History of Operating Systems

Ayman Moumina

History of Computing
Prof. Tim Bergin

5/3/01

Operating systems are the software that makes the hardware usable. Hardware
provides “raw computing power.” Operating sysem makes the computing power
conveniently available to usars, by managing the hardware carefully to achieve good
performance.

Operating systems can dso be consdered to be managers of the resources. An
operating system determines which computer resources will be utilized for solving which
problem and the order in which they will be used. In generd, an operating sysem has
three principa types of functions.

I. Allocation and assgnment of sysem resources such as input/output devices,
software, central processing unit, etc.

ii. Scheduling: This function coordinates resources and jobs and follows certan
given priority.

iii. Monitoring: This function monitors and keeps track of the activities in the
computer sysem. It mantans logs of job operation, notifies end-users or
computer operators of any abnorma terminations or eror conditions. This
function aso contains security monitoring features such as any authorized attempt
to access the system as well as ensures that al the security safeguards are in place
(Laudon and Laudon, 1997).

Throughout the higory of computers, the operating sysem has continudly
evolved as the needs of the usars and the capabilities of the computer sysems have
changed.

As Weizer (1981) has noted, operating systems have evolved since the 1940s

through a number of diginct generations, which roughly correspond to the decades.

Although this observation was made in 1981, this is ill roughly valid after two decades.
In this paper, we shdl dso follow the smilar goproach and discuss the history of
operaing systems roughly aong the decades.

Early History: The 1940s and the 1950s:

In the 1940s, the earliest dectronic digitd sysems had no operating systems.
Computers of this time were so primitive compared to those of today that programs were
often entered into the computer one bit a a time on rows of mechanicd switches.
Eventudly, machine languages (congsting of srings of the binary digits O and 1) were
introduced that sped up the programming process (Stern, 1981). The systems of the 1950s
generdly ran only one pb a a time. It dlowed only a sngle person & a time to use the
machine. All of the machin€'s resources were a the user’s disposd. Billing for the use of
the computer was straightforward - because the user had the entire machine, the user was
charged for dl of the resources whether or not the job used these resources. In fact, usua
billing mechanisms were based upon wdl dock time. A user was given the machine for
some time interval and was charged aflat rate.

Origindly, each user wrote dl of the code necessary to implement a particular
goplication, induding the highly detaled machine leve input/output indructions. Very
quickly, the input/output coding needed to implement basic functions was consolidated
into an input/output control sysem (I0OCS). Usars wishing to perform input/output
operations no longer had to code the ingtructions directly. Instead, they used 10CS
routines to do the rea work. This greatly smplified and sped up the coding process. The
implementation of input/output control syssem may have been the beginning of today's

concept of operating system. Under this system, the user has complete control over dl of

man dorage memory and as a result, this sysem has been known as dngle user
contiguous dorage dlocation sysem. Storage is divided into a portion holding
input/output control system (I0OCS) routiner, a portion holding the user's program and an
unused portion (Milenkovic, 1987).

Ealy angle-user red storage systems were dedicated to one job for more than the
job's execution time. Jobs generdly required considerable setup time during which the
operating system loaded, tapes and disk packs were mounted, appropriate forms were
placed in the printer, time cards were “punched in,” etc. When jobs completed, they
required mnsderable “teardown” time as tapes and disk packs were removed, time cards
were “punched out” etc. During job setup and job teardown, the computer sat idle.

Users soon redized that they could cut down the amount of time wasted between
the jobs if they could automate the job-to-job trangtion. First mgor such system,
conddered by many to be the first operating system, was designed by the Generd Motors
Research Laboratories for their IBM 701 mainframe beginning in early 1956 (Grosch,
1977). Its success heped establish baich computing — the groupings of the jobs into a
sngle deck of cards, separated by control cards that instructed computers about the
various specification of the job. The programming language that the control cards used
was cdled job control language (JCL). These job control cards set up the job by telling
the computer whether the cards following it contain data or programs, what programming
language is used, the approximate execution time, etc. When the current job terminated,
the job dream reader automaticaly reads in the control language statements for the next
job and performs appropriate housekeeping chores to facilitate the trandtion to the next

job. Batch processng system greetly improved the use of computer systems and helped

demondrate the red vaue of operating sysems by managing resources intensdy. This
type of processng cadled single stream batch processng systems became the dtate-of-the-
art in the early 1960s (Orchard-Hays, 1961).

The 1960s The Eraof Timesharing and Multiprogramming:

The systems of the 1960s were aso batch processing systems but they were able
to take better advantage of the computer resources by running severa jobs at once. They
contained many periphera devices such as card readers, card punches, printers, tape
drives and disk drives. Any one job rardy utilized dl of a computer’s resources
effectively. It was observed by operaing sysem designers that when one job was waiting
for an input-output operation to complete before the job could continue usng the
processor, some other could use the idle processor. Similarly, when one job was using the
processor, other jobs could be using the various 1/0 devices. The operating system
designers redized that running a mixture of diverse jobs gppeared to be the best way to
optimize computer utilization. The process by which they do so is cdled
multiprogramming in which several users smultaneoudy compete for system resources.
The job currently waiting for 1/O will yied the CPU to another job ready to do
cdculations if another job is waiting. Thus, both input/output and CPU processes can
occur smultaneoudy. This greatly increased CPU utilization and system throughput. To
take maximum advantage of multiprogramming, it is necessary for severd jobs to reside
in the computer's main storage a once. Thus, when one job requests input/output, the
CPU maybe immediatdly switched to another, and may do caculations without dday. As
a result, multiprogramming required more dorage than a sngle syssem. The operatiing

gystems of the 1960s, while being cgpable of doing multiprogramming, were limited by

the memory capacity. This led to the various designs of multiprogramming such as
vaiable pogtion multiprogramming that helped to utilize the storage cgpacity much more
efficiently (Smith, 1980).

In the late 1950 and 1960, under the batch processng mode, users were not
normaly present in the computing facility when ther jobs were run. Jobs were generdly
submitted on punched cards and magnetic tapes. The jobs would reman in the input
tables for hours or even days until they could be loaded into the computer for execution.
The dightest error in a program, even a missing period or comma, would “dump” the job,
at which point the user would correct the error, resubmit the job, and once agan wait
hours or days before the next execution of the job could be attempted. Software
development in such an environment was particularly a dow process (Weizer, 1981).
Universty environments provided a ferttile ground for deding with such limitations
Student programs tended not to be uniform from week to week, or from one student to
another, and it was important that students received clear messages about what kinds of
arors they made. In 1959-1960, a sysem called MAD (Michigan Algorithmic Decoder)
was developed a the Universty of Michigan. MAD was based on ALGOL, but unlike
ALGOL, is took care of details of running a job in ways that few other languages could
do. MAD offered fast compilation, essentid for a teaching environment and it had good
diagnostics to help students find and correct errors. These qualities made the system not
only attractive to the student programmer but also to various researchers a the Universty
of Michigan Campus (Rosin, 1969).

