Altera Corporation 1–3
April 2007 Designing with Low-Level Primitives User Guide

Low-Level Primitive Examples
Figure 1–1. Logic Merged During the Process

By strategically placing the LCELLs, you can control how the Quartus II
synthesis engine splits your design into logic cells. This typically causes
your design to use more logic resources, so this primitive should be used
with care. In the following example, and the resulting view from the
Quartus II Technology Map Viewer (Figure 1–2), three LCELL primitive
instantiations are introduced between the combinational logic. Note that
“LCELL” is also the name that the Technology Map Viewer gives to the
logic cells in some device families, as shown in the figure.
1–4 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Low-Level Primitive Design
In Example 1–3, the address decoder logic is not merged with the
registers in the design.

Example 1–3. Address Decoder Logic Not Merged with Registers
module comb_logic_with_lcells(

clk,
addr,
data,
dataout

);

input clk;
input[3:0] addr;
input [2:0] data;
output [2:0] dataout;
reg [2:0] dataout;
wire temp_0;
wire temp_1;
wire temp_2;
wire temp_3;
wire temp_4;
wire temp_5;
wire temp_6;
wire temp_7;
wire temp_8;
wire temp_9;
assign temp_1 = addr[0] & addr[1] & addr[2] & addr[3];
assign temp_3 = temp_4 & addr[0];
assign temp_8 = temp_5 & data[0];
assign temp_9 = temp_6 & data[1];
assign temp_0 = temp_7 & data[2];
assign temp_4 = addr[1] & addr[2] & addr[3];
assign temp_2 = addr[3] & addr[2] & addr[1] & addr[0];
lcell inst1(.in(temp_1),
.out(temp_6));
lcell inst2(.in(temp_2),
.out(temp_7));
lcell inst3(.in(temp_3),
.out(temp_5));

always@(posedge clk)
begin

dataout[2] <= temp_0;
end
always@(posedge clk)
begin

dataout[0] <= temp_8;
end
always@(posedge clk)
begin

dataout[1] <= temp_9;
end
endmodule
Altera Corporation 1–5
April 2007 Designing with Low-Level Primitives User Guide

Low-Level Primitive Examples
Figure 1–2. LCELL Primitive Instantiations

Using I/Os

With I/O primitives, you can make I/O assignments in your HDL file
instead of making them through the Assignment Editor in the Quartus II
software. Example 1–4 describes how to make an I/O standard
assignment to an input pin using the ALT_INBUF primitive in Verilog
HDL.

Example 1–4. Making an I/O Standard Assignment to an Input Pin Using the ALT_INBUF Primitive, Verilog
module io_primitives (data_in, data_out);

input data_in;
wire internal_sig;

output data_out;

alt_inbuf my_inbuf (.i(data_in), .o(internal_sig));
defparam my_inbuf.io_standard="1.8 V HSTL Class I";

assign data_out = !internal_sig;

endmodule
1–6 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Low-Level Primitive Design
For detailed specifications of the primitive’s ports used in these sections,
refer to “Primitives” on page 2–1.

I/O Attributes

There are no primitives available to define an I/O register that can be
implemented as a fast input, fast output, or fast output enable register.
However, registers associated with an input or output pin can be moved
into I/O registers using the following assignments in the Quartus II
software for those I/O pins:

■ fast_input_register
■ fast_output_register
■ fast_output_enable_register

These assignments can be set by HDL synthesis attributes. Example 1–5
illustrates the fast_output_register synthesis attribute.

Example 1–5. The fast_output_register Synthesis Attribute
module fast_output(i,clk,o);

input i;
output o;
reg o /* synthesis altera_attribute = ”FAST_OUTPUT_REGISTER”

=ON */;
always @(posedge clk)
begin

o <= i;
end

endmodule

1 For more information, refer to “Synthesis Attributes” on
page 2–33.

Using Registers in Altera FPGAs

The building blocks of FPGA architectures contain a combinational
component along with a register component. Each register component in
an Altera FPGA provides a number of secondary control signals (such as
clear, reset, and enable signals) that you can use to implement
control logic for each register without the use of extra logic cells. Device
families vary in their support for secondary signals, so you must consult
the device family data sheet to verify which signals are available in your
target device. Download the device family data sheets from the Literature
section of www.altera.com.
Altera Corporation 1–7
April 2007 Designing with Low-Level Primitives User Guide

Low-Level Primitive Examples
Inferring Registers Using HDL Code

To make the most efficient use of the signals in the device, your HDL code
should match the device architecture as closely as possible. Because of the
layout of the architecture, the control signals have a certain priority.
Therefore, your HDL code should follow that priority whenever possible.
If you do not follow the signal priority, your synthesis tool emulates the
control signals using additional logic resources. Therefore, creating
functionally correct results is always possible. However, if your design
requirements are flexible (in terms of which control signals are used and
in what priority), you can match your design to the target device
architecture to achieve the optimal performance and logic utilization
results.

There are certain cases where using extra logic resources to emulate
control signals can have an unintended impact. For example, a
clock_enable signal has priority over a synchronous_reset or a
clear signal in the device architecture. The clock_enable signal
disables the clock line in the logic array block (LAB), and the sclr signal
is synchronous. In the device architecture, the synchronous clear takes
effect only when a clock edge occurs.

If you code a register with a synchronous clear signal that has
priority over a clock enable signal, the software must emulate the
clock enable functionality using data inputs to the registers. Because the
signal does not use the clock enable port of a register, you cannot
apply a Clock Enable Multicycle constraint. In this case, following the
priority of signals available in the device is clearly the best choice for the
priority of these control signals because using a different priority causes
unexpected results with an assignment to the clock enable signal.

The signal order is the same for all Altera device families, although, as
mentioned earlier, not all device families provide every signal. In general,
use the signal order shown in Table 1–1.

Table 1–1. Signal Order (from Highest to Lowest Priority)

Priority Signal

1 Asynchronous clear

2 Preset

3 Asynchronous load

4 Enable

5 Synchronous clear

6 Synchronous load

7 Data in
1–8 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Low-Level Primitive Design
The sclr signal is not inferred by Quartus Integrated Synthesis when
there are a large number of registers with different sclr signals.This
behavior makes it easier for the fitter to successfully route the design. If
you would like to force the use of the sclr signals, you can use the
following Quartus II synthesis settings.

f For more details about these and other synthesis settings, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

■ Force Use of Synchronous Clear Signals—Forces the compiler to
utilize synchronous clear signals in normal mode logic cells.
Turning on this option helps to reduce the total number of logic cells
used in the design, but might negatively impact the fitting because
synchronous control signals are shared by all the logic cells in a LAB.

■ Allow Synchronous Control Signals—Allows the compiler to utilize
synchronous clear and/or synchronous load signals in normal
mode logic cells. Turning on this option helps to reduce the total
number of logic cells used in the design, but might negatively impact
the fitting because synchronous control signals are shared by all the
logic cells in a LAB.

f For more information about inference guidelines for registers and on
secondary control signal inference rules, refer to the Recommended HDL
Coding Styles chapter in volume 1 of the Quartus II Handbook.

Using the DFFEAS Primitive

The DFFEAS primitive allows you to directly instantiate a register in your
design and gives you control over which secondary signals are used. The
DFFEAS primitive instantiations are always adhered to unless the
secondary control signals that you use are not supported by the device
family architecture. If you instantiate a DFFEAS primitive with
unsupported secondary control signals, they are converted into the
equivalent logic.

1 For an example on instantiation of the DFFEAS primitive, refer
to the Primitive Reference and Synthesis Attributes chapter in this
user guide.

Creating Memory for Your Design

You can create RAM for your design in two ways. The first method
involves creating HDL code that infers a memory function. The second
method involves building a function using the MegaWizard® Plug-In
Manager and instantiating the resulting custom megafunction variation
file in your design.
Altera Corporation 1–9
April 2007 Designing with Low-Level Primitives User Guide

Low-Level Primitive Examples
Inferring RAM Functions from HDL Code

To infer RAM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or lpm_ram_dp megafunctions,
depending on the targeted device family. The Quartus II software usually
does not infer very small RAM blocks because they typically are
implemented more efficiently by using the registers in regular logic.

