
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES ELETRÔNICA DIGITAL

LABORATÓRIO N.º 2

Construindo circuitos com portas lógicas - Uso do LOGISIM

Nome do Aluno(a)

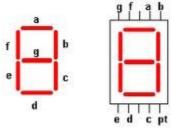
1. Tabela verdade e expressões construídos a partir de circuitos. Monte no Logisim o circuito com portas lógicas da figura e em seguida:

- Verifique a tabela verdade do circuito na opção **Projeto/Analisar Circuito** do Logisim.
- *Verifique a sintaxe utilizada para escrever expressões lógicas no logisim.* Escreva a expressão lógica equivalente do circuito. S = _____
- 2. Circuitos construídos a partir da tabela verdade.

Monte no Logisim a tabela verdade abaixo que representa um circuito lógico para resolver o seguinte problema: quatro juízes participam de um programa de calouros e cada um tem a sua disposição, uma chave "On/Off" (liga/desliga) correspondendo ao julgamento do candidato (On — aprovado - nível lógico1), Off — reprovado- nível lógico 0). Na saída existem duas lâmpadas, correspondentes a dois resultados: aprovado (pela maioria), reprovado (pela maioria). Não existe lâmpada para a situação que ocorre EMPATE. Escreva as expressões lógicas para as saídas Yr e Ya. Desenho os circuitos equivalentes para as saídas.

Α	В	С	D	Yr	Ya
0	0	0		1	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	1	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	0	1	0	1
0 0 0 0 0 0 0 1 1 1 1 1 1	B 0000111 100001 111	001100110011	0101010101010101	1 1 0 1 0 0 0 1 0 0 0 0 0 0	Ya 0 0 0 0 0 0 0 1 0 0 1 1 1 1
1	1	1	1	0	1

Projeto a saída EMPATE – Ye e obtenha sua expressão e circuito lógico.


Projeto de um conversor binário para um display de sete segmentos

Para projetar um circuito digital temos que:

- 1. Entender o problema
- 2. Analisar as informações
- 3. Montar a tabela verdade
- 4. Minimizar a expressão
- 5. Minimizar o circuito
- 6. Testar via simulador
- 7. Implementar o hardware

O que é o "Display" de 7 Segmentos ?

O display de 7 segmentos é a maneira mais fácil de mostrar ao mundo exterior informações que estejam em dispositivos eletrônicos. Com eles podemos escrever os números de 0 a 9 e alguns símbolos que podem ser letras ou sinais. A seguir mostra-se uma unidade de display com a identificação dos segmentos.

Para acender um determinado número decimal (0 a 9) é necessário ativar o referido segmento com nível

lógico 1, conforme mostra a tabela abaixo:

	а	b	С	d	е	f	g
f g e d	0	1	1	0	0	0	0
	1	1	0	1	1	0	1
f e	1	1	1	1	0	0	1
a	0	1	1	0	0	1	1
e de	1	0	1	1	0	1	1
b	1	0	1	1	1	1	1
f g e d o	1	1	1	0	0	0	0
8	1	1	1	1	1	1	1
	1	1	1	1	0	1	1
g	1	1	1	1	1	1	0

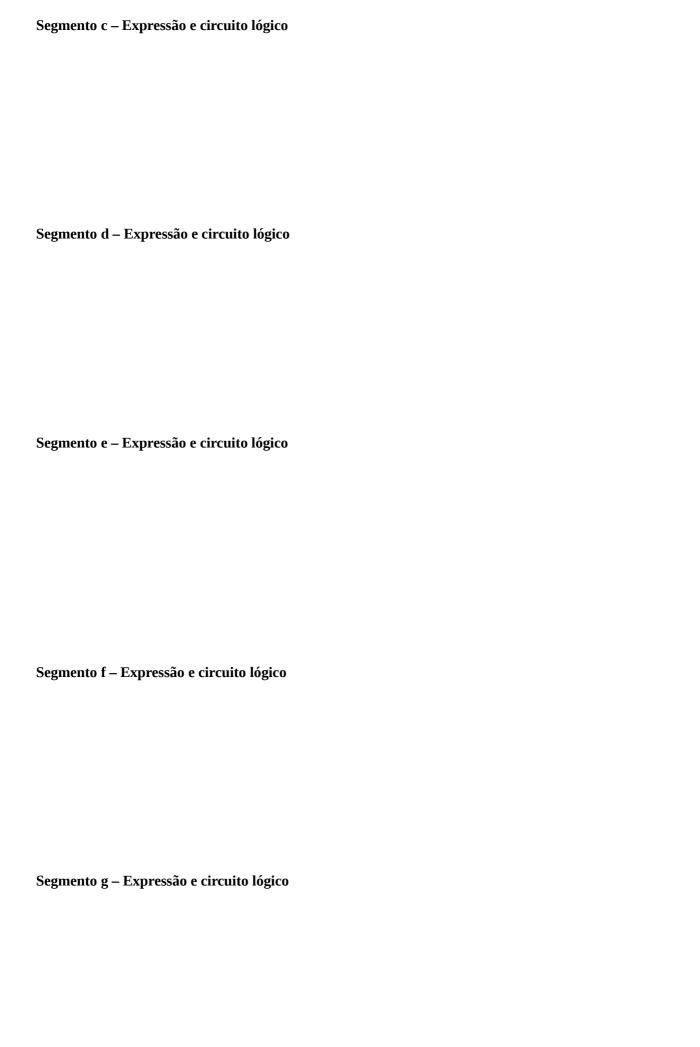
O projeto deve **criar um conversor binário para um display de 7 segmentos**, por exemplo, ao digitarmos a entrada binárioa: 0001 o display deve mostrar o seu **equivalente decimal 1** e para isso deve acender os segmentos \mathbf{b} e \mathbf{c} .

A ideia é que o display mostre os valores decimais de **0 a 9** para sua respectiva entrada binária de quatro bits. E para isso deve acender os respectivos segmentos do display.

Após entender o problema, a abaixo tabela verdade deve ser criada.

D	С	В	Α	Sa	Sb	Sc	Sd	Se	Sf	Sg	Display
0	0	0	0	1	1	1	1	1	1	0	
0	0	0	1	0	1	1	0	0	0	0	-
0	0	1	0	1	1	0	1	1	0	1	υ
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	0
0	1	1	1	1	1	1	0	0	1	0	
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	g
1	0	1	0	Х	Х	Х	Χ	Х	Х	Х	
1	0	1	1	Х	Х	Х	Х	Х	Х	Х	
1	1	0	0	Х	Х	Х	Х	Х	Х	Х	
1	1	0	1	Х	Х	Х	Χ	Х	Х	Х	
1	1	1	0	Х	Х	Х	Х	Х	Х	Х	
1	1	1	1	Х	Х	Х	Х	Х	Х	Х	

X = Condição Lógica IRRELEVANTE


OBS:CONDIÇÕES IRRELEVANTES (Também denominadas condições DON'T CARE).

Nos sistemas reais existem condições que nunca ocorrem. Para estas condições damos o nome de condições irrelevantes.

Utilizando o logisim, monte a tabela verdade dada e obtenha os circuitos e expressões para cada segmento.

Segmento a - Expressão e circuito lógico

Segmento b – Expressão e circuito lógico

Testando seu circuito

Em **entradas/saída do logisim** selecione e coloque ao lado do circuito um display de 7 segmentos. Conecte as saídas dos segmentos na entrada correspondente do display.

Varie as entradas e verifique se seu display mostrará o decimal correspondente ao valor binário de entrada. Se estiver correto **CHAME O PROFESSOR** para verificar.