While there were atempts to provide more diagnostics and error-correcting

mechanisms by the groups such as those in the Universty of Michigan, ancother group

tried to develop systems that would dlow greater access to the computing systems and
reduce the waiting time for jobs to execute. One of the mgor developments in this
direction was timesharing system which enabled many users to share computer resources
smultaneoudy. In the timesharing mode, the computer spends a fixed amount of time on
one program before proceeding to another. Each user is dlocated a tiny dice of time (say,
two milliseconds). The computer performs whatever operations in can for that user in the
dlocated time and then utilizes the next alocated time for the other users What made
such a concept possble was the difference between the few milliseconds (a least)
between a user’s keystrokes and the ability of a computer to fetch and execute dozens,
perhaps hundreds of smple indructions. The few seconds a user might pause to ponder
the next command to type in was time enough for a computer, even in those days, to let
another usr’s job to execute, while giving the illuson to each user that the complete
machine (including 1/0 devices) and its software were a his or her disposd. Although
this concegpt seems dmilar to multiprogranming, in multiprogramming, the computer
works on one program until it reaches a logicd stopping point, such as an input/output
event, while for timesharing sysem, every job is dlocated a specific samdl time period
(Laudon & Laudon, 1997).

MIT's Depatment of Electricd Engineering was one of the pioneers of the
timesharing system under the guidance of John McCarthy, Robert Fano and Fernando
Corbato. Since 1957, it had been running a computer IBM 704 in a batch-processing
mode. However, the ingructions of programming and the development of software were
very difficult given the long turnaround time, the time between the submisson of a job

and the return of results, of hours and even days. This motivated them to develop a

system that would reduce the turnaround time subgtantidly. This led MIT to implement
the first timesharing system in November 1961, cdled CTSS — Compdible Time-Sharing
Sysem. The demongration verson dlowed just three users to share the computer a a
particular time. It reduced the turnaround time to minutes and later to seconds. It
demondrated the vadue of interactive computing as the timesharing sysem was dso
caled (Crisman, 1964).

Timeshaing sysems hdped facilitate the software development process
ggnificantly. With turnaround time reduced to minutes, no longer a person writing a new
program had to wait hours or days to correct errors. With timesharing, a programmer
could enter a program, compile it, receve a lig of syntax errors, correct them
immediatdy and re-execute this cycle until the program is free of syntax errors thereby
reducing development time significantly (Crisman, 1964).

Within a year of MIT's successful demondration, severd other univergties,
research organizations and manufacturers, noting the advantages of timesharing system,
had begun to develop ther own sysems. Many of these sysems were further evolved
into next generation of operating sysems. For example, MIT deveoped Multics
operating system as the successor of CTSS. Multics, dthough was not successful, gave
rise to perhaps the most versdile operating sysem existing even today — the UNIX
system. In 1964, IBM adso developed CPICMS system at its Cambridge Scientific Center,
a timeshaing sysem for its new System/360 manframe which eventudly became the
mgor operding sysem — VM operaing sysem — for its System/360 and System/370

computers (Weizer, 1981).

The 1960s — Disappointing Efforts of IBM to Develop OS360 Operating System:

In April 1964, IBM introduced its new generation of manframe computers,
System/360. It was s0 named because it was amed a full circle of customers, from
business to science — customers who did a lot of mathematicd caculaions as wel as
those who did smpler aithmetic on large sets of data System/360 was not just one
model but a whole line of computers targeted to different customers. The maor seling
point was the promise that programs written for one modd would aso work in larger
modds, thus saving a customer’s investment in software as busness grew. This sysem
and its successor System/370 dominated the mainframe market in the 1960s and 1970s
and its basc architecture served as the anchor for IBM’s product line into the 1990s
(Pugh et al., 1991).

For this computer system, IBM dso planned a very ambitious operaing system,
cdled OS360. It was immediatey recognized that the developmentd effort would be
huge with an initid estimated budget of $ 25 million. IBM chose Frederick J. Brooks, Jr.,
one of the most able students of computer pioneer Howard Aiken. Brooks eventualy
would become a leading advocate in the 1970s for developing an engineering discipline
for software congruction, and the author of one of the most famous books regarding

software engineering, The Mythicd Man-Month.

0S/360 was perhaps the biggest and the most complex programs that have ever
been attempted. According to the initia plan, it would consst of hundreds of program
components, totaing more than a million lines of code, dl of which had to work in a
pefectly coordinated manner. 0OS360 was to utilize the technology of

“multiprogramming” as wdl. Although multiprogramming had been successfully

implemented a that time, so far, it was not implemented in such a large scde as it was n
0S360. While redizing that incorporation of multiprogramming was a marketing
necessity, the desgn team d<so redized that it could delay the ddivery of the OS/360 in
time for Sysem/360 introduction and thus decided to delay the deivery of a full
multiprogramming system until mid-1966s (Pugh, 1991).

The development of the OS360 control program — the heart of the operating
system — was based at the IBM Program Development Laboratories in Poughkeepsie,
New York. There, it had to compete with other System/360 software projects that were
al asking for the company’s best programmers which were dready in short supply. The
development task got underway in the spring of 1964 and was methodicaly organized
from the dat — with a team of a dozen program desgnes leading a team of sSixty
programmers trying to implement some forty functiond segments of code. Soon, the
schedules began to dip not for any specific reason but for numerous smal causes. More
people were added to the development team and by October 1965, there were some 150
programmers who were a work on the control program. Nevertheless, at that time, the
devedlopment was estimated to be running a about sx months late. A tet trid was
conducted and found that the sysem to be very duggish and the software needed
extengve rewriting to make it usable. Moreover, by the end of 1965, fundamentad design
flaws emerged for which there appeared to be no easy remedy (Pugh, 1991).

In April 1966, IBM publicly awounced the rescheduling of the
multiprogramming verson of OS/360 for ddivery in the second quarter of 1967 — nine
months later than it was origindly planned. IBM’s problems with OS/360 development

were now a public knowledge. Users were anxious and so were the shareholders. Insde

10

IBM, there was a growing sense of desperation. The only possible response it had was to
add more and more programmers to the task. This was later recognized by Brooks as
being precisdly the wrong thing to do. Firg of dl, the qudity of programming dtaff go
down as more and more people are added. Second, difficulty of coordinating between
their work which became more and more fragmented, is condderable. This was more
pronounced in the ways when dructured programming was not in exisence and one
programmer’s work was much more difficult to maich with another. In generd, writing a
magjor piece of software was a subtle task and it did not help to keep adding more and
more programmers. As Fred Brooks had noted, “The bearing of a child takes nine
months, no maiter how many women are assigned” (Brooks, 1974, p. 17).