If your design contains a RAM block that your synthesis tool does not
recognize and infer, the design might require a large amount of system
memory, which can potentially cause run-time compilation problems.

f For RAM inference guidelines, refer to the Recommended HDL Coding
Styles chapter of the Quartus II Handbook.

Using the MegaWizard Plug-In Manager

You can use the MegaWizard Plug-In Manager to create RAM functions.
The MegaWizard Plug-In Manager, located in the Tools menu in the
Quartus II software, allows you create or modify design files that contain
custom megafunction variations, which you can then instantiate in a
design file.

The GUI-based interface of the MegaWizard Plug-In Manager provides
an easy and intuitive interface that allows you to parameterize complex
functions such as memory. However, there are cases, particularly with
memory, where you simply want to modify a small component of the
megafunction. For example, your design can call for two types of memory
functions: a 32, 8-bit word single-port memory function and a 64, 8-bit
word single-port memory function. In this scenario, you can use the
MegaWizard Plug-In Manager to create one function and then use the
instantiation from the wizard-generated file to directly instantiate the
second variation. However, directly instantiating memory functions
should only be used when the modifications to the functions are minimal.

Example 1–6 shows a Verilog example for a 32, 8-bit word single-port
memory function.
1–10 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Low-Level Primitive Design
Example 1–6. A 32, 8-Bit Word Single-Port Memory Function, Verilog
altsyncramalt syncram_component (

.wren_a (wren),

.clock0 (clock),

.address_a (wraddress),

.address_b (rdaddress),

.data_a (data_in),

.q_b (data_out),

.aclr0 (1'b0),

.aclr1 (1'b0),

.clocken1 (1'b1),

.clocken0 (1'b1),

.q_a (),

.data_b ({8{1'b1}}),

.rden_b (1'b1),

.wren_b (1'b0),

.byteena_b (1'b1),

.addressstall_a (1'b0),

.byteena_a (1'b1),

.addressstall_b (1'b0),

.clock1 (1'b1));
defparam

altsyncram_component.address_aclr_a = "NONE",
altsyncram_component.address_aclr_b = "NONE",
altsyncram_component.address_reg_b = "CLOCK0",
altsyncram_component.indata_aclr_a = "NONE",
altsyncram_component.intended_device_family = "Stratix",
altsyncram_component.lpm_type = "altsyncram",

//This is where a 32, 8-bit word is modified.
altsyncram_component.numwords_a = 32,
altsyncram_component.numwords_b = 32,

altsyncram_component.operation_mode = "DUAL_PORT",
altsyncram_component.outdata_aclr_b = "NONE",
altsyncram_component.outdata_reg_b = "CLOCK0",
altsyncram_component.power_up_uninitialized = "FALSE",
altsyncram_component.read_during_write_mode_mixed_ports =

"DONT_CARE",

altsyncram_component.widthad_a = 5,
altsyncram_component.widthad_b = 5,

//This is the width of the input port.
altsyncram_component.width_a = 8,
altsyncram_component.width_b = 8,
altsyncram_component.width_byteena_a = 1,
altsyncram_component.wrcontrol_aclr_a = "NONE";
Altera Corporation 1–11
April 2007 Designing with Low-Level Primitives User Guide

Low-Level Primitive Examples
Example 1–7 shows a Verilog example for a 64, 8-bit word single-port
memory function.

Example 1–7. A 64, 8-Bit Word Single-Port Memory Function, Verilog
altsyncram altsyncram_component (

.wren_a (wren),

.clock0 (clock),

.address_a (wraddress),

.address_b (rdaddress),

.data_a (data_in),

.q_b (data_out),

.aclr0 (1'b0),

.aclr1 (1'b0),

.clocken1 (1'b1),

.clocken0 (1'b1),

.q_a (),

.data_b ({8{1'b1}}),

.rden_b (1'b1),

.wren_b (1'b0),

.byteena_b (1'b1),

.addressstall_a (1'b0),

.byteena_a (1'b1),

.addressstall_b (1'b0),

.clock1 (1'b1));
defparam

altsyncram_component.address_aclr_a = "NONE",
altsyncram_component.address_aclr_b = "NONE",
altsyncram_component.address_reg_b = "CLOCK0",
altsyncram_component.indata_aclr_a = "NONE",
altsyncram_component.intended_device_family = "Stratix",
altsyncram_component.lpm_type = "altsyncram",

//This is where a 64, 8-bit word is modified.
altsyncram_component.numwords_a = 64,
altsyncram_component.numwords_b = 64,

altsyncram_component.operation_mode = "DUAL_PORT",
altsyncram_component.outdata_aclr_b = "NONE",
altsyncram_component.outdata_reg_b = "CLOCK0",
altsyncram_component.power_up_uninitialized = "FALSE",
altsyncram_component.read_during_write_mode_mixed_ports
="DONT_CARE",

altsyncram_component.widthad_a = 6,
altsyncram_component.widthad_b = 6,

//This is the width of the input port.
altsyncram_component.width_a = 8,
altsyncram_component.width_b = 8,
altsyncram_component.width_byteena_a = 1,
altsyncram_component.wrcontrol_aclr_a = "NONE";
1–12 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Low-Level Primitive Design
Look-Up Table Buffer Primitives

The look-up table (LUT) buffer primitives, LUT_INPUT and
LUT_OUTPUT, specify a LUT function in your design. These primitives
are single-input, single-output buffers that you use to create a LUT
directly in your design. The LUT_INPUT acts as an input to the
LUT_OUTPUT. If your design contains a LUT_OUTPUT primitive that is
not properly driven, the LUT_OUTPUT is ignored. By using LUT_INPUT
and LUT_OUTPUT, you can specify which LUT inputs are used. These
primitives are similar to the LCELL primitive; they give you control over
how the Quartus II synthesis engine breaks your design up into logic
cells. Because they give you full control of the inputs and outputs to a
logic cell, LUT_INPUT and LUT_OUTPUT primitives give you more
control over the synthesis process, but you must have more
understanding of the device architecture to use them successfully

Example 1–8 shows a primitive instantiation that creates a four-input
LUT that implements the function aw & bw ^ cw | dw.

Example 1–8. A Primitive Instantiation that Creates a Four-Input LUT
module lut_function (a,b,c,d,o);

input a,b,c,d;
output o;
wire aw,bw,cw,dw,o;

lut_input lut_in1 (a, aw) ;
lut_input lut_in2 (b, bw) ;
lut_input lut_in3 (c, cw) ;
lut_input lut_in4 (d, dw) ;
lut_output lut_o (aw & bw ^ cw | dw, o) ;

endmodule
Altera Corporation 1–13
April 2007 Designing with Low-Level Primitives User Guide

Low-Level Primitive Examples
Example 1–9 is a more complex example using parameterized Verilog
and the LUT_INPUT and LUT_OUTPUT primitive buffers. This example
creates a LUT function to implement an arbitrary function in a single
LUT. The value of “out” is generated by the mask signal and uses the
LUT_INPUT and LUT_OUTPUT primitive buffers to build a single logic
cell that implements the functionality given by the LUT_MASK parameter.

Example 1–9. Parameterized Verilog and LUT_INPUT and LUT_OUTPUT Primitive Buffers
module lut_sub (din,out);

parameter LUT_SIZE = 4;
parameter NUM_BITS = 2**LUT_SIZE;

input [LUT_SIZE-1:0] din;
parameter [NUM_BITS-1:0] mask = {NUM_BITS{1'b0}};
output out;
wire out;

// buffer the LUT inputs
wire [LUT_SIZE-1:0] din_w;
genvar i;
generate

 for (i=0; i<LUT_SIZE; i=i+1)
 begin : liloop
 lut_input li_buf (din[i],din_w[i]);
 end

endgenerate
// build up the pterms for the LUT
wire [NUM_BITS-1:0] pterms;
generate
for (i=0; i<NUM_BITS; i=i+1)

 begin : ploop
 assign pterms[i] = ((din_w == i) & mask[i]);
 end

endgenerate

// assign the pterms to the LUT function
wire result;
assign result = | pterms;
lut_output lo_buf (result,out);
endmodule
1–14 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Low-Level Primitive Design
Example 1–10 uses the LUT primitive to create LUTs that implement a
4-input AND and a 4-input OR function.