At the peak, more than 1,000 people at Poughkeepsie were working on OS/360.
These included programmers, technica writers, analysts, secretaries and assstants — and
al together some 5,000 daff-years went into design, congruction and documentation of
0S/360 between 1963 and 1966 (Pugh, 1991).

05360 was findly introduced into the market in mid-1967, a full year late. By
that time, IBM had spent hdf a hillion dollars on it — four times the origind egtimate of $
125 million. According to IBM’s charman Tom Watson, J., this was “the dngle largest
cogt in the Sysem/360 program and the single largest expenditure in company history”
(Watson, 1990, p. 353).

When OS360 came out, it was not just late but full of bugs as wdl, that took
years to eradicate. IBM had to offer severa other operating systems to the users of
System/360 including its CPICMS sysem which eventudly developed into its VM

operating system. The experience of OS/360 dso provided IBM with enough experience

11

to develop another operating system in the early 1970s called MVS. These two operating
systems continued to serve the IBM mainframes until present.

The 1960s — Garmisch Conference: The Concept of Software Enginesring:

The experience of (5360 made the computer community aware that the software
had not been catching up with hardware and because of that, the potentid of rapidly
advancing hardware technology was not being redized fully. Many of the software
projects were becoming unmanagesble and were going utterly wrong. The OS/360
project was illugrative of these problems this era faced in developing operating systems
and other software. These sysems were huge conglomerates of software written by
people who redly did not understand that software, as well as hardware had to be
engineered to be rdiable, understandable and maintainable. Endless hours and enormous
amount of money were spent detecting and removing bugs that should never have been in
the systems in the firg place. Errors in the earliest phase of the projects were not located
until long after the projects were deivered to customers where they were much more
difficult and expensve to correct. People turnover often resulted in large numbers of
software modules being scrapped and then rewritten by new people because the existing
modules could not be understood (Brooks, 1975).

At that time, the US Depatment of Defense and NATO were developing defense
systems which utilized date-of-the-art software. However, they were worried about the
software quaity snce even a smdl bug in the software of military sysems, would have
disastrous consequences. One of the actions taken by NATO was to take initiative in
goonsoring a world-wide working conference of academic and indudtrid software

developers. The conference was hed in Garmisch, Germany in October 1968 under the

term “Software Enginegring.” The term was ddiberatedly chosen by the organizers in
order to emphasize “the need for software manufacturers to be based on the types of the
theoreticd foundations and practical disciplines that are traditiona in the established
branches of engineering” (Naur and Randell, 1968, p. 13).

The Garmisch conference brought about a mgor culturd shift in the perception of
programming a that time Prior to that, software development as a discipline was
fragmented with no theoretica foundations. The Garmisch conference was the catdys in
providing a framework for developing better software. Some of these ideas included
gructured design, forma methods and developmenta models, dl of which were designed
to manage the inherent complexity of writing large programs. Structured design
methodology took the view that the best way to manage complexity was to limit the
software writer's fidd of view and keep him/her in focus. Forma methods were expected
to smplify and mathematize the desgn process by which programs were crested. The
development modd viewed the software writing process not as a once-and-for-dl
congtruction project, like the way 1BM approached OS/360 project, but as a more organic
process, like the building of a city. Thus software would be conceived, specified,
developed and implemented — then it can be improved over from time to time, with added
“bells and whistles’ (Weizer, 1981).

These frameworks, especidly the dructured desgn methodology and
development modd, are Hill being used today. They heped build the future software
including the operating systems much more efficiently. IBM’s other mainframe operating
sysems such as MVS and VM system have been much more effective than the OS/360

manly because of the use of these methodologies. The emergence of the fidd of software

13

engineering and the recognition of the importance of developing a disciplined and
structured approach to the condruction of reiable, undersandable and maintainable
software were truly fostered by the devastaing experiences with many of the operating
system devel opment efforts of the 1960s.

The 1970s — Generd Devd opment:

The 1970s saw severd dgnificant development that vastly broadened the scope
and importance of operating systems. The experimental timesharing systems of the 1960s
evolved into solid commercid products in the 1970s. This was vaslly facilitated by the
improvement in data communicetions between computers. The TCP/IP (Transmisson
Control Protocol/Internet Protocol) started to become widdy used especidly in military
and universty computing environments. Communicetions in locd aea networks were
made practicd and economical by the Ethernet standard developed at Xerox’s Pdo Alto
Research Center (Quarterman & Hoskins, 1986).

As more and more data darted to be transmitted through the communication lines,
they became more and more vulnerable to interception and unauthorized access.
Operating systems of these days not only needed to ded with the interconnectivity of the
networks but aso the security. Encryption received much attention — it became necessary
to encode proprietary or private data so that even if the data were compromised, it was
not of any vaue to anyone other than the intended recelvers. Other aspects of computer
and network security such as viruses and hacking had increasingly chalenged the
operating sysems. As a result, the design of a secure operating system received top

priority at that time (McCauley, 1979).

14

Severa magor operating systems were developed during these periods, some of
which such as IBM’s MVS and VM operating systems for its mainframe computers and
Bel Labs UNIX operating sysem ae ill in operation. UNIX operating sysem is
paticularly noteworthy because this is the only sysem tha has been successfully
implemented in every kind of computer — from microcomputers to supercomputer. In the
next section, the development of UNIX is described in somewhat detail.

The 1970s — Development of UNIX:

From 1965-1969, Bdl Labs paticipated with Generd Electric and Project MAC
a MIT in the devdopment of Multics sysem. Origindly designed for the mainframe,
Multics was a large and complex sysem. The Multics desgners envisoned a generd
purpose computer utility that could essentidly be “dl things to al people’ (Organick,
1972, p. 3).

As the effort progressed, it became clear that dthough Multics was likdy to
deiver the variety of services required, it would be a huge, expensve system and very
difficult to develop. For these reasons, Bell Laboratories withdrew from the effort in
1969. This, however, did not dissuade some members of the Bell Labs research dteff to
work on a far less ambitious system. The group, led by Ken Thompson, sought to creste a
ample computing environment for programming research and development, which later
they named “UNIX” — “a somewhat treacherous pun on ‘Multics’” (Ritchie, 1984, p.
1580) according to the words of ore of the co-developers, Dennis Ritchie Given the
limited budget, as the Labs was no longer funding it, and the high cost of manframe
computer time, they had to scrounge around and found a discarded obsolete computer — a

PDP-7 which was manufactured by DEC (Digitd Equipment Corporation). It was a

15

minicomputer designed for dedicated laboratory application and provided only a fraction
of the power of the conventiona mainframe. The design of UNIX evolved over a period
of few monthsin 1969 based on asmdl set of primitive concepts.