Example 1–10. Using the LUT Primitive
module luts (

 input [3:0] in1, in2,
 output out1, out2
);

lut_sub inst1 (in1, out1);
defparam inst1.mask = 16'H8000; // AND function
lut_sub inst2 (in2, out2);
defparam inst2.mask = 16'HFFFE; // OR function
endmodule
Altera Corporation 1–15
April 2007 Designing with Low-Level Primitives User Guide

Low-Level Primitive Examples
1–16 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Altera Corporation
April 2007
2. Primitive Reference
Primitives Using primitives with HDL is an efficient way to make assignments to
your design without using the Assignment Editor.

The Quartus® II software supports the following primitives, described on
the corresponding pages:

■ “ALT_INBUF”
■ “ALT_OUTBUF” on page 2–3
■ “ALT_OUTBUF_TRI” on page 2–6
■ “ALT_IOBUF” on page 2–8
■ “ALT_INBUF_DIFF” on page 2–11 (1)
■ “ALT_OUTBUF_DIFF” on page 2–13 (1)
■ “ALT_OUTBUF_TRI_DIFF” on page 2–14 (1)
■ “ALT_IOBUF_DIFF” on page 2–19 (1)
■ “ALT_BIDIR_DIFF” on page 2–22 (1)
■ “ALT_BIDIR_BUF” on page 2–25 (1)
■ “LCELL” on page 2–27
■ “DFF” on page 2–28
■ “CARRY and CARRY_SUM” on page 2–29
■ “CASCADE” on page 2–30
■ “LUT_INPUT” on page 2–31
■ “LUT_OUTPUT” on page 2–32

Note to the above list:
(1) These I/O primitives are supported only in Stratix® III and Cyclone® III device

families.

ALT_INBUF

The primitive allows you to make a location assignment, termination
assignment, and also lets you determine whether to use weak pull up
resistor, whether to enable bus-hold circuitry or an io_standard
assignment to an input pin from a lower-level entity. Table 2–1 describes
 2–1

Primitives
the input and output ports and the parameters associated with
ALT_INBUF. If any other parameter is specified (for example,
current_strength) an error will result.

Example 2–1 shows a Verilog HDL example of an ALT_INBUF primitive
instantiation.

Example 2–1. ALT_INBUF Primitive Instantiation, Verilog HDL
alt_inbuf my_inbuf (.i(in), .o(internal_sig));

//in must be declared as an input pin
defparam my_inbuf.io_standard = "2.5 V";
defparam my_inbuf.location = "IOBANK_2";
defparam my_inbuf.enable_bus_hold = "on";
defparam my_inbuf.weak_pull_up_resistor = "off";
defparam my_inbuf.termination = "parallel 50 ohms";

Table 2–1. ALT_INBUF Ports and Parameters

Port/Parameter Description/Value

Input Ports

i Connect this port to a chip input pin or to a wire to be connected to an input pin.
There must be no logic between the i port and the chip input pin. If there is, an
error results.

Output Ports

o Connect this port to the logic in the design to receive the input signal.

Parameter

io_standard A logic option that specifies the I/O standard of a pin. Different device families
support different I/O standards, and restrictions apply to placing pins with
different I/O standards together.

location Any legal pin location for the current device.

enable_bus_hold An option to enable bus-hold circuitry. Legal values are “on” and “off.”

weak_pull_up_resistor An option to enable the weak pull-up resistor. Legal values are “on” and “off.”

termination Any legal on-chip-termination value for the current device. For GX families, this
parameter supports only regular termination, and not GXB termination. For GX
families, you must use Assignment Editor in the Quartus II software to set the
type of termination on high-speed transceivers.

This parameter is supported for Stratix III, Stratix II, Stratix II GX, HardCopy® II
and Cyclone II.
2–2 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Example 2–2 shows a VHDL component declaration for an ALT_INBUF
primitive instantiation.

Example 2–2. ALT_INBUF Primitive Component Declaration, VHDL
COMPONENT ALT_INBUF
 GENERIC

(IO_STANDARD : STRING :="NONE";
WEAK_PULL_UP_RESISTOR : STRING :="NONE";
LOCATION : STRING :="NONE";
ENABLE_BUS_HOLD : STRING :="NONE";
WEAK_PULL_UP_RESISTOR : STRING :="NONE";
TERMINATION : STRING :="NONE");

PORT (i : IN STD_LOGIC;
o : OUT STD_LOGIC);

END COMPONENT;

ALT_OUTBUF

The primitive allows you to make a location assignment,
io_standard assignment, current_strength assignments,
termination assignment, and also lets you determine whether to use weak
pull-up resistor, whether to enable bus-hold circuitry and/or a
slow_slew_rate assignment to an output pin from a lower-level entity.

Table 2–2 explains the ALT_OUTBUF input and output ports, and the
parameter options. If any other parameter is specified, an error will
result.
Altera Corporation 2–3
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Table 2–2. ALT_OUTBUF Ports & Parameters

Port/Parameter Description/Value

Input Ports

i Connect this port to the logic in the design that generates the output signal.

Output Ports

o Connect this port to a chip output pin or a wire to be connected to a chip output.
There must be no logic between the o port and the chip output pin. If there is,
an error results.

Parameter

io_standard A logic option that specifies the I/O standard of a pin. Different device families
support different I/O standards, and restrictions apply to placing pins with
different I/O standards together.

current_strength A logic option that sets the drive strength of a pin. Specific numerical strength
settings are appropriate only for pins with certain I/O standards. You can specify
any legal current strength value here (including “minimum current” or “maximum
current”).The parameter name current_strength_new is also supported
for backward compatibility.

location Any legal pin location for the current device.

enable_bus_hold An option to enable bus-hold circuitry. Legal values are “on” and “off.”

weak_pull_up_resistor An option to enable the weak pull-up resistor. Legal values are “on” and “off.”

termination Any legal on-chip-termination value for the current device. For GX families, this
parameter supports only regular termination, and not GXB termination.
This parameter is supported for Stratix III, Stratix II, Stratix II GX, HardCopy II,
Cyclone III, and Cyclone II.

slow_slew_rate A logic option that implements slow low-to-high or high-to-low transitions on
output pins to help reduce switching noise. Current legal values are “on” and
“off.”

This assignment is ignored by the Fitter for Stratix II and Cyclone II devices.
This parameter is not supported for Stratix II GX or HardCopy II devices.

slew_rate The slow_slew_rate parameter is not available for Stratix III and
Cyclone III. These two families support the slew_rate parameter instead.

Accepts any positive integer value, including 0. The default value is –1, which
is equivalent to not using this parameter.
This parameter is available only for Stratix III and Cyclone III.
2–4 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Example 2–3 shows a Verilog HDL example of an ALT_OUTBUF primitive
instantiation.

Example 2–3. ALT_OUTBUF Primitive Instantiation, Verilog HDL
alt_outbuf my_outbuf (.i(internal_sig), .o(out)); //out must be declared as
an output pin
defparam my_outbuf.io_standard = "2.5 V";
defparam my_outbuf.slow_slew_rate = "on";
defparam my_outbuf.enable_bus_hold = "off";
defparam my_outbuf.weak_pull_up_resistor = "on";
defparam my_outbuf.termination = "series 25 ohms";

Example 2–4 shows a VHDL component declaration for an ALT_OUTBUF
primitive instantiation.

Example 2–4. ALT_OUTBUF Primitive Instantiation, VHDL
COMPONENT alt_outbuf
GENERIC(

IO_STANDARD : STRING :="NONE";
CURRENT_STRENGTH : STRING :="NONE";
SLOW_SLEW_RATE : STRING :="NONE";
LOCATION : STRING :="NONE";
ENABLE_BUS_HOLD : STRING :="NONE";
WEAK_PULL_UP_RESISTOR : STRING :="NONE";
TERMINATION : STRING :="NONE";
SLEW_RATE:INTEGER := -1

);
PORT (

i : IN STD_LOGIC;
o : OUT STD_LOGIC

);
END COMPONENT;
Altera Corporation 2–5
April 2007 Designing with Low-Level Primitives User Guide

Primitives
ALT_OUTBUF_TRI
The primitive allows you to make a location assignment, io_standard
assignment, current_strength assignment, termination assignment,
whether or not to use weak pull-up resistor, and allows you to determine
whether or not to enable bus-hold circuitry and/or a slow_slew_rate
assignment to a tri-stated output pin from a lower-level entity. Table 2–3
explains the ALT_OUTBUF_TRI input and output ports, as well as the
parameter options. If any other parameter is specified, an error will
result.