By the early 1970s, UNIX was working well to the satisfaction of the designers,
providing remarkably powerful fecilities for a sngle usr on the PDP-7. However, the
designers 4ill had difficulty convincing the computer community of its merits. However,
in 1973, Dennis Ritchie, a former Multics teammate joined the UNIX team which made a
consgderable difference. Fird, like any other operating system before it, the first verson
of UNIX was written in Assembly language which made it machine-dependent. Ritchie
designed a new language caled “C,” especidly for the UNIX to be written on. This was a
“sygems implementation language, designed for writing programming sysems in much
the same way that higher levd languages FORTRAN and COBOL were designed for
scientific and commercia purposes respectively. The use of C made UNIX “portable”
that is machine-independent so that it could be implemented on any computer system. In
fact, this was the fird time an operating sysem was written on a higher-leve language
than Assembly language, and thus became the fird operating sysem with portability
(Milenkovic, 1987). The designers dso enlarged the capabilities of the origind design of
UNIX such as expanding the capability of the text-processng festures. They aso
convinced Bell Labs paent depatment to use the sysem for preparing patent
goplications. This was the firg time they found a red progpective user for UNIX. Bel
Labs made funding for a larger computer avalable to them and the newly launched
minicomputer Digitd Equipment PDP-11/45 was sdlected for this purpose (Ritchie and

Thompson, 1978).

16

AT&T, the parent company of Bell Labs before telephone deregulation of 1983,
was not alowed to compete in the computer industry, so it made the UNIX systems
avalable to univerdgties a a nominad fee. More importantly, AT&T dso didributed its
source code. The minima desdgn of UNIX and its smplicity compared to complex
operating sysems of the manframe dlowed it to develop immediate rapport with the
academic world and research laboratories. By 1975, UNIX sysems had become
extremely popular in the universties and a users organization developed that evolved
into the group cdled USENIX and within a couple of years, graduates of the univergties
began to import UNIX culture into the computer industry, making UNIX the standard
operating system among the computer professionas in the 1980s (Sdlus, 1994).

By 1977, UNIX began to grow organicdly as more and more software were
added to the basc sysem origindly developed by Ritchie and Thompson. The clean,
functiond desgn of UNIX made this organic growth possble without affecting the
inherent reliability of the sysem. One of the very powerful versons of UNIX was
developed by the Universty of Cdifornia & Berkley. It was Berkley UNIX with TCP/IP
communication standards that helped transform the restricted ARPANET to the wide
open Internet (Laudon and Laudon, 1997). Sun Microsystems is one of the many firms
which took full advantage of UNIX. Its SunOS operating system is UNIX-based. Sun
wanted a sysem for supporting a network of workgations. In the 1980s, it enhanced
Beakdey's verson to incude facilities for a gragphic, windowing and mouse-oriented
interface. It aso included facilities for diskless workgations to use the network for

storing and sharing (Courington, 1985).

17

In 1983, Thompson and Ritchie receved the ACM’s Turing Award, the most
prestigious award in the computing community. In its citation, ACM noted “the genius d
the UNIX system is its framework, which enables programmers to stand on the work of
others’ (Salus, 1994, p. 81).

It is not that UNIX does not have limitations. It was a complicated set of
commands. While it is a ddight to the professond programmers, it is not user-friendly
enough for the novice users and thus, has not been truly become an operating system of
choice for the persona computers of the 1990s where user-friendliness is the important
criterion for user acceptability. Its security festures are generadly wesk because it alows
multiple users and multiple computer jobs to access same files smultaneoudy, dthough
some versons of UNIX have been modified to be more secure. It requires rdatively large
amount of RAM and disk storage capacity (Laudon and Laudon, 1997).

Despite its limitations, UNIX system gppeded to the users because of amplicity
in desgn while being flexible and open. More importantly, its popularity reflected a
culturd shift that was occurring in the 1970s in the computing community, as the
independent-minded users were beginning to regect the centrdized mainframe with its
rigidity and relative lack of access and immediacy in favor of a decentralized small
minicomputers that were dready being introduced in the maket. May computer
lobbyists and programmers preferred smadler decentrdized sysems because of the
accesshility and flexibility. The cost of manframe time, even with timesharing might
have been too high for many programmers with limited funds, who needed to test and
debug their programs and rewrite and run them again. At that time, there were a few good

opearding sysdems avalable to sisfy the needs and UNIX filled this void. As Ritchie

18

noted, “Because they were dtarting afresh and because manufacturers software was, at
best unimaginative and often horrible, some adventuresome people were willing to teke a
chance on a new and intriguing, even though unsupported, operating sysem” (Ritchie,
1984, p. 758).

This culturd shift of the computing community was aso facilitated by another
devdlopment — this time in the hardware — which totaly revolutionized the computer
indugtry, in the form of the microprocessor. The development of microprocessor
(popularly known as microchip) in the 1970s eventudly changed the nature of computer
by being the enabling technology for persond computers. In this personad computing
environment, operating systems became devated to a higher level of importance and by
the 1990s, became the dominating factor in the software industry. In the following
section, the development of microprocessor and the persona computer in the 1970s is
discussed.

The 1970s — The Beginning of Microprocessor and Persona Computer Era:

The enabling technology for the persond computer is the microprocessor
(popularly known as microchip). These processors were actudly integrated circuits,
which printed thousands of tranggtors onto smdl dlicon chips. The fird integrated
circuits were produced in 1962 for the military and they cost about $ 50 and contained an
average of hdf a dozen active components per chip. After tha, the number of
components on a chip doubled every year. By 1970, it was possble to make LSl (Large
Scae Integration) chips that contained thousands of active components in the chip

(Freiberger and Swaine, 1984).

19

In 1968, a firm cdled Intd was edablished to commercialy produce these
integrated circuits. Initidly, it marketed its integrated circuits to caculators, watches and
games which in fact revolutionized these indudries. In 1969, while desgning an
integrated circuit for a new scientific cdculator for a Japanese manufacturer, Intel
engineer Ted Hoff came up with the idea to desgn a generd purpose chip in which
gpecific caculator functions can be peformed. Eventudly, Inte darted to market them in
November 1971, under the brand name Intel 4004, a 4bit microprocessor, sdling for $
1,000 (Slater, 1987).

In 1973, Intel replaced the 4004 with an 8bit verson under the brand name Inte
8008. By this time, severa manufacturers aso had begun to produce their own
microprocessors — such as the Motorola 68000, the Zilog Z80 and the Mostek 6502. With
this competition, the price of the microprocessor fell to around $ 100 (Veit, 1993).

In January 1975, the first microprocessor-based computer, the Altair 8800 was
introduced. It was essentidly a kit for hobbyist, sold by mail order as a kit for about $
400 and a few-hundred more dready assembled. It contained an Inted 8080
microprocessor produced by Micro Ingrumentation Telemetry Sysem (MITS) in
Albuguerque, New Mexico. It had no display, no keyboard and not enough memory to do
anything useful. The only way the Altair could be programmed was to enter programs in
pure binary code by flicking the smdl hand switches on the front, a Stuation reminiscent
of the early computers of the 1940s. When loaded, the program would run; but the only
sgn of the execution of the programs was the shifting patterns of the neon bulbs on the

front. 1t had very little that could be consdered truly useful for a user. But, it was a dream

20

come true for some computer hobbyigts if they are so dedicated to keep flickering the
switches (Ferguson and Morris, 1995).

The limitation of the Altar actudly came as a boom to meny smdl-time
entrepreneurs and computer buffs, as it gave an opportunity to develop add-on features
and boards so that extra memory, teletypes and audiocassette recorders (for permanent
data storage) could be added to the basic machine. Another group of people thought that
they could make Altair more usable by developing software for it.

The news of the introduction of Altair in the market made these computer buffs
and entrepreneurs immediately jump into the opportunities of adding-on hardware and
writing software. In 1975, two of these computer buffs Bill Gates and his childhood
friend Paul Allen decided to write BASIC, in order to take advantage of these
opportunities. They decided to devdop BASIC language for Altair. After obtaining the
permisson from Ed Roberts, the owner of MITS, Bill Gates and Paul Allen formed a
partnership which they named Micro-Soft (the hyphen was dropped later). After sSx
weeks of intense programming effort, they delivered a BASIC programming system to
MITS in February 1975. They refused to sdl it to MITS though, rather they licensed it in
return for a roydty. The Altar 83800 and the add-on boards and BASIC software
transformed eectronics as the computer hobbyists showed strong enthusiasm. During the
firg quarter of 1975, MITS received $ 1 million in orders for Altair. The roydty from this
provided a substantid cash flow for Microsoft, then only a tiny company (Veit, 1993).
The roydty concept as providing regular cash flow reinforced Bill Gates mind regarding
its advantage and in future negotiations with others he would stick to this postion, as he

would be in the 1980s with his negotiaions with IBM. Since 1975, the persona computer

21

industry saw rapid expanson. The peripherds such as keyboards, disk drives and
monitors were added to the bare-bone Altar models. There were dso severd Altair
clones that began to appear in the market.

In 1976, the first operating system for these Intel-based persona computers was
written by a sysem programmer named Gary Kildal. As a consultant for Intel, he
developed an operating system caled CP/M (Contro Program for Micros) for Intel 8080.
While doing that he recognized that the floppy disk would make a good mass storage
device for smdl programs tha managed the flow of information to and from a floppy
disk. He redized that a disk had severd advantages over magnetic or paper tape. Fird, it
was faster. Second, the user could both read and write data on it. Its primary advantage
was that a disk had “random” access. Users did not have to run through the entire spool
of tape to get & a pecific piece of data To accomplish this, however, required some
goecid programming, something which IBM did in the 1960s for its manframe
computers cdled Disk Operating Sysem (DOS). However, a persona computer disk
operating system had little to do with mainframe operating syssem. There was no need to
schedule and coordinate the jobs of many users. There was no need to “spool” or
otherwise direct data to severd printers, card punches and tape drives, a persona
computer had only a couple of ports to worry about. What was needed was rapid and
accurate storage and retrieva of files from a floppy disk. A typicd file would, in fact, be
dored in a set of fragments, inserted at whatever free space that were available on the
disk. The operating systems for personal computer needed to be designed in such a way
that it can find these free spaces, put data there, retrieve them later on and then

reassemble the fragments (Kildal, 1981).

With this concept, he extended the CP/IM operating system for Intel 8080 that can
dso ded with disk drives He caled this a specidized code, the BIOS — Basc
Input/Output System. In 1977, a manufecturer of Altair-clone, IMSAL approached Gary
Kildal to use CP/M for its products. Kildal rewrote CP/M in order to incorporate the
BIOS for the disk drives. This change standardized the operating system for the Intel-
based system for a while. This sysem alowed the floppy disk as a storage medium and
expanded the capabilities of the persond computer in terms of storage of data and
programs. By 1977, many microcomputer manufacturers, including MITS, IMSAL and
others, were offering 8-inch floppy disk drives, manly manufactured by Shugart
Associates with CP/M as the operating system (Veit, 1993).

Despite the increasing popularity of the microcomputers among the computer
hobbyists and professonds, they did not apped to the nonexperts and the households.
They were 4ill intimidating for most of the non-professonals and novices and there was
not much use for the individuals and households. In 1975, one company, Apple Computer
was edablished that changed the microcomputer from being a chalenging tool for the
computer professonas and hobbyists to a useful personal computer for households and
nor+expert individuas.

The Rise of Apple Computer:

In 1975, two computer enthusiasts, Steve Jobs and Steve Wozniak, founded a
company caled Apple Computer. This was nothing extreordinary by itsdlf, as there were
numerous smdl companies assembling computers were popping up dl over. But, wha
distinguished Apple from others was its vison and determination to make microcomputer

a consumer product for a much grester market of households and non-expert individuas.

23

For this purpose, they packaged the product as a sdlf-contained unit in a plagtic case, ale
to be plugged into a standard household outlet like just any other appliance; it was to
incorporate a keyboard to enter data, a screen to view the output and some form of
storage to hold data and programs. Jobs and Wozniak dso redized that the machine
would need software to gpped to anyone other than a computer enthusagtic. With this
vison, Apple | came out in 1975, which could plug into a televison set display (Young,
1988).

In 1977, a much improved verson of Apple caled Apple Il came out. It used
MOS Technologies (a spin-off of Motorola) 6502 chips rather than Intel 8080, the
dandard chips at that time. It used fewer chips than the comparable Altair machines, yet
it outperformed them due to superior circuit design. It had excdlent color graphics
cgpabilities, which made it suitable for interactive games. Although Apple I's BASIC
was written by Steve Wozniak, for Apple Il, Microsoft was contracted out for a better
versgon. The fee from this heped Microsoft to overcome the threat of bankruptcy at that
time given it had only few contracts for writing software & that time (Manes and
Andrews, 1993).