Example 2–5 shows a Verilog HDL example of an ALT_OUTBUF_TRI
primitive instantiation.

Example 2–5. ALT_OUTBUF_TRI Primitive Instantiation, Verilog HDL
alt_outbuf_tri my_outbuf tri (.i(internal_sig), .oe(enable_sig),
 .o(out));

//out must be declared as an output pin
defparam my_outbuf_tri.io_standard = “1.8 V”;
defparam my_outbuf_tri.current_strength =
"maximum current";
defparam my_outbuf_tri.slow_slew_rate = “off”;

Example 2–6 shows a VHDL component declaration for an
ALT_OUTBUF_TRI primitive instantiation.

Example 2–6. ALT_OUTBUF_TRI Primitive Component Declaration, VHDL
COMPONENT alt_outbuf_tri
GENERIC (

IO_STANDARD : STRING :="NONE";
CURRENT_STRENGTH : STRING :="NONE";
SLOW_SLEW_RATE : STRING :="NONE";
LOCATION : STRING :="NONE";
ENABLE_BUS_HOLD : STRING :="NONE";
WEAK_PULL_UP_RESISTOR : STRING :="NONE";
TERMINATION : STRING :="NONE";
SLEW_RATE:INTEGER := -1

);
PORT (

i : IN STD_LOGIC;
oe : IN STD_LOGIC;
o : OUT STD_LOGIC

);

END COMPONENT;
2–6 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Table 2–3. ALT_OUTBUF_TRI Ports & Parameters

Port/Parameter Description/Value

Input Ports

i Connect this port to the logic in the design that generates the output signal.

oe Connect this port to the tristate output enable logic.

Output Ports

o Connect this port to a chip output pin or a wire to be connected to a chip output.
There must be no logic between the o port and the chip output pin. If there is,
an error results.

Parameters

io_standard A logic option that specifies the I/O standard of a pin. Different device families
support different I/O standards, and restrictions apply to placing pins with
different I/O standards together.

current_strength A logic option that sets the drive strength of a pin. Specific numerical strength
settings are appropriate only for pins with certain I/O standards. You can
specify any legal current strength value here (including “minimum current” or
“maximum current”). The parameter name current_strength_new is
also supported for backward compatibility.

location The location is any legal pin location for the current device.

enable_bus_hold An option to enable bus-hold circuitry. Legal values are “on” and “off.”

weak_pull_up_resistor An option to enable the weak pull-up resistor. Legal values are “on” and “off.”

termination Any legal on-chip-termination value for the current device. For GX families, this
parameter supports only regular termination, and not GXB termination.
This parameter is supported for Stratix III, Stratix II, Stratix II GX, HardCopy II,
Cyclone III, and Cyclone II.

slow_slew_rate A logic option that implements slow low-to-high or high-to-low transitions on
output pins to help reduce switching noise. Current legal values are “on” and
“off.”

This assignment is ignored by the Fitter for Stratix II and Cyclone II devices.
This parameter is not supported for Stratix II GX or HardCopy II devices.

slew_rate The slow_slew_rate parameter is not available for Stratix III and
Cyclone III. These two families support the slew_rate parameter instead.

Accepts any positive integer value including 0. Default value is –1, which is
equivalent to not using this parameter. Available only for Stratix III and
Cyclone III.
Altera Corporation 2–7
April 2007 Designing with Low-Level Primitives User Guide

Primitives
ALT_IOBUF

The primitive allows you to make a location assignment,
io_standard assignment, current_strength assignment,
termination assignment, and allows you to determine whether or not to
use weak pull-up resistor, whether or not to enable bus-hold circuitry
and/or a slow_slew_rate assignment to a bidirectional pin from a
lower-level entity.

Table 2–4 lists the ports and parameters of the ALT_IOBUF primitive, and
their respective descriptions and possible values.

Example 2–7 shows a Verilog HDL example of an ALT_IOBUF primitive
instantiation.

Example 2–7. ALT_IOBUF Primitive Instantiation, Verilog HDL
alt_iobuf my_iobuf (.i(internal_sig1), .oe(enable_sig),
 .o(internal_sig2), .io(bidir));
//bidir must be declared as an inout pin
defparam my_iobuf.io_standard = "3.3-V PCI";
defparam my_iobuf.current_strength = "minimum current";
defparam my_iobuf.slow_slew_rate = "on";
defparam my_iobuf.location = "iobank_1";

Example 2–8 shows a VHDL component declaration for an ALT_IOBUF
primitive instantiation.
2–8 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Table 2–4. ALT_IOBUF Ports and Parameters

Port/Parameter Description/Value

Input Ports

i Connect this port to the logic in the design that generates the output signal.

oe Connect this port to the tri-state output enable logic.

Output Ports

o Connect this port to the logic in the design that receives the input signal

Bidirectional Port
Connect this port to the chip bidir pin or an entity bidir port. There must
be no logic between the io port and the chip bidir pin. If there is, an error
results.

Parameter

io_standard A logic option that specifies the I/O standard of a pin. Different device families
support different I/O standards, and restrictions apply to placing pins with
different I/O standards together.

current_strength A logic option that sets the drive strength of a pin. Specific numerical strength
settings are appropriate only for pins with certain I/O standards. You can
specify any legal current strength value here (including “minimum current” or
“maximum current”). The parameter name current_strength_new is also
supported for backward compatibility.

location Any legal pin location for the current device.

enable_bus_hold An option to enable bus-hold circuitry. Legal values are “on” and “off.”

weak_pull_up_resistor An option to enable the weak pull-up resistor. Legal values are “on” and “off.”

termination Any legal on-chip-termination value for the current device. For GX families, this
parameter supports only regular termination, and not GXB termination.
This parameter is supported for Stratix III, Stratix II, Stratix II GX, HardCopy II,
Cyclone III, and Cyclone II.

To set separate input and output values, use input_termination and
output_termination parameters instead. This parameter can not be
used along with input_termination or output_termination.

This parameter sets both input termination value and output termination values
for Stratix III and Cyclone III devices. However, note that the Fitter ignores any
input termination parameters for Cyclone III devices.

To set separate input and output values, use input_termination and
output_termination parameters instead. This parameter can not be
used with input_termination or output_termination.

input_termination Any legal input on-chip termination value for the current device. This parameter
cannot be used with the termination parameter. This parameter is
supported in Stratix III devices only.
Altera Corporation 2–9
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Example 2–8. ALT_IOBUF Primitive Component Declaration, VHDL
COMPONENT alt_iobuf
GENERIC (

IO_STANDARD : STRING :="NONE";
CURRENT_STRENGTH : STRING :="NONE";
SLOW_SLEW_RATE : STRING :="NONE";
LOCATION : STRING :="NONE";
ENABLE_BUS_HOLD : STRING :="NONE";
WEAK_PULL_UP_RESISTOR : STRING :="NONE";
TERMINATION : STRING :="NONE";
INPUT_TERMINATION : STRING := "NONE" ;
OUTPUT_TERMINATION : STRING := "NONE";
SLEW_RATE:INTEGER := -1

);
PORT (

i : IN STD_LOGIC;
oe: IN STD_LOGIC;
io : INOUT STD_LOGIC;
o : OUT STD_LOGIC);

END COMPONENT;

output_termination Any legal output on-chip termination value for the current device. This
parameter cannot be used with the termination parameter. this parameter is
supported in Stratix III and Cyclone III devices.

slow_slew_rate A logic option that implements slow low-to-high or high-to-low transitions on
output pins to help reduce switching noise. Current legal values are “on” and
“off.”

This assignment is ignored by the Fitter for Stratix II and Cyclone II devices.
This parameter is not supported for Stratix II GX or HardCopy II devices.

slew_rate The slow_slew_rate parameter is not available for Stratix III and
Cyclone III. These two families support the slew_rate parameter instead.

Accepts any positive integer value including 0. Default value is –1, which is
equivalent to not using this parameter. Available only for Stratix III and
Cyclone III.