Initidly, Apple Il used a cassette tape but by the end of 1977, Wozniak designed a
disk controller that amplified floppy disk drives that were much more smpler than the
ones that were used by Altar and others at that time. Apple's floppy-disks were 5.25
inches and could hold 113 KB of data The disk drive sold for $ 495 which included an
operating system software and a controller that plugged into one of Apple II's internd
dots. The operating system was written by Jobs and Wozniak. It was written in UNIX

which enabled it to be portable. In 1980, Apple used an attachable card caled Soft Card

24

from Microsoft which dlowed Apple Il to run CP/M. For Microsoft, this piece of
hardware was one of the best selling products &t that time (Williams and Moore, 1985).

In 1979, Apple Computer added the first <spreadsheet software for
microcomputers called VidCac. It dso added a word processng software. With these
goplication software, coupled with flexibility and relative ease of use, Apple Computer
demondrated the potentiad of a persond computer a the desktop. Apple's success
convinced many others of the feashility of such a computer. One of the firms that
decided to enter in the persond computer industry was none other than IBM, the most
dominating firm in the computer industry a that time and this changed the computer
industry dramaticaly since 1980.

The 1980s — IBM's Entry into the Persond Computer Industry and its Effect on

Operating Systems:

While the 1980s saw such development related to the operating systems as
digributed processng and dient-server processing, it is the persond computer segment
that had the mgor impact on the computer industry. In this decade, persona computer
and its operding system played a dgnificant role and became the dominating segment in
the computer industry.

The watershed event in this decade darts with IBM’s entry into the persond
computer market. So far, IBM and most of the other industry heavyweights have shied
away from entering into the persond computer market doubting its potentid for being a
consumer product and leaving it mainly to the upstart smdl firms. But, Appl€'s success
demondrated that the microcomputer had the potentid for being attractive to the

households and individuds as wel as to the busnesses with spreadsheet and word

25

processing software. After careful congderation, in 1980, IBM decided to enter the
persona computer (PC) market.

As soon as the decison had been made, IBM moved with remarkable speed.
Traditiondly, IBM’s bureaucratic development dsructure had been taking about three
years to market a product. But, IBM decided that in order to speed the process of bringing
its PC to market, it would outsource al the components that it did not dready have in
production. Although IBM was the world's largest software developer a that time,
paradoxicdly, it did not have the skills to develop software for personal computers. Its
bureaucratic software development procedures were dow and geared to large software
projects but it did not have the flexibility, agility and other criticd skills to develop the
kind of software needed for personal computers (Chopsky and Leonsis, 1988).

IBM decided to use the fastest microprocessor available at that time — Intd 16-bit
8088 which gave it a dgnificant advantage over the other persond computer brands
which used 8hit Intel 8080. For operating systems, Gary Kildal's CP/M system was the
logicd choice as it had dready established itself as the standard for Intel-based systems.
Digitad Research, the firm edtablished by Kilddl, was a tha time developing a 16-hit
verson of CP/M and IBM decided to approach Kilddl for this new verson. IBM dso
decided to include a verson of BASIC as the gstandard option for its PC. Microsoft's
BASIC was a that time the standard in the Altair and other Intel-based microcomputers
(Chopsky and Leonsis, 1988).

However, for some reason, Kilddl logt the opportunity. There are severd versons
of the story of how he logt it. One verson of the story was that when IBM team arived,

he was doing some recregtiond flying and without his presence, his wife (or other

26

executives of the company, according to another verson) refused to s€ign the
nondisclosure agreement that IBM wanted Digitd Research to sign (Manes and Andrews,
1993).

When IBM negotiating team visted Microsoft to close the ded on BASIC, it
sought Bill Gates hep in recommending what to do about the operating system. Bill
Gates was highly eager to accommodate IBM’s needs and offered to provide one to IBM,
which without seeing the actua product, entered into an agreement. Bill Gates, with his
experience of the advantages of roydty rather than outright sdling of BASIC for Altair,
indged a roydty for each copy it sdIs raher than sdling outright. IBM agreed with
roydty fee set to be between $ 10 and $ 50 for each copy sold.

Microsoft, however, did not have an actud operating system ready, neither did it
have the resources to develop one to beat IBM’s deadline. However, Gates knew that Tim
Paterson, the owner of Seattle Computer Products had developed an operating system for
Intdl 8086 chip, known interndly by QDOS for “Quick and Dirty Operating System.”
Microsoft initidly paid $ 15,000 for the rights to use the product and later paid a larger
sum of money for the complete rights. Microsoft, after dight modification named it MS
DOS (MS standing for Microsoft) (Ichbiah and Kneeper, 1991).

During the summer of 1991, the first persona computers by IBM began to come
off from the IBM assembly plant and by ealy Augud, initid shipments totaing 1,700
machines were delivered to Sears Business Centers and ComputerLand stores, the two
retail outlets that IBM had chosen. A fully equipped IBM personad computer, with 64 KB

of memory and afloppy disk, cost $ 2,880 (Ichbiah and Kneeper, 1991).

27

Within the next few weeks the IBM persond computer became a runaway
success exceeding admost everybody's expectations. IBM’s brand name and IBM’s
extraordinay marketing effort contributed to this popularity. While many busness users
had hestated over buying an Apple or another relaively unknown brand at that time, the
presence of IBM logo — most venerated brand name in computer industry at that time —
convinced them that the persona computer technology was for red. In this manner, IBM
did legitimate the persona computer (Ichbiah and Kneeper, 1991).

During 1982-1983, the IBM persond computer became an industry standard.
IBM’s decison to dlow it to have an open architecture meant the other firms can copy its
desgn. This encouraged other manufacturers to produce computers with the same
architecture which came to be known as clores, in order to take advantage of the huge
demand that market was experiencing. The clones were usualy less expendve but run on
the same software. Among the most successful of the clone manufacturers was Houston
based Compag. Severa of the leading manufacturers of other brands such as Tandy,
Commodore, Victor and Zenith dso switched into making IBM clones. As the demand
for IBM and its clones increased, so did the software. In response, new application
software started to come to the market a an increasing rate. Lotus Development Corp’'s
Lotus 1-2-3 spreadsheet software, WordStar as word processing software, dBase as the
database software were the market leaders at that time in their respective product
categories. Alongsde these hardware and software, a huge sub-industry of peripherds
aso developed that manufactured printers, memory boards and various add-ons. By 1983,
the persona computer impacted society so much that the Time magazine awarded as their

Man of the Y ear, not to a person but a machine: the PC.

28

One company that benefited the most out of this was Microsoft. Almost every
mode of IBM PC and its clones were supplied with its MS-DOS operating system. As
hundreds of thousands and eventudly millions of machines were sold, money poured into
Microsoft. By the end of 1993, haf a million copies of MS-DOS had been sold, netting $
10 million (Ferguson and Morris, 1995). This revenue stream dlowed Microsoft to
divergfy into computer gpplication software without having to rdy on externad venture
capitd. It adso dlowed Microsoft to cross-subsidize some of the software thet initidly did
not succeed. For example, in mid-1983, Microsoft began to develop a word processing
software package caled Word. That product was released in November 1983 with a
publicity splash which included distribution of some 450,000 diskettes demondtrating the
program in the PC World magazine. Even 0, Word was initidly not a successful product
and had a negligible impact on the market leader a that time, WordStar. But, the cash
flow from the MS-DOS dlowed Microsoft to continue to market the product a a loss
until the opportunity came later to bundle it properly with its new generation of operating
systems, Windows (Edstrom and Eller, 1998).

One mgor deficiency of MS-DOS weas that it was not very easy to use. The user
interacted with the operating sysem through a command line interface in which
ingructions to the operating system had to be typed explicitly by the user in an exact
manner. If there was even a sngle letter out of place or a character is missing or
mistyped, the user had to type the line again. While many technica people were ddighted
in the intricacies of MS-DOS, ordinary users found it highly perplexing and sometimes

intimideting. This problem, what is cdled lack of user-friendliness, prevented the PCs

29

being truly acceptable as a consumer product. In 1984, Apple solved this problem when it
introduced its Macintosh modd.

1980s — Introduction of Macintosh in 1984:

Apple was the only mgor microcomputer manufecturer that did not switch to
producing IBM-compatibles but chose the path of its own. In 1984, it unveled its
Macintosh model which was far superior to any of the IBM PCs or its clones in terms of
user-friendliness. It used a technology cdled grephicd user inteface (GUI) and a
pointing device cdled a mouse. The movement of the mouse moves the cursor on the
screen. By moving the cursor to the appropriate words or pictures (caled icons) and then
clicking them dlowed user to give agppropriate commands to the computer. In this
manner, the user need not memorize a lengthy list of commands that must be typed into
the computer.

The graphicd user inteface or GUI (which is sometimes cdled WIMP for
Windows, Icons, Mouse and Pull-down menus), had been in the process of developing
gnce 1960s by various groups and by 1981, Xerox had used it for its Xerox Star
computer. But, Xerox priced it too high and failed to provide criticad hardware and
support. Xerox never took the persond computer serioudy and made very litile
marketing effort. As a result, Xerox perhaps missed one great opportunity (Smith and
Alexander, 1988).

In December 1979, Steve Jobs was invited to vist Xerox Pdo Alto Research
Center (PARC) in Silicon Vdley where Xerox was developing the technology for “the
office of the future’” where applications to gragphica user interface was displayed. Since

then, Jobs had in mind that the company’s next computer had to look like the machine he

had seen at Xerox PARC. At first, he started Lisa project with this concept in mind. But,
Lisa project was a falure and Apple put dl its effort into the Macintosh project that had
gtarted in 1979 (Lammers, 1986).

In January 1984, Apple introduced the Macintosh with huge promotiona efforts
that induded a legendary Super Bowl commercid. Priced a $ 2,500, it received high
prase for its design, aesthetic qudity and user-friendliness. Its elegant operating system
0 fa was a great achievement. It displayed a combination of aesthetic beauty and
practica engineering that was extremdy rare to find (Guterl, 1984).

But, after the initid enthusasm, the sdes were disgppointing. The problem was
the lack of sufficient number of software and other add-ons. This is because of Apple's
policy to keep Macintosh's architecture closed. This closed architecture meant that
hardware and software developers would find it difficult to create their own Macintosh
add-ons and software without the close cooperation with Apple. A lack of third-party
support crested a problem for Macintosh, and sales never pesked up (Wadlace and
Erickson, 1992).

In order to repodtion itsdf, Apple invited severd of the leading software firms to
develop software. But, a lack of sufficient level of demand for Mac software (which had
then 10 percet market share of the persond computer market) caused this software
developers to be discouraged. The only mgor firm which did accept to write software for
Mac a least for a while was Microsoft. Microsoft, since 1981, had been somewhat
involved in the Macintosh project, developing some minor parts of the operating system.
By taking the offer from Apple to write programs for them, Microsoft found an

environment much insulated from the highly competitive IBM-compatible market where

31

it was facing intense competition for its application software againg such srong
competitors as Lotus in spreadsheet gpplications and Micro Pro in word processing.
Later, it would be able to convert the same applications, so that they would run on the
IBM-compatible PC. By 1987, Microsoft, in fact, was deriving hdf of its revenue from
its Macintosh software (Vet, 1993). More importantly, working on the Macintosh gave
Microsoft firghand knowledge of the technology of grgphicd user interface on which it
based its new Windows operating system for the IBM PC, to which we turn next.

1980s — Launching of Microsoft's Windows:

Microsoft darted its own graphicd user interface (GUI) project in September
1981, shortly after Bill Gates had visited Steve Jobs a Apple and seen the prototype of
Macintosh computer under development. Initidly, it was esimated that it would take Sx
programmer years to develop the sysem. But, when verson 1.0 of Windows was
released in October 1985 — it was edimated that the program containing 10,000
indructions had taken eighty programmer years to complete (Walace and Erickson,
1992).

The Microsoft Windows was heavily based on the Macintosh user interface. On
22 November 1985, shortly after Windows was launched, Microsoft signed a licensing
agreement to copy the visud charecterisics of the Macintosh, thereby avoiding legd
trouble for verson 1.

However, dthough competitively priced a $ 99, sdes of Windows 1.0 were
duggish a fird because it was unbearably dow. Although a million copies were sold,
most usrs found the sysem to be little more than a gimmick and the vast mgority of

users stayed with MS-DOS. Part of the reason was that the microprocessor at that time —

32

Intel 80286 — was not fast enough to support GUI technology. Only in the late 1980s
when the next generation of microprocessors — the Intel 386 and 486 became available
that the GUI became much more supportable. At that time, Microsoft introduced its
Windows 2.0. Windows 2.0 popularity aso provided Microsoft with the opportunity to
bundle its Excel gpreadsheet software and its world processng software, Word. With it
dlowed their market share to increase condderably and eventualy become the market
leader in their respective gpplications.

In April 1987, IBM and Microsoft announced ther joint intention to develop a
new operatiing system cdled OS2. On 17 March 1988, Apple filed a lawsuit aleging that
Microsoft's Windows 2.0 infringed Apple's registered audio visua copyrights protecting
the Macintosh interface. Apple argued that Microsoft's origind 1985 agreement with
Apple had covered only verson 1 of Windows but not verson 2 (Ichbiah and Kneeper,
1991).

The lawsuit was eventudly dismissed after three years. Meanwhile, Microsoft
was achieving one of the most dramatic growths of any business in the 20" century. Most
of the growth was achieved in the applications software. However, sgnificant revenues
were also derived from its Windows 2.0 operating system (Ichbiah and Kneeper, 1991).