Table 2–4. ALT_IOBUF Ports and Parameters

Port/Parameter Description/Value
2–10 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
ALT_INBUF_DIFF

This primitive allows you to name and connect positive and negative pins
when a differential I/O standard is used for an input pin. You can assign
I/O standard assignments, location assignments, termination
assignments, control bus hold circuitry, and enable weak pull up on the
input pins. An attempt to set any other parameter will result in an error.

Table 2–5 lists the ports and parameters of the ALT_INBUF_DIFF
primitive, and their respective descriptions and possible values.

Each parameter also accepts the value “none”. Assigning the value
“none” to any parameter is equivalent to not setting the parameter. Note
that the primitive requires that all three ports (i, ibar, and o) are
connected. Also note that all parameters are optional.

Table 2–5. ALT_INBUF_DIFF Ports and Parameters

Port/Parameter Description/Value

Input Ports

i This port represents the positive pin of a differential I/O standard.
Connect this port either to the device’s input pin or to a wire to be connected to
an input pin. There must be no logic between the i port and the device's input
pin. The input pin cannot have any other fan-out.

ibar This port represents the negative pin of a differential I/O standard.
Connect this port either to the device's input pin or to a wire to be connected to
an input pin. There must be no logic between the ibar port and the chip input
pin. The input pin cannot have any other fan-out.

Output Ports

o Connect this port to the logic in the design to receive the input signal.

Parameter Name

io_standard Any legal differential I/O standard value.

location Any legal pin location for the current device.

enable_bus_hold An option to enable bus-hold circuitry. Legal values are “on” and “off.”

weak_pull_up_resistor An option to enable the weak pull-up resistor. Current legal values are “on” and
“off”.

termination Any legal on-chip-termination value for the current device. For GX families, this
parameter supports only regular termination, and not GXB termination. This
parameter is supported for Stratix III, Stratix II, Stratix II GX, HardCopy II, and
Cyclone II.

Note: The Fitter ignores this parameter for Cyclone III devices.
Altera Corporation 2–11
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Example 2–9 shows a VHDL component instantiation example of an
ALT_INBUF_DIFF primitive.

Example 2–9. ALT_INBUF_DIFF Primitive, VHDL Component Instantiation
library ieee;
use ieee.std_logic_1164.all;
library altera;
use altera.altera_primitives_components.all;

entity test_inbuf is
port (

in1,in2,in3 : in std_logic;
out1 : out std_logic

);
end test_inbuf;

architecture test of test_inbuf is

signal tmp1: std_logic;

begin

inst : ALT_INBUF_DIFF
generic map (

IO_STANDARD => "LVDS",7
LOCATION => "IOBANK_3"

)
port map (

i => in1,
ibar => in2,
o => tmp1

) ;

out1 <= in3 and tmp1;

end test;
2–12 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
ALT_OUTBUF_DIFF

This primitive allows you to name and connect positive and negative pins
when a differential I/O standard is used for an output pin. You can assign
I/O standard, location, drive strength (current strength), slew rate, and
termination assignments, control bus hold circuitry, and enable weak
pull-up resistor on the output pins. An attempt to set any other parameter
will result in an error.

Table 2–6 lists the ports and parameters of the ALT_OUTBUF_DIFF
primitive, and their respective descriptions and possible values.

Each parameter except slew_rate also accepts the value “none”.
Assigning the value “none” to any such parameter is equivalent to not
setting the parameter. The parameter slew_rate accepts the value –1 as

Table 2–6. ALT_OUTBUF_DIFF Ports and Parameters

Port/Parameter Description/Value

Input Ports

i Connect this port to the logic in the design that generates the output signal.

Output Ports

o This port represents the positive pin of a differential I/O standard.
Connect this port to the device’s output pin or a wire to be connected to the
device’s output. There must be no logic between the o port and the chip output
pin. This port cannot have multiple fan-outs.

obar This port represents the negative pin of a differential I/O standard.
Connect this port to the device's output pin or a wire to be connected to the
device's output. There must be no logic between the obar port and the chip
output pin. This port cannot have multiple fan-outs.

Parameter Name

io_standard Any legal differential I/O standard value.

current_strength Any legal value of the current_strength_new QSF assignment.

location Any legal pin location for the current device.

slew_rate Any legal slew rate value for the current device. This value must be a positive
integer (including 0).

enable_bus_hold Whether or not to enable bus-hold circuitry. Current legal values are “on” and
“off”.

weak_pull_up_resistor Whether or not to enable the weak pull-up resistor. Current legal values are “on”
and “off”.

termination Any legal on-chip-termination value for the current device.
Altera Corporation 2–13
April 2007 Designing with Low-Level Primitives User Guide

Primitives
the default. Assigning –1 to slew_rate is equivalent to not setting the
parameter. Note that the primitive requires that all three ports (i, o, and
obar) are connected. Also note that all parameters are optional.

Example 2–10 shows a VHDL component instantiation example of an
ALT_OUTBUF_DIFF primitive.

Example 2–10. ALT_OUTBUF_DIFF Primitive, VHDL Component Instantiation
library ieee;
use ieee.std_logic_1164.all;
library altera;
use altera.altera_primitives_components.all;

entity test_outbuf is
port (

in1, in2 : in std_logic;
out1, out1_n : out std_logic

);
end test_outbuf;

architecture test of test_outbuf is

signal tmp: std_logic;

begin
inst : ALT_OUTBUF_DIFF
generic map (

IO_STANDARD => "LVDS",
 LOCATION=> "IOBANK_3"
)
port map (

i => tmp,
o => out1,
obar => out1_ n

) ;

tmp <= in1 and in2;

end test;

ALT_OUTBUF_TRI_DIFF

This primitive allows you to name and connect positive and negative pins
when a differential I/O standard is used for a tri-statable output pin. You
can assign I/O standard, location, drive strength (current strength), slew
rate, and termination assignments, control bus hold circuitry, and enable
weak pull-up resistor on the output pins. An attempt to set any other
parameter will result in an error.
2–14 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Table 2–7 lists the ports and parameters of the ALT_OUTBUF_TRI_DIFF
primitive, and their respective description and possible values.

Each parameter except slew_rate also accepts the value “none”.
Assigning the value “none” to any such parameter is equivalent to not
setting the parameter. The parameter slew_rate accepts the value –1 as
the default. Assigning –1 to slew_rate is equivalent to not setting the
parameter. Note that the primitive requires that all four ports (i, oe, o,
and obar) are connected. Also note that all parameters are optional.

Example 2–11 shows a Verilog HDL example and Example 2–12 shows a
VHDL example of an ALT_OUTBUF_TRI_DIFF.

Table 2–7. ALT_OUTBUF_TRI_DIFF Ports and Parameters

Port/Parameter Description/Value

Input Ports

i Connect this port to the logic in the design that generates the output signal.

oe Connect this port to the tri-state output enable logic.

Output Ports

o This port represents the positive pin of a differential I/O standard.
Connect this port to the device’s output pin or a wire to be connected to the
device’s output. There must be no logic between the o port and the chip output
pin. This port cannot have multiple fan-outs.

obar This port represents the negative pin of a differential I/O standard.
Connect this port to the device’s output pin or a wire to be connected to the
device’s output. There must be no logic between the obar port and the chip
output pin. This port cannot have multiple fan-outs.

Parameter Name

io_standard Any legal differential I/O standard value.

current_strength Any legal value of the current_strength_new QSF assignment.

location Any legal pin location for the current device.

slew_rate Any legal slew rate value for the current device. This value must be a positive
integer (including 0).

enable_bus_hold Whether or not to enable bus-hold circuitry. Current legal values are “on” and
“off”.

weak_pull_up_resistor Whether or not to enable the weak pull-up resistor. Current legal values are
“on” and “off”.

termination Any legal on-chip-termination value for the current device.
Altera Corporation 2–15
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Example 2–11. ALT_OUTBUF_TRI_DIFF Primitive Instantiation, Verilog HDL
module test (

datain_h,
datain_l,
oe,
outclock,
dataout,
dataout_n

);

input datain_h;
input datain_l;
input outclock;
input oe;
output dataout;
output dataout_n;

wire tmp_out;
wire tmp_oe;

my_altddio_out altddio_out_inst (
.outclock (outclock),
.datain_h (datain_h),
.datain_l (datain_l),
.dataout (tmp_out),
.aclr (1'b0),
.aset (1'b0),
.oe (oe),
.outclocken (1'b1),
.oe_out (tmp_oe),
.sclr (1'b0)

);

ALT_OUTBUF_TRI_DIFF my_outbuf (
.i (tmp_out),
.oe (tmp_oe),
.o(dataout),
.obar(dataout_n)
);

defparam my_outbuf.io_standard = "LVDS";

endmodule
2–16 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Example 2–12. ALT_OUTBUF_TRI_DIFF Primitive, VHDL Component Instantiation
library ieee;
use ieee.std_logic_1164.all;
library altera;
use altera.altera_primitives_components.all;
entity test_outbuf_tri is
port (

datain_h, datain_l : in std_logic_vector (0 downto 0);
 oe, outclock : in std_logic;

dataout, dataout_n : out std_logic
);
end test_outbuf_tri;

architecture test of test_outbuf_tri is

component altddio_out
generic (

 intended_device_family: STRING;
 lpm_type : STRING;
 power_up_high : STRING;
 width : NATURAL

);
port (

dataout : OUT STD_LOGIC_VECTOR (0 DOWNTO 0);
outclock : IN STD_LOGIC ;
oe : IN STD_LOGIC ;
datain_h : IN STD_LOGIC_VECTOR (0 DOWNTO 0);
datain_l : IN STD_LOGIC_VECTOR (0 DOWNTO 0)

);
end component;

signal tmp_out : std_logic_vector (0 downto 0);
signal tmp_oe : std_logic;

begin

DDIO_OUT : altddio_out
generic map (

intended_device_family => "Stratix II",
lpm_type => "altddio_out",
power_up_high => "OFF",
width => 1

)
port map (

outclock => outclock,
oe => tmp_oe,
datain_h => datain_h,
datain_l => datain_l,
dataout => tmp_out

);
Altera Corporation 2–17
April 2007 Designing with Low-Level Primitives User Guide

Primitives

inst : ALT_OUTBUF_TRI_DIFF
generic map (

 IO_STANDARD => "LVDS",
 LOCATION=> "IOBANK_3"
)
port map (

i => tmp_out,
oe => tmp_oe,
o => dataout,
obar => dataout_n

) ;

end test;
2–18 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
ALT_IOBUF_DIFF

This primitive allows you to name and connect positive and negative pins
when a differential I/O standard is used for a bidirectional pin. You can
assign I/O standard, location, drive strength (current strength), slew rate,
and termination assignments, enable bus hold circuitry, and enable weak
pull-up resistor on the bidir pins. An attempt to set any other parameter
will result in an error.

Table 2–8 lists the ports and parameters of the ALT_IOBUF_DIFF
primitive, and their respective descriptions and possible values.

Table 2–8. ALT_IOBUF_DIFF Ports and Parameters (Part 1 of 2)

Port/Parameter Description/Value

Input Port

i Connect this port to the logic in the design that generates the output signal.

oe Connect this port to the tri-state output enable logic.

Output Ports

o Connect this port to the logic in the design that receives the input signal.

Bidirectional Port

io This port represents the positive pin of a differential I/O standard.

Connect this port to the device’s bidir pin or an entity bidir port. There
must be no logic between the io port and the chip bidir port.

iobar This port represents the negative pin of a differential I/O standard.

Connect this port to the device’s bidir pin, or an entity bidir port. There
must be no logic between the iobar port and the chip bidir port.

Parameter Name

io_standard Any legal differential I/O standard value.

current_strength Any legal value of the current_strength_new QSF assignment.

location Any legal pin location for the current device.

slew_rate Any legal slew rate value for the current device. This value must be a positive
integer (including 0).

enable_bus_hold The ability to enable bus-hold circuitry. Current legal values are “on” and “off”.

weak_pull_up_resistor The ability to enable the weak pull-up resistor. Current legal values are “on” and
“off”.
Altera Corporation 2–19
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Each parameter except slew_rate also accepts the value “none”.
Assigning the value “none” to any such parameter is equivalent to not
setting the parameter. The parameter slew_rate accepts the value –1 as
the default. Assigning –1 to slew_rate is equivalent to not setting the
parameter. Note that the primitive requires that all five ports (i, oe, o, io,
and iobar) are connected. Also note that all parameters are optional.

Example 2–13 shows an example of a VHDL component instantiation,
and Example 2–14 shows a Verilog HDL example of an
ALT_IOBUF_DIFF primitive instantiation.

termination Any legal on-chip-termination value for the current device. This value is set as
the input as well as the output termination value for the current device. To set
separate input and output values, use input_termination and
output_termination parameters instead.

This parameter cannot be used with input_termination or
output_termination.

input_termination Any legal input on-chip-termination value for the current device. This parameter
cannot be used with the termination parameter.
Note: The Fitter ignores this parameter for Cyclone III devices.

output_termination Any legal output on-chip-termination value for the current device. This
parameter cannot be used with the termination parameter.

Table 2–8. ALT_IOBUF_DIFF Ports and Parameters (Part 2 of 2)

Port/Parameter Description/Value
2–20 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Example 2–13. ALT_IOBUF_DIFF Primitive, VHDL Component Instantiation
library ieee;
use ieee.std_logic_1164.all;
library altera;
use altera.altera_primitives_components.all;
entity test_iobuf is
port (

in1, in2, oe : in std_logic;
bidir, bidir_n : inout std_logic;
out : out std_logic

);
end test_iobuf;

architecture test of test_iobuf is

signal tmp1: std_logic;

tmp1 <= in1 and in2;

begin

inst : ALT_IOBUF_DIFF
generic map (

IO_STANDARD => "LVDS",
 LOCATION=> "IOBANK_3"
)
port map (

i => tmp1,
oe => oe,
o => out,
io => bidir,
iobar => bidir_n

) ;

end test;
Altera Corporation 2–21
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Example 2–14. ALT_IOBUF_DIFF Primitive Instantiation, Verilog HDL
module test(in1,in2,oe,out,bidir,bidir_n);
input in1;
input in2;
input oe;
inout bidir;
inout bidir_n;
output out;
wire tmp1;
and(tmp1,in1,in2);

ALT_IOBUF_DIFF inst(.i(tmp1), .oe(oe), .o(out), .io(bidir),
.iobar(bidir_n));
defparam inst.io_standard = "LVDS";
defparam inst.current_strength = "12mA";
endmodule

ALT_BIDIR_DIFF

This primitive allows you to name and connect positive and negative pins
when the altddio_bidir megafunction is used your design. You can assign
I/O standard, location, drive strength (current strength), slew rate, and
termination assignments, control bus hold circuitry, and enable weak
pull-up resistor on the bidir pins. An attempt to set any other parameter
will result in an error.

Table 2–9 lists the ports and parameters of the ALT_BIDIR_DIFF
primitive, and their respective description and possible values.

Table 2–9. ALT_BIDIR_DIFF Ports and Parameters (Part 1 of 2)

Port/Parameter Description/Value

Input Ports

oe Connect this port to the oe_out port of the altddio_bidir megafunction.

Bidirectional Port

bidirin Connect this port to the padio port of the altddio_bidir megafunction. The
padio port should not have any other fan-outs.

io This port represents the positive pin of a differential I/O standard.
Connect this port to the device’s bidir pin or an entity bidir port. There
must be no logic between the io port and the chip bidir port.

iobar This port represents the negative pin of a differential I/O standard.
Connect this port to the device's bidir pin or an entity bidir port. There
must be no logic between the iobar port and the chip bidir port.
2–22 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Each parameter except slew_rate also accepts the value “none”.
Assigning the value “none” to any such parameter is equivalent to not
setting the parameter. The parameter slew_rate accepts the value –1 as
the default. Assigning –1 to slew_rate is equivalent to not setting the
parameter. Note that the primitive requires that all four ports (oe,
bidirin, io, and iobar) are connected. Also note that all parameters
are optional. This primitive can only be used with an altddio_bidir
megafunction, and with the port connections described above; using it in
any other configuration will result in an error.

Parameter Name

io_standard Any legal differential I/O standard value.

current_strength Any legal value of the current_strength_new QSF assignment.

location Any legal pin location for the current device.

slew_rate Any legal slew rate value for the current device. This value must be a positive
integer (including 0).

enable_bus_hold Whether to enable bus-hold circuitry. Current legal values are “on” and “off”.

weak_pull_up_resistor Whether or not to enable the weak pull-up resistor. Current legal values are “on”
and “off”.

termination Any legal on-chip-termination value for the current device. This value is set as
the input as well as the output termination value for the current device. To set
separate input and output values, use the input_termination and
output_termination parameters instead.