Success of Windows 2.0 made Microsoft to lose interest in OS2. When OS2 was
findly launched in early 1988, Microsoft faled to provide adequate software support for
it. Because of this, the first verson of OS2 never took off. To the annoyance of IBM,
Microsoft continued its Windows project intensdy while ignoring OS2 project. In fact,

in 1990, Microsoft introduced a new Windows verson —version 3.0.

The 1990s and Beyond — The Dominance of Microsoft in the Operating Sysem Market

and the Chdlenges It Faces:

On 22 May 1990, Microsoft introduced Windows 3.0 dl around the world with an
extravagant publicity and events that cogt about $ 10 million. Windows 3.0 was well-
received. Microsoft continued to take advantage of its dominance in operating systems by
bundling the application software with operating systems and by teking advantage of its
intimate knowledge of the source code of the operating system.

In April 1991, IBM announced a new verson of OS2 — release 2.0. The new
operating system was said to have cost $ 1 billion to develop axd was designed to replace
al previous operating sysems for IBM-compatible computers, including Microsoft's
own MS-DOS and Windows. However, despite the sound technical merits of OS/2, IBM
continued to lose ground againg Microsoft — partly because of a lack of gppeding
software and partly because of falure to market it effectively (Ichbiah and Kneeper,
1991).

Falure of OS2 resulted in further dominating postion for Microsoft Windows.
This podtion was further reinforced in 1995 with its release of Windows 95 which was
an immediate success. Since then, it has introduced several other versons of Windows
including Windows 2000 and Windows XP.

Despite its successes and the dominating postion of the Windows operaing
gystem, Microsoft faces severd chdlenges. One is the US Depatment of Judtice's
lavsuit agang Microsoft charging that it had used its dominating postion illegdly.

Whileit had logt in Digtrict Court, the case is currently pending in the Apped's Court.

The other chdlenges have to do with the future of the operating system as such.
The advent of the Internet has opened up new possibilities and chdlenges. Fird, there are
open-source sysems like Linux, which is avalable fredy online to anybody who wants
to view, download or adapt it. This clearly threatens Microsoft's dominating postion.
Second, the Internet may provide a platform in which operating sysem may become
much less important. In this rgpidly changing environment of computing and information
technology, it is extremdy difficult to say which direction the operaing sysems will

take.

References:

Brooks, Jr., F.P. The Mythicd ManrMonth: Essays in Software Engineering. Reading,

Mass: Addison Wedey, 1975.

Chopsky, J. and T. Leonsis. Blue Magic. The People Power and Politics Behind the IBM

Persona Computer. New Y ork: Facts on File, 1988.

Courington, B. The UNIX Sysgem: A Sun Technicd Report. Mountan View, Sun

Microsystems, 1985.

Crisman, PA. et d. The Compatible Timesharing Sysem Cambridge, Mass. MIT Press,

1964.

Edstrom and Eller. Barbarians Led by Bill Gates. New Y ork: Henry Holt, 1998.

Ferguson, C.H. and C.R. Morris. Computer Wars. How the West Can Win in a Post-IBM

World. New Y ork: Random House, 1993.

Freiberger, P. and M. Swaine. Fire in the Vdley.: The Making of Persond Computer.

Berkeley, CA: Oshorne/McGraw-Hill, 1984.
Grosch, H.R.J. “The Way It Wasin 1957.” Datamation, September 1977, pp. 121-132.

Guterl, Fred. “Dedgn Case Higtory: Apple€'s Macintosh.” |EEE Spectrum, December

1984, pp. 34-43.

Ichbish and SL. Kneeper. The Making of Microsoft. Rocklin, CA: Prima Publishing,
1991.

Kildal, Gary. “CPIM: A Family of 8-and 16-bit Operating Systems.” Byte, June 1981,
pp. 219-229.

Lammers, ed. Programmaers at Work. Redmond, WA: Microsoft Press, 1986.

Laudon, K. and J Laudon. Information Sysems. A ProblemSolving Approach. Fort

Worth, TX: The Dryden Press, 1997.

Manes and Andrews. Gates. How Microsoft's Mogul Reinvented an Industry and Made

Himsdf the Richest Man in America. New Y ork: Doubleday, 1993.

Milenkovic. Operating Systems: Concept and Design. New Y ork: McGraw-Hill, 1987.

Naur, P. and B. Randell (eds). Software Enginegring. NATO Scientific Affairs Divison,

Brussels. Report on a Conference Sponsored by the NATO Science Committee,
Garmisch, Germany, 7-11 October, 1998, 1969.

Orchard-Hays. “The Evolution of Programming Sysems” IRE Proceedings, January

1961, pp. 285-295.

Organick, E.I. The Multics Sysgem: An Examination of the Structure, Cambridge, MA:

MIT Press, 1972.

Pugh, E. , RJ. Lyle and H. Pamer. IBM’s 360 and Early 370 Systems. Cambridge: MIT

Press, 1991.
Ritchie, Dennis. “The Evolution of the UNIX Timeshaing Sysem.” AT& T Bdl
L aboratories Technical Journal, August 1984, pp. 1577-1593.

Ritchie, D.M. and K. Thompson. “UNIX Timesharing Sysem: The UNIX Timesharing

System.” Bell System Technical Journa, August 1978, pp. 1991-2019.

Rosin, R.F. “Supervisory and Monitor System.” ACM Computing Surveys, March 1969.

Sdus, P. A Quarter Century of UNIX. Reading, MA: Addison-Wesley, 1994.

Slater, R. Portraits in Slicon Cambridge, MA: MIT Press, 1987.

Smith, AJ. “Multiprogramming and Memory Contention.” Software — Practice and

Experience, July 1980, pp. 531-552.

37

Smith, D.K. and R.C. Alexander. Fumbling the Future How Xerox Invented, Then

Ignored, the First Personad Computer. New Y ork: Morrow, 1988.

Stern, N. From ENIAC to UNIVAC: An Apprasa of the Eckert-Mauchly Computer.

Bedford, MA: Digital Press, 1981.

Veit, S. Higory of Personal Computer. Asheville, NC: WorldComn, 1993.

Walace, J. and J Erickson. Hard Drive: Bill Gates and the Making of the Microsoft

Empire. New Y ork: John Wiley, 1992.

Watson, Jr., T. & P. Petre. Father and Son & Co. London: Bantam Press, 1990.

Weizer, N. “A Higtory of Operating Systems.” Datamation, January 1981, pp. 119-126.
Williams, G. and R. Moore. “The Apple Story, Part 2.” Byte, January 1985, pp. 167-180.

Young, Jffrey. Steve Jobs. The Journey |Is the Reward. Glenview, IL: Scott, Foresman,

1988.