This parameter cannot be used along with input_termination or
output_termination.

input_termination Any legal input on-chip-termination value for the current device. This parameter
can not be used along with the “termination” parameter.

Note: The Fitter ignores this parameter for Cyclone III devices.

output_termination Any legal output on-chip-termination value for the current device. This
parameter can not be used along with the “termination” parameter.

Table 2–9. ALT_BIDIR_DIFF Ports and Parameters (Part 2 of 2)

Port/Parameter Description/Value
Altera Corporation 2–23
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Example 2–15 shows an example of a Verilog HDL primitive
instantiation, and Example 2–16 shows a VHDL example of an
ALT_BIDIR_DIFF component declaration.

Example 2–15. ALT_BIDIR_DIFF Primitive Instantiation, Verilog HDL
module ddio_top (aset, combout, datain_h, datain_l, inclock, sclr, oe,
outclock, bidir, bidir_n);
 input aset;
 input sclr;
 input datain_h;
 input datain_l;
 input inclock;
 input oe;
 input outclock;
 output combout;
 inout bidir;
 inout bidir_n;
 wire tmp_oe;
 wire tmp_padio;

 //myddio_bidir is an instance of the altddio_bidir megafunction
 myddio_bidir sample_ddio (.aset(aset),
 .combout(combout),
 .datain_h (datain_h),
 .datain_l(datain_l),
 .inclock(inclock),
 .oe(oe),
 .outclock(outclock),
 .padio(tmp_padio),
 .oe_out_port(tmp_oe),
 .sclr(sclr)
);

ALT_BIDIR_DIFF my_bidir (.bidirin (tmp_padio), .oe (tmp_oe), .io (bidir),
.iobar (bidir_n));
endmodule
2–24 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Example 2–16. ALT_BIDIR_DIFF Primitive, VHDL Component Declaration
component ALT_BIDIR_DIFF
generic (

 IO_STANDARD : STRING := "none";
 LOCATION : STRING := "none";
 ENABLE_BUS_HOLD : STRING := "none";
 WEAK_PULL_UP_RESISTOR : STRING := "none";
 INPUT_TERMINATION : STRING := "none";
 OUTPUT_TERMINATION : STRING := "none" ;
 TERMINATION : STRING := "none"

);
port (

bidirin : inout std_logic;
oe: in std_logic;
io : inout std_logic;
iobar : inout std_logic

);
end component;

ALT_BIDIR_BUF

This primitive allows you to create a location assignment, io_standard
assignment, drive strength (current strength) assignment and/or
slew_rate assignment to the bidirectional pin connected to an
altddio_bidir megafunction. The legal configuration of the primitive and
the complete list of supported parameters are described in Table 2–10. If
the primitive is used in any other configuration or with any other
parameter, an error will be given.

Table 2–10. ALT_BIDIR_BUF Ports and Parameters (Part 1 of 2)

Port/Parameter Description/Value

Input Port

oe Connect this port to the oe_out port of the altddio_bidir megafunction.

Bidirectional Port

bidirin Connect this port to the padio port of the altddio_bidir megafunction. The
padio port should not have any other fan-outs.

io Connect this port to the device’s bidir pin or an entity bidir port. There
must be no logic between the io port and the chip bidir port.

Parameter Name

io_standard Any legal I/O standard value.

current_strength Any legal value of the current_strength_new QSF assignment.

location Any legal pin location for the current device.
Altera Corporation 2–25
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Each parameter except slew_rate also accepts the value “none”.
Assigning the value “none” to any such parameter is equivalent to not
setting the parameter. The parameter slew_rate accepts the value –1 as
the default. Assigning –1 to slew_rate is equivalent to not setting the
parameter. Note that the primitive requires that all three ports (oe,
bidirin, and io) are connected. Also note that all parameters are
optional.

Example 2–17 shows a VHDL example of an ALT_BIDIR_BUF
component declaration.

slew_rate Any legal slew rate value for the current device. This value must be a positive
integer (including 0).

enable_bus_hold Whether to enable bus-hold circuitry. Current legal values are “on” and “off”.

weak_pull_up_resistor Whether or not to enable the weak pull-up resistor. Current legal values are “on”
and “off”.

termination Any legal on-chip-termination value for the current device. This value is set as
the input as well as the output termination value for the current device. To set
separate input and output values, use the input_termination and
output_termination parameters instead.

This parameter cannot be used with input_termination or
output_termination.

input_termination Any legal input on-chip-termination value for the current device. This parameter
cannot be used along with the “termination” parameter.

Note: The Fitter ignores this parameter for Cyclone III devices.

output_termination Any legal output on-chip-termination value for the current device. This
parameter cannot be used along with the “termination” parameter.

Table 2–10. ALT_BIDIR_BUF Ports and Parameters (Part 2 of 2)

Port/Parameter Description/Value
2–26 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Example 2–17. ALT_BIDIR_BUF Primitive, VHDL Component Declaration
component ALT_BIDIR_BUF
generic (

IO_STANDARD : STRING := "none";
LOCATION : STRING := "none";
ENABLE_BUS_HOLD : STRING := "none";
WEAK_PULL_UP_RESISTOR : STRING := "none";
SLEW_RATE : STRING := "none";
CURRENT_STRENGTH : STRING := "none";
INPUT_TERMINATION : STRING := "none";
OUTPUT_TERMINATION : STRING := "none";
TERMINATION : STRING := "none"

);
port (

bidirin : inout std_logic;
oe: in std_logic;
io : inout std_logic;

);
end component;

LCELL

The instantiation of an LCELL primitive buffer allocates one logic cell for
your design. When you instantiate an LCELL buffer in your design, the
Quartus II software preserves the assignment and does not remove it
during the synthesis process. The name that you assign the LCELL is also
preserved.

You should not use LCELL primitives to create an intentional delay or
asynchronous pulse in your design. The delay of these elements varies
with temperature, power supply voltage, and device fabrication process.
Race conditions may occur that result in an unreliable circuit.

When you turn on the Implement as Output of Logic Cell option, or use
the synthesis attribute KEEP, an LCELL buffer is automatically inserted
by the Quartus II synthesis engine into your design.

Example 2–18 shows a Verilog HDL example of an LCELL primitive
instantiation.

Example 2–18. LCELL Primitive Instantiation, Verilog HDL
lcell <instance_name> (.in(<input_wire>), .out(<output_wire>);
Altera Corporation 2–27
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Example 2–19 shows a VHDL component declaration for an LCELL
primitive instantiation.

Example 2–19. LCELL Primitive Instantiation, VHDL Component Declaration
COMPONENT LCELL
 PORT (a_in : IN STD_LOGIC;

a_out : OUT STD_LOGIC);
END COMPONENT;

DFF

The registers in an Altera FPGA support an assortment of configurations,
and you have the option of instantiating the following configurations:

■ A DFFE (data flipflop with enable) primitive
■ A DFFEA (data flipflop with enable and asynchronous load)

primitive with additional ALOAD asynchronous load and ADATA
data signals

■ A DFFEAS (data flipflop with enable and both synchronous and
asynchronous load)

Example 2–20 shows a a Verilog HDL example of a DFF primitive
instantiation.

Example 2–20. DFF Primitive Instantiation, Verilog HDL
dffeas <instance_name> (.d(<input_wire>), .clk(<input_wire>),
 .clrn(<input_wire>), .prn(<input_wire>), .ena(<input_wire>),
 .asdata(<input_wire>), .aload(<input_wire>), .sclr(<input_wire>),
 .sload(<input_wire>), .q(<output_wire>);
2–28 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Example 2–21 shows a VHDL component declaration for a DFF primitive
instantiation.

Example 2–21. DFF Primitive Instantiation, VHDL
COMPONENT DFFEAS
 PORT (d : IN STD_LOGIC;
 clk : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 prn : IN STD_LOGIC;
 ena : IN STD_LOGIC;
 asdata : IN STD_LOGIC;
 aload : IN STD_LOGIC;
 sclr : IN STD_LOGIC;
 sload : IN STD_LOGIC;
 q : OUT STD_LOGIC);
END COMPONENT;

CARRY and CARRY_SUM

The CARRY_SUM primitive is a two-input, two-output primitive that
designates the carry-out and sum-out logic for a function. The cout port
of the primitive acts as the carry-in for the next element of the carry chain.
This CARRY function also implements fast carry-chain logic for functions
such as adders and counters. The CARRY_SUM primitive does not
generate the carry or sum logic, but indicates to the compiler that the
wires connected to it should be placed on the fast carry-chain logic wires
if possible.

When you use a CARRY_SUM primitive, you must observe the following
rules:

■ The cout port of the CARRY_SUM primitive can feed one or two
cones of logic. If the CARRY_SUM primitive feeds two cones of logic,
one and only one of the cones of logic must be buffered by another
CARRY_SUM primitive. In this case, both cones of logic are
implemented in the same logic cell. You must follow this rule to tie
down the sum and carry-out functions for the first stage of an adder
or counter.

■ A cone of logic that feeds the cin port of a CARRY_SUM primitive can
have up to two inputs. A third input is allowed only if it is a
CARRY_SUM input or a q feedback from the register.

■ The cout port of the CARRY_SUM primitive cannot feed an output
pin.

■ The cin port of the CARRY_SUM primitive cannot be fed by an input
pin.

■ The cout port of two different CARRY_SUM primitives cannot feed
the same gate.
Altera Corporation 2–29
April 2007 Designing with Low-Level Primitives User Guide

Primitives
The CARRY primitive is supported for backward-compatibility with old
designs; new designs should use the CARRY_SUM primitive. If you use
either primitive incorrectly, it is ignored, and the Quartus II software
issues a warning message in the Message processor.

Example 2–22 shows a Verilog HDL example of a CARRY_SUM primitive
instantiation.

Example 2–22. CARRY_SUM Primitive Instantiation, Verilog HDL
carry_sum <instance_name> (.sin(<input_wire1>), .cin(<input_wire2>),
.sout(<output_wire1>), .cout(<output_wire2>);

Example 2–23 shows a VHDL component declaration for a CARRY_SUM
primitive instantiation.

Example 2–23. CARRY_SUM Primitive Instantiation, VHDL Component Declaration
COMPONENT CARRY_SUM
 PORT (sin, cin : IN STD_LOGIC;
 sout, cout : OUT STD_LOGIC);
END COMPONENT;

CASCADE

The CASCADE buffer enables the cascade-out function from one logic cell
and acts as a cascade-in to another logic cell. The cascade-in function
allows a cascade, which is a fast output located on each combinational
logic cell, to be OR’d or AND’d with the output of an adjacent
combinational logic cell within the FPGA.

The CASCADE primitive is only supported with the FLEX 10K® and
APEX™ family of FPGAs. If you attempt to use the CASCADE primitive
with a non-supported FPGA family, an error message occurs.

When you use a CASCADE primitive, you must observe the following
rules:

■ A CASCADE primitive can feed or be fed only by a single gate, which
must be an AND or an OR gate.

■ An inverted OR gate is treated as an AND gate and vice-versa.
Logical equivalents of AND gates are BAND, BNAND, and NOR.
Logical equivalents of OR gates are BOR, BNOR, and NAND.

■ Two CASCADE primitives cannot feed the same gate.
■ A CASCADE primitive cannot feed an XOR gate.
2–30 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
■ A CASCADE primitive cannot feed an OUTPUT pin primitive or a
register.

■ The De Morgan’s inversion theorem implementation of cascaded
AND and OR gates requires all primitives in a cascaded chain to be
of the same type. A cascaded-AND gate cannot feed a cascaded-OR
gate, and vice-versa.

■ If you use the CASCADE primitive incorrectly, it is ignored and the
compiler issues a warning.

■ When you turn on the Auto Cascade Chains logic option, the
compiler automatically inserts CASCADE primitives during logic
synthesis. When you turn on the Ignore CASCADE Buffers logic
option, the compiler converts all CASCADE buffers to wire
primitives.

Example 2–24 shows a Verilog HDL example of a CASCADE primitive
instantiation.

Example 2–24. CASCADE Primitive Instantiation, Verilog HDL
cascade <instance_name> (.in(<input_wire>), .out(<output_wire>);

Example 2–25 shows a VHDL component declaration for a CASCADE
primitive instantiation.

Example 2–25. CASCADE Primitive Instantiation, VHDL Component Declaration
COMPONENT CASCADE
 PORT (a_in : IN STD_LOGIC;

a_out : OUT STD_LOGIC);
END COMPONENT;

LUT_INPUT

The LUT_INPUT buffer specifies the creation of a LUT function. The
LUT_INPUT buffer marks input signals for a LUT_INPUT. The logical
functionality of the LUT_INPUT and LUT_OUTPUT buffers is a simple
wire, but together they identify LUT boundaries.

To make a LUT, you must use both input and output buffers that bound
a cone of logic.

Example 2–26 shows a Verilog HDL example of a LUT_INPUT primitive
instantiation.
Altera Corporation 2–31
April 2007 Designing with Low-Level Primitives User Guide

Primitives
Example 2–26. LUT_INPUT Primitive Instantiation, Verilog HDL
lut_input <instance_name> (.in(<input_wire1), .out(<output_wire>)

Example 2–27 shows a VHDL component declaration for a LUT_INPUT
primitive instantiation.

Example 2–27. LUT_INPUT Primitive Instantiation, VHDL Component Declaration
COMPONENT LUT_INPUT

PORT (a_in : IN STD_LOGIC;
a_out: OUT STD_LOGIC);

END COMPONENT;

LUT_OUTPUT

The LUT_OUTPUT buffer specifies a LUT function. The LUT_OUTPUT
buffer works like an LCELL buffer with the additional detail of specifying
the inputs and without the requirement that the LUT function has
become a hard output. The LUT_INPUT buffer is the input for a
LUT_OUTPUT buffer. The logical functionality of the LUT_OUTPUT and
LUT_INPUT buffers is a simple wire, but together they identify LUT
boundaries.

Example 2–28 shows a Verilog HDL example of a LUT_OUTPUT primitive
instantiation.

Example 2–28. LUT_OUTPUT Primitive Instantiation, Verilog HDL
lut_output <instance_name> (.in(<input_wire>), .out(<output_wire>)

Example 2–29 shows a VHDL component declaration for a LUT_OUTPUT
primitive instantiation.

Example 2–29. LUT_OUTPUT Primitive Instantiation, VHDL Component Declaration
COMPONENT LUT_OUTPUT
 PORT (a_in : IN STD_LOGIC;
 a_out : OUT STD_LOGIC);
END COMPONENT;
2–32 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

Primitive Reference
Synthesis
Attributes

Using synthesis attributes in HDL is an easy way to make assignments to
your design instead of using the Assignment Editor. Synthesis attributes
are also commonly called “pragmas”.

f For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook.
Altera Corporation 2–33
April 2007 Designing with Low-Level Primitives User Guide

Synthesis Attributes
2–34 Altera Corporation
Designing with Low-Level Primitives User Guide April 2007

	Designing with Low-Level Primitives
	Contents
	About this User Guide
	Document Revision History
	How to Contact Altera
	Typographic Conventions

	1. Low-Level Primitive Design
	Introduction
	Low-Level Primitive Examples
	LCELL Primitive
	Using I/Os
	I/O Attributes

	Using Registers in Altera FPGAs
	Inferring Registers Using HDL Code
	Using the DFFEAS Primitive

	Creating Memory for Your Design
	Inferring RAM Functions from HDL Code
	Using the MegaWizard Plug-In Manager

	Look-Up Table Buffer Primitives

	2. Primitive Reference
	Primitives
	ALT_INBUF
	ALT_OUTBUF
	ALT_OUTBUF_TRI
	ALT_IOBUF
	ALT_INBUF_DIFF
	ALT_OUTBUF_DIFF
	ALT_OUTBUF_TRI_DIFF
	ALT_IOBUF_DIFF
	ALT_BIDIR_DIFF
	ALT_BIDIR_BUF
	LCELL
	DFF
	CARRY and CARRY_SUM
	CASCADE
	LUT_INPUT
	LUT_OUTPUT

	Synthesis Attributes